- home
- Advanced Search
- Energy Research
- Open Access
- Restricted
- Open Source
- Embargo
- FR
- IT
- DE
- EU
- Energy Research
- Open Access
- Restricted
- Open Source
- Embargo
- FR
- IT
- DE
- EU
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Funded by:EC | AURES IIEC| AURES IIAuthors:Franziska Schöniger;
Franziska Schöniger
Franziska Schöniger in OpenAIREPhilipp Mascherbauer;
Philipp Mascherbauer
Philipp Mascherbauer in OpenAIREGustav Resch;
Gustav Resch
Gustav Resch in OpenAIRELukas Kranzl;
+1 AuthorsLukas Kranzl
Lukas Kranzl in OpenAIREFranziska Schöniger;
Franziska Schöniger
Franziska Schöniger in OpenAIREPhilipp Mascherbauer;
Philipp Mascherbauer
Philipp Mascherbauer in OpenAIREGustav Resch;
Gustav Resch
Gustav Resch in OpenAIRELukas Kranzl;
Lukas Kranzl
Lukas Kranzl in OpenAIREReinhard Haas;
Reinhard Haas
Reinhard Haas in OpenAIREAbstractDecarbonising the energy system requires high shares of variable renewable generation and sector coupling like power to heat. In addition to heat supply, heat pumps can be used in future energy systems to provide flexibility to the electricity system by using the thermal storage potential of the building stock and buffer tanks to shift electricity demand to hours of high renewable electricity production. Bridging the gap between two methodological approaches, we coupled a detailed building technology operation model and the open-source energy system model Balmorel to evaluate the flexibility potential that decentral heat pumps can provide to the electricity system. Austria in the year 2030 serves as an example of a 100% renewable-based electricity system (at an annual national balance). Results show that system benefits from heat pump flexibility are relatively limited in extent and concentrated on short-term flexibility. Flexible heat pumps reduce system cost, CO2 emissions, and photovoltaics and wind curtailment in all scenarios. The amount of electricity shifted in the assessed standard flexibility scenario is 194 GWhel and accounts for about 20% of the available flexible heat pump electricity demand. A comparison of different modelling approaches and a deterministic sensitivity analysis of key input parameters complement the modelling. The most important input parameters impacting heat pump flexibility are the flexible capacity (determined by installed capacity and share of control), shifting time limitations, and cost assumptions for the flexibility provided. Heat pump flexibility contributes more to increasing low residual loads (up to 22% in the assessed scenarios) than decreasing residual load peaks. Wind power integration benefits more from heat pump flexibility than photovoltaics because of the temporal correlation between heat demand and wind generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-024-10206-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-024-10206-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1968Publisher:Wiley Authors: E. Pfaff; Martin Klingenberg;pmid: 5725814
The adenine nucleotide translocation in mitochondria has previously been established as an exchange between exogenous and endogenous adenine nucleotides across the inner membrane. The specificity and the control of the exchange are examined with the following major results: The adenine nucleotide translocation is relatively specific for exogenous ADP and ATP, AMP being nearly inactive. Among other nucleotides tested, only dADP and dATP exchange with a noticeable activity. In the controlled state ADP exchanges 2–4 times faster than ATP. If simultaneously added, ADP and ATP compete for the exchange, with ADP being about tenfold more active than ATP. The specificity of the exit of adenine nucleotides in the exchange is similar to the specificity of the entrance with the difference that ADP and ATP are released with equal activity in proportion to their intramitochondrial content. AMP is released only after a slow conversion to ADP. Therefore the short time exchange is limited by the endogenous content of ADP plus ATP. The exchange is influenced by the metabolic state of the mitochondria. The ATP exchange is more variable than the ADP exchange. Two effects are elucidated: (a) the influence of the metabolic state on the relative content of AMP which inhibits both the ADP and ATP exchange (b) the coupling of the energy transfer system which inhibits only the ATP exchange. An example for case (a) is the inhibition of the ADP and ATP exchange by arsenate and an example for case (b) is the strong increase of the ATP exchange on uncoupling. The following effects are relevant to the mechanism of the control of the exchange by ATP. The stimulation of the ATP exchange by uncoupler has the same concentration dependence as the uncoupling of oxidative phosphorylation (Km [CCP] = 0.08 μM, where CCP = carbonyl‐cyanide‐phenylhydrazone). Oligomycin does not abolish the uncoupler effect on the ATP exchange. “Endogenous uncoupling” on aging of mitochondria also stimulates the ATP exchange. Valinomycin plus K+ only slightly stimulate the ATP exchange. Anaerobiosis stimulates the ATP exchange to a smaller extent than uncoupling.In competition with ADP the effects of energy transfer on ATP exchange are more strongly revealed. On uncoupling the more than tenfold preference for ADP is fully abolished. It is concluded that basically the exchange for ADP and ATP has equal specificity in forward and reverse reaction. In the controlled state a superimposed force makes the specificity asymmetric and inhibits the entrance of ATP. This control of the ATP exchange is concluded to be based on the anionic character of the adenine nucleotides. Thus the ATP4‐ex–ADP3‐in exchange is inhibited unless the charge difference is compensated for by an uncoupler stimulated H+ movement across the membrane. Furthermore an electric potential gradient appears to be effective in the controlled state which is abolished on uncoupling.
European Journal of ... arrow_drop_down European Journal of BiochemistryArticle . 1968 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1432-1033.1968.tb00420.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 454 citations 454 popularity Top 10% influence Top 0.1% impulse Top 1% Powered by BIP!
more_vert European Journal of ... arrow_drop_down European Journal of BiochemistryArticle . 1968 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1432-1033.1968.tb00420.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review 2022 ItalyPublisher:MDPI AG A complete surveillance strategy for wind turbines requires both the condition monitoring (CM) of their mechanical components and the structural health monitoring (SHM) of their load-bearing structural elements (foundations, tower, and blades). Therefore, it spans both the civil and mechanical engineering fields. Several traditional and advanced non-destructive techniques (NDTs) have been proposed for both areas of application throughout the last years. These include visual inspection (VI), acoustic emissions (AEs), ultrasonic testing (UT), infrared thermography (IRT), radiographic testing (RT), electromagnetic testing (ET), oil monitoring, and many other methods. These NDTs can be performed by human personnel, robots, or unmanned aerial vehicles (UAVs); they can also be applied both for isolated wind turbines or systematically for whole onshore or offshore wind farms. These non-destructive approaches have been extensively reviewed here; more than 300 scientific articles, technical reports, and other documents are included in this review, encompassing all the main aspects of these survey strategies. Particular attention was dedicated to the latest developments in the last two decades (2000–2021). Highly influential research works, which received major attention from the scientific community, are highlighted and commented upon. Furthermore, for each strategy, a selection of relevