- home
- Advanced Search
- Energy Research
- FI
- Energy Research
- FI
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Schipfer, F.; Mäki, E.; Schmieder, U.; Lange, N.; Schildhauer, T.; Hennig, C.; Thrän; D.;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Schipfer, F.; Mäki, E.; Schmieder, U.; Lange, N.; Schildhauer, T.; Hennig, C.; Thrän; D.;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Fabian Schipfer; Pralhad Burli; Uwe Fritsche; Christiane Hennig; Fabian Stricker; Maria Wirth; Svetlana Proskurina; Sebastian Serna-Loaiza;Abstract Background Human and earth system modeling, traditionally centered on the interplay between the energy system and the atmosphere, are facing a paradigm shift. The Intergovernmental Panel on Climate Change’s mandate for comprehensive, cross-sectoral climate action emphasizes avoiding the vulnerabilities of narrow sectoral approaches. Our study explores the circular bioeconomy, highlighting the intricate interconnections among agriculture, forestry, aquaculture, technological advancements, and ecological recycling. Collectively, these sectors play a pivotal role in supplying essential resources to meet the food, material, and energy needs of a growing global population. We pose the pertinent question of what it takes to integrate these multifaceted sectors into a new era of holistic systems thinking and planning. Results The foundation for discussion is provided by a novel graphical representation encompassing statistical data on food, materials, energy flows, and circularity. This representation aids in constructing an inventory of technological advancements and climate actions that have the potential to significantly reshape the structure and scale of the economic metabolism in the coming decades. In this context, the three dominant mega-trends—population dynamics, economic developments, and the climate crisis—compel us to address the potential consequences of the identified actions, all of which fall under the four categories of substitution, efficiency, sufficiency, and reliability measures. Substitution and efficiency measures currently dominate systems modeling. Including novel bio-based processes and circularity aspects might require only expanded system boundaries. Conversely, paradigm shifts in systems engineering are expected to center on sufficiency and reliability actions. Effectively assessing the impact of sufficiency measures will necessitate substantial progress in inter- and transdisciplinary collaboration, primarily due to their non-technological nature. In addition, placing emphasis on modeling the reliability and resilience of transformation pathways represents a distinct and emerging frontier that highlights the significance of an integrated network of networks. Conclusions Existing and emerging circular bioeconomy practices can serve as prime examples of system integration. These practices facilitate the interconnection of complex biomass supply chain networks with other networks encompassing feedstock-independent renewable power, hydrogen, CO2, water, and other biotic, abiotic, and intangible resources. Elevating the prominence of these connectors will empower policymakers to steer the amplification of synergies and mitigation of tradeoffs among systems, sectors, and goals.
Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-024-00461-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-024-00461-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Fabian Schipfer; Pralhad Burli; Uwe Fritsche; Christiane Hennig; Fabian Stricker; Maria Wirth; Svetlana Proskurina; Sebastian Serna-Loaiza;Abstract Background Human and earth system modeling, traditionally centered on the interplay between the energy system and the atmosphere, are facing a paradigm shift. The Intergovernmental Panel on Climate Change’s mandate for comprehensive, cross-sectoral climate action emphasizes avoiding the vulnerabilities of narrow sectoral approaches. Our study explores the circular bioeconomy, highlighting the intricate interconnections among agriculture, forestry, aquaculture, technological advancements, and ecological recycling. Collectively, these sectors play a pivotal role in supplying essential resources to meet the food, material, and energy needs of a growing global population. We pose the pertinent question of what it takes to integrate these multifaceted sectors into a new era of holistic systems thinking and planning. Results The foundation for discussion is provided by a novel graphical representation encompassing statistical data on food, materials, energy flows, and circularity. This representation aids in constructing an inventory of technological advancements and climate actions that have the potential to significantly reshape the structure and scale of the economic metabolism in the coming decades. In this context, the three dominant mega-trends—population dynamics, economic developments, and the climate crisis—compel us to address the potential consequences of the identified actions, all of which fall under the four categories of substitution, efficiency, sufficiency, and reliability measures. Substitution and efficiency measures currently dominate systems modeling. Including novel bio-based processes and circularity aspects might require only expanded system boundaries. Conversely, paradigm shifts in systems engineering are expected to center on sufficiency and reliability actions. Effectively assessing the impact of sufficiency measures will necessitate substantial progress in inter- and transdisciplinary collaboration, primarily due to their non-technological nature. In addition, placing emphasis on modeling the reliability and resilience of transformation pathways represents a distinct and emerging frontier that highlights the significance of an integrated network of networks. Conclusions Existing and emerging circular bioeconomy practices can serve as prime examples of system integration. These practices facilitate the interconnection of complex biomass supply chain networks with other networks encompassing feedstock-independent renewable power, hydrogen, CO2, water, and other biotic, abiotic, and intangible resources. Elevating the prominence of these connectors will empower policymakers to steer the amplification of synergies and mitigation of tradeoffs among systems, sectors, and goals.
Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-024-00461-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-024-00461-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Mäki, Elina; Hennig, Christiane; Thrän, Daniela; Lange, Nora; Schildhauer, Tilman; Schipfer, Fabian;doi: 10.1002/bbb.2649
AbstractThe global energy system is in transition. It is attempting to reach net‐zero greenhouse gas emissions by 2050. The systemic changes mean that the role of bioenergy will change. The potential of bioenergy to make a flexible contribution to the energy system is key for the achievement of global emission reduction ambitions and the functioning of the low‐carbon energy system and economy. As the volume of sustainably available biomass resources is limited, defining the contributions from bioenergy to a low‐carbon energy system and finding balances – and ideally synergies – between the different possible energy and climate system services that biomass can provide will be very important. The recognized system services include, among others, the flexible operation of bioenergy plants to integrate variable renewable energy sources and to provide negative carbon dioxide (CO2) emissions. Interest in flexible operation of bioenergy value chains, bioenergy with carbon capture and utilization as well as synergies with renewable hydrogen‐based value chains has increased recently. The objective of this paper is to present a holistic definition of flexible bioenergy as a system service based on the work conducted in International Energy Agency (IEA) Bioenergy Technology Collaboration Programme's Task 44 Flexible Bioenergy and System Integration, and to provide some practical examples. The paper also presents the different bioenergy system services and considers their definitions and interactions, as this is important in energy system design. The definition of flexible bioenergy shows that the flexibility provision from bioenergy goes far beyond the traditional definition of providing short‐term flexibility in the power sector. Indicators to demonstrate the value of services as well as further quantitative assessment of synergies and trade‐offs are needed to valorize the different services from bioenergy and create viable business cases.
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefBiofuels Bioproducts and BiorefiningArticle . 2024License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefBiofuels Bioproducts and BiorefiningArticle . 2024License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Mäki, Elina; Hennig, Christiane; Thrän, Daniela; Lange, Nora; Schildhauer, Tilman; Schipfer, Fabian;doi: 10.1002/bbb.2649
AbstractThe global energy system is in transition. It is attempting to reach net‐zero greenhouse gas emissions by 2050. The systemic changes mean that the role of bioenergy will change. The potential of bioenergy to make a flexible contribution to the energy system is key for the achievement of global emission reduction ambitions and the functioning of the low‐carbon energy system and economy. As the volume of sustainably available biomass resources is limited, defining the contributions from bioenergy to a low‐carbon energy system and finding balances – and ideally synergies – between the different possible energy and climate system services that biomass can provide will be very important. The recognized system services include, among others, the flexible operation of bioenergy plants to integrate variable renewable energy sources and to provide negative carbon dioxide (CO2) emissions. Interest in flexible operation of bioenergy value chains, bioenergy with carbon capture and utilization as well as synergies with renewable hydrogen‐based value chains has increased recently. The objective of this paper is to present a holistic definition of flexible bioenergy as a system service based on the work conducted in International Energy Agency (IEA) Bioenergy Technology Collaboration Programme's Task 44 Flexible Bioenergy and System Integration, and to provide some practical examples. The paper also presents the different bioenergy system services and considers their definitions and interactions, as this is important in energy system design. The definition of flexible bioenergy shows that the flexibility provision from bioenergy goes far beyond the traditional definition of providing short‐term flexibility in the power sector. Indicators to demonstrate the value of services as well as further quantitative assessment of synergies and trade‐offs are needed to valorize the different services from bioenergy and create viable business cases.
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefBiofuels Bioproducts and BiorefiningArticle . 2024License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefBiofuels Bioproducts and BiorefiningArticle . 2024License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FinlandPublisher:Elsevier BV Authors: Svetlana Proskurina; Jussi Heinimö; Fabian Schipfer; Esa Vakkilainen;Torrefied biomass has considerable potential as a biomass fuel to replace coal in energy and process heat production. The aim of this paper is to evaluate the potential of torrefied biomass in different industries, both power and non-power generation industries, and considers the impact of such use on the international biomass market. The power generation sector has been so far the leader in testing torrefied biomass use with other industrial demand lagging behind. There are promising technical possibilities for greater torrefied biomass use in a number of other areas such as the steel, non-metallic minerals, as well as the pulp and paper industries. Although a large increase in torrefied biomass consumption by industry is not immediately foreseeable, industrial use by actors outside the energy generation sector could increase demand for torrefied biomass in general and, as a result, stimulate development of global torrefied biomass markets. Results show that the torrefied biomass demand significantly depends on the bioenergy markets. It seems that despite of the challenges, the growth of torrefied biomass demand will have a large progress in coming years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.04.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.04.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FinlandPublisher:Elsevier BV Authors: Svetlana Proskurina; Jussi Heinimö; Fabian Schipfer; Esa Vakkilainen;Torrefied biomass has considerable potential as a biomass fuel to replace coal in energy and process heat production. The aim of this paper is to evaluate the potential of torrefied biomass in different industries, both power and non-power generation industries, and considers the impact of such use on the international biomass market. The power generation sector has been so far the leader in testing torrefied biomass use with other industrial demand lagging behind. There are promising technical possibilities for greater torrefied biomass use in a number of other areas such as the steel, non-metallic minerals, as well as the pulp and paper industries. Although a large increase in torrefied biomass consumption by industry is not immediately foreseeable, industrial use by actors outside the energy generation sector could increase demand for torrefied biomass in general and, as a result, stimulate development of global torrefied biomass markets. Results show that the torrefied biomass demand significantly depends on the bioenergy markets. It seems that despite of the challenges, the growth of torrefied biomass demand will have a large progress in coming years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.04.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.04.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Netherlands, Finland, NetherlandsPublisher:Wiley Junginger, Hans Martin; Mai-Moulin, Thuy; Daioglou, Vassilis; Fritsche, Uwe; Guisson, Ruben; Hennig, Christiane; Thrän, Daniela; Heinimö, Jussi; Hess, J. Richard; Lamers, Patrick; Li, Chenlin; Kwant, Kees; Olsson, Olle; Proskurina, Svetlana; Ranta, Tapio; Schipfer, Fabian; Wild, Michael;doi: 10.1002/bbb.1993
AbstractCurrent biomass production and trade volumes for energy and new materials and bio‐chemicals are only a small fraction to achieve the bioenergy levels suggested by many global energy and climate change mitigation scenarios for 2050. However, comprehensive sustainability of large scale biomass production and trading has yet to be secured, and governance of developing biomass markets is a critical issue. Fundamental choices need to be made on how to develop sustainable biomass supply chains and govern sustainable international biomass markets. The aim of this paper is to provide a vision of how widespread trade and deployment of biomass for energy purposes can be integrated with the wider (bio)economy. It provides an overview of past and current trade flows of the main bioenergy products, and discusses the most important drivers and barriers for bioenergy in general, and more specifically the further development of bioenergy trade over the coming years. It discusses the role of bioenergy as part of the bioeconomy and other potential roles; and how it can help to achieve the sustainable development goals. The paper concludes that it is critical to demonstrate innovative and integrated value chains for biofuels, bioproducts, and biopower that can respond with agility to market factors while providing economic, environmental, and societal benefits to international trade and market. Furthermore, flexible biogenic carbon supply nets based on broad feedstock portfolios and multiple energy and material utilization pathways will reduce risks for involved stakeholder and foster the market entry and uptake of various densified biogenic carbon carriers. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2019License: taverneData sources: Pure Utrecht UniversityBiofuels Bioproducts and BiorefiningArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2019License: taverneData sources: Pure Utrecht UniversityBiofuels Bioproducts and BiorefiningArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Netherlands, Finland, NetherlandsPublisher:Wiley Junginger, Hans Martin; Mai-Moulin, Thuy; Daioglou, Vassilis; Fritsche, Uwe; Guisson, Ruben; Hennig, Christiane; Thrän, Daniela; Heinimö, Jussi; Hess, J. Richard; Lamers, Patrick; Li, Chenlin; Kwant, Kees; Olsson, Olle; Proskurina, Svetlana; Ranta, Tapio; Schipfer, Fabian; Wild, Michael;doi: 10.1002/bbb.1993
AbstractCurrent biomass production and trade volumes for energy and new materials and bio‐chemicals are only a small fraction to achieve the bioenergy levels suggested by many global energy and climate change mitigation scenarios for 2050. However, comprehensive sustainability of large scale biomass production and trading has yet to be secured, and governance of developing biomass markets is a critical issue. Fundamental choices need to be made on how to develop sustainable biomass supply chains and govern sustainable international biomass markets. The aim of this paper is to provide a vision of how widespread trade and deployment of biomass for energy purposes can be integrated with the wider (bio)economy. It provides an overview of past and current trade flows of the main bioenergy products, and discusses the most important drivers and barriers for bioenergy in general, and more specifically the further development of bioenergy trade over the coming years. It discusses the role of bioenergy as part of the bioeconomy and other potential roles; and how it can help to achieve the sustainable development goals. The paper concludes that it is critical to demonstrate innovative and integrated value chains for biofuels, bioproducts, and biopower that can respond with agility to market factors while providing economic, environmental, and societal benefits to international trade and market. Furthermore, flexible biogenic carbon supply nets based on broad feedstock portfolios and multiple energy and material utilization pathways will reduce risks for involved stakeholder and foster the market entry and uptake of various densified biogenic carbon carriers. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2019License: taverneData sources: Pure Utrecht UniversityBiofuels Bioproducts and BiorefiningArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2019License: taverneData sources: Pure Utrecht UniversityBiofuels Bioproducts and BiorefiningArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Schipfer, F.; Mäki, E.; Schmieder, U.; Lange, N.; Schildhauer, T.; Hennig, C.; Thrän; D.;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Schipfer, F.; Mäki, E.; Schmieder, U.; Lange, N.; Schildhauer, T.; Hennig, C.; Thrän; D.;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Fabian Schipfer; Pralhad Burli; Uwe Fritsche; Christiane Hennig; Fabian Stricker; Maria Wirth; Svetlana Proskurina; Sebastian Serna-Loaiza;Abstract Background Human and earth system modeling, traditionally centered on the interplay between the energy system and the atmosphere, are facing a paradigm shift. The Intergovernmental Panel on Climate Change’s mandate for comprehensive, cross-sectoral climate action emphasizes avoiding the vulnerabilities of narrow sectoral approaches. Our study explores the circular bioeconomy, highlighting the intricate interconnections among agriculture, forestry, aquaculture, technological advancements, and ecological recycling. Collectively, these sectors play a pivotal role in supplying essential resources to meet the food, material, and energy needs of a growing global population. We pose the pertinent question of what it takes to integrate these multifaceted sectors into a new era of holistic systems thinking and planning. Results The foundation for discussion is provided by a novel graphical representation encompassing statistical data on food, materials, energy flows, and circularity. This representation aids in constructing an inventory of technological advancements and climate actions that have the potential to significantly reshape the structure and scale of the economic metabolism in the coming decades. In this context, the three dominant mega-trends—population dynamics, economic developments, and the climate crisis—compel us to address the potential consequences of the identified actions, all of which fall under the four categories of substitution, efficiency, sufficiency, and reliability measures. Substitution and efficiency measures currently dominate systems modeling. Including novel bio-based processes and circularity aspects might require only expanded system boundaries. Conversely, paradigm shifts in systems engineering are expected to center on sufficiency and reliability actions. Effectively assessing the impact of sufficiency measures will necessitate substantial progress in inter- and transdisciplinary collaboration, primarily due to their non-technological nature. In addition, placing emphasis on modeling the reliability and resilience of transformation pathways represents a distinct and emerging frontier that highlights the significance of an integrated network of networks. Conclusions Existing and emerging circular bioeconomy practices can serve as prime examples of system integration. These practices facilitate the interconnection of complex biomass supply chain networks with other networks encompassing feedstock-independent renewable power, hydrogen, CO2, water, and other biotic, abiotic, and intangible resources. Elevating the prominence of these connectors will empower policymakers to steer the amplification of synergies and mitigation of tradeoffs among systems, sectors, and goals.
Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-024-00461-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-024-00461-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Fabian Schipfer; Pralhad Burli; Uwe Fritsche; Christiane Hennig; Fabian Stricker; Maria Wirth; Svetlana Proskurina; Sebastian Serna-Loaiza;Abstract Background Human and earth system modeling, traditionally centered on the interplay between the energy system and the atmosphere, are facing a paradigm shift. The Intergovernmental Panel on Climate Change’s mandate for comprehensive, cross-sectoral climate action emphasizes avoiding the vulnerabilities of narrow sectoral approaches. Our study explores the circular bioeconomy, highlighting the intricate interconnections among agriculture, forestry, aquaculture, technological advancements, and ecological recycling. Collectively, these sectors play a pivotal role in supplying essential resources to meet the food, material, and energy needs of a growing global population. We pose the pertinent question of what it takes to integrate these multifaceted sectors into a new era of holistic systems thinking and planning. Results The foundation for discussion is provided by a novel graphical representation encompassing statistical data on food, materials, energy flows, and circularity. This representation aids in constructing an inventory of technological advancements and climate actions that have the potential to significantly reshape the structure and scale of the economic metabolism in the coming decades. In this context, the three dominant mega-trends—population dynamics, economic developments, and the climate crisis—compel us to address the potential consequences of the identified actions, all of which fall under the four categories of substitution, efficiency, sufficiency, and reliability measures. Substitution and efficiency measures currently dominate systems modeling. Including novel bio-based processes and circularity aspects might require only expanded system boundaries. Conversely, paradigm shifts in systems engineering are expected to center on sufficiency and reliability actions. Effectively assessing the impact of sufficiency measures will necessitate substantial progress in inter- and transdisciplinary collaboration, primarily due to their non-technological nature. In addition, placing emphasis on modeling the reliability and resilience of transformation pathways represents a distinct and emerging frontier that highlights the significance of an integrated network of networks. Conclusions Existing and emerging circular bioeconomy practices can serve as prime examples of system integration. These practices facilitate the interconnection of complex biomass supply chain networks with other networks encompassing feedstock-independent renewable power, hydrogen, CO2, water, and other biotic, abiotic, and intangible resources. Elevating the prominence of these connectors will empower policymakers to steer the amplification of synergies and mitigation of tradeoffs among systems, sectors, and goals.
Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-024-00461-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-024-00461-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Mäki, Elina; Hennig, Christiane; Thrän, Daniela; Lange, Nora; Schildhauer, Tilman; Schipfer, Fabian;doi: 10.1002/bbb.2649
AbstractThe global energy system is in transition. It is attempting to reach net‐zero greenhouse gas emissions by 2050. The systemic changes mean that the role of bioenergy will change. The potential of bioenergy to make a flexible contribution to the energy system is key for the achievement of global emission reduction ambitions and the functioning of the low‐carbon energy system and economy. As the volume of sustainably available biomass resources is limited, defining the contributions from bioenergy to a low‐carbon energy system and finding balances – and ideally synergies – between the different possible energy and climate system services that biomass can provide will be very important. The recognized system services include, among others, the flexible operation of bioenergy plants to integrate variable renewable energy sources and to provide negative carbon dioxide (CO2) emissions. Interest in flexible operation of bioenergy value chains, bioenergy with carbon capture and utilization as well as synergies with renewable hydrogen‐based value chains has increased recently. The objective of this paper is to present a holistic definition of flexible bioenergy as a system service based on the work conducted in International Energy Agency (IEA) Bioenergy Technology Collaboration Programme's Task 44 Flexible Bioenergy and System Integration, and to provide some practical examples. The paper also presents the different bioenergy system services and considers their definitions and interactions, as this is important in energy system design. The definition of flexible bioenergy shows that the flexibility provision from bioenergy goes far beyond the traditional definition of providing short‐term flexibility in the power sector. Indicators to demonstrate the value of services as well as further quantitative assessment of synergies and trade‐offs are needed to valorize the different services from bioenergy and create viable business cases.
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefBiofuels Bioproducts and BiorefiningArticle . 2024License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefBiofuels Bioproducts and BiorefiningArticle . 2024License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Mäki, Elina; Hennig, Christiane; Thrän, Daniela; Lange, Nora; Schildhauer, Tilman; Schipfer, Fabian;doi: 10.1002/bbb.2649
AbstractThe global energy system is in transition. It is attempting to reach net‐zero greenhouse gas emissions by 2050. The systemic changes mean that the role of bioenergy will change. The potential of bioenergy to make a flexible contribution to the energy system is key for the achievement of global emission reduction ambitions and the functioning of the low‐carbon energy system and economy. As the volume of sustainably available biomass resources is limited, defining the contributions from bioenergy to a low‐carbon energy system and finding balances – and ideally synergies – between the different possible energy and climate system services that biomass can provide will be very important. The recognized system services include, among others, the flexible operation of bioenergy plants to integrate variable renewable energy sources and to provide negative carbon dioxide (CO2) emissions. Interest in flexible operation of bioenergy value chains, bioenergy with carbon capture and utilization as well as synergies with renewable hydrogen‐based value chains has increased recently. The objective of this paper is to present a holistic definition of flexible bioenergy as a system service based on the work conducted in International Energy Agency (IEA) Bioenergy Technology Collaboration Programme's Task 44 Flexible Bioenergy and System Integration, and to provide some practical examples. The paper also presents the different bioenergy system services and considers their definitions and interactions, as this is important in energy system design. The definition of flexible bioenergy shows that the flexibility provision from bioenergy goes far beyond the traditional definition of providing short‐term flexibility in the power sector. Indicators to demonstrate the value of services as well as further quantitative assessment of synergies and trade‐offs are needed to valorize the different services from bioenergy and create viable business cases.
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefBiofuels Bioproducts and BiorefiningArticle . 2024License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefBiofuels Bioproducts and BiorefiningArticle . 2024License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FinlandPublisher:Elsevier BV Authors: Svetlana Proskurina; Jussi Heinimö; Fabian Schipfer; Esa Vakkilainen;Torrefied biomass has considerable potential as a biomass fuel to replace coal in energy and process heat production. The aim of this paper is to evaluate the potential of torrefied biomass in different industries, both power and non-power generation industries, and considers the impact of such use on the international biomass market. The power generation sector has been so far the leader in testing torrefied biomass use with other industrial demand lagging behind. There are promising technical possibilities for greater torrefied biomass use in a number of other areas such as the steel, non-metallic minerals, as well as the pulp and paper industries. Although a large increase in torrefied biomass consumption by industry is not immediately foreseeable, industrial use by actors outside the energy generation sector could increase demand for torrefied biomass in general and, as a result, stimulate development of global torrefied biomass markets. Results show that the torrefied biomass demand significantly depends on the bioenergy markets. It seems that despite of the challenges, the growth of torrefied biomass demand will have a large progress in coming years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.04.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.04.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FinlandPublisher:Elsevier BV Authors: Svetlana Proskurina; Jussi Heinimö; Fabian Schipfer; Esa Vakkilainen;Torrefied biomass has considerable potential as a biomass fuel to replace coal in energy and process heat production. The aim of this paper is to evaluate the potential of torrefied biomass in different industries, both power and non-power generation industries, and considers the impact of such use on the international biomass market. The power generation sector has been so far the leader in testing torrefied biomass use with other industrial demand lagging behind. There are promising technical possibilities for greater torrefied biomass use in a number of other areas such as the steel, non-metallic minerals, as well as the pulp and paper industries. Although a large increase in torrefied biomass consumption by industry is not immediately foreseeable, industrial use by actors outside the energy generation sector could increase demand for torrefied biomass in general and, as a result, stimulate development of global torrefied biomass markets. Results show that the torrefied biomass demand significantly depends on the bioenergy markets. It seems that despite of the challenges, the growth of torrefied biomass demand will have a large progress in coming years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.04.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.04.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Netherlands, Finland, NetherlandsPublisher:Wiley Junginger, Hans Martin; Mai-Moulin, Thuy; Daioglou, Vassilis; Fritsche, Uwe; Guisson, Ruben; Hennig, Christiane; Thrän, Daniela; Heinimö, Jussi; Hess, J. Richard; Lamers, Patrick; Li, Chenlin; Kwant, Kees; Olsson, Olle; Proskurina, Svetlana; Ranta, Tapio; Schipfer, Fabian; Wild, Michael;doi: 10.1002/bbb.1993
AbstractCurrent biomass production and trade volumes for energy and new materials and bio‐chemicals are only a small fraction to achieve the bioenergy levels suggested by many global energy and climate change mitigation scenarios for 2050. However, comprehensive sustainability of large scale biomass production and trading has yet to be secured, and governance of developing biomass markets is a critical issue. Fundamental choices need to be made on how to develop sustainable biomass supply chains and govern sustainable international biomass markets. The aim of this paper is to provide a vision of how widespread trade and deployment of biomass for energy purposes can be integrated with the wider (bio)economy. It provides an overview of past and current trade flows of the main bioenergy products, and discusses the most important drivers and barriers for bioenergy in general, and more specifically the further development of bioenergy trade over the coming years. It discusses the role of bioenergy as part of the bioeconomy and other potential roles; and how it can help to achieve the sustainable development goals. The paper concludes that it is critical to demonstrate innovative and integrated value chains for biofuels, bioproducts, and biopower that can respond with agility to market factors while providing economic, environmental, and societal benefits to international trade and market. Furthermore, flexible biogenic carbon supply nets based on broad feedstock portfolios and multiple energy and material utilization pathways will reduce risks for involved stakeholder and foster the market entry and uptake of various densified biogenic carbon carriers. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2019License: taverneData sources: Pure Utrecht UniversityBiofuels Bioproducts and BiorefiningArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2019License: taverneData sources: Pure Utrecht UniversityBiofuels Bioproducts and BiorefiningArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Netherlands, Finland, NetherlandsPublisher:Wiley Junginger, Hans Martin; Mai-Moulin, Thuy; Daioglou, Vassilis; Fritsche, Uwe; Guisson, Ruben; Hennig, Christiane; Thrän, Daniela; Heinimö, Jussi; Hess, J. Richard; Lamers, Patrick; Li, Chenlin; Kwant, Kees; Olsson, Olle; Proskurina, Svetlana; Ranta, Tapio; Schipfer, Fabian; Wild, Michael;doi: 10.1002/bbb.1993
AbstractCurrent biomass production and trade volumes for energy and new materials and bio‐chemicals are only a small fraction to achieve the bioenergy levels suggested by many global energy and climate change mitigation scenarios for 2050. However, comprehensive sustainability of large scale biomass production and trading has yet to be secured, and governance of developing biomass markets is a critical issue. Fundamental choices need to be made on how to develop sustainable biomass supply chains and govern sustainable international biomass markets. The aim of this paper is to provide a vision of how widespread trade and deployment of biomass for energy purposes can be integrated with the wider (bio)economy. It provides an overview of past and current trade flows of the main bioenergy products, and discusses the most important drivers and barriers for bioenergy in general, and more specifically the further development of bioenergy trade over the coming years. It discusses the role of bioenergy as part of the bioeconomy and other potential roles; and how it can help to achieve the sustainable development goals. The paper concludes that it is critical to demonstrate innovative and integrated value chains for biofuels, bioproducts, and biopower that can respond with agility to market factors while providing economic, environmental, and societal benefits to international trade and market. Furthermore, flexible biogenic carbon supply nets based on broad feedstock portfolios and multiple energy and material utilization pathways will reduce risks for involved stakeholder and foster the market entry and uptake of various densified biogenic carbon carriers. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2019License: taverneData sources: Pure Utrecht UniversityBiofuels Bioproducts and BiorefiningArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2019License: taverneData sources: Pure Utrecht UniversityBiofuels Bioproducts and BiorefiningArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu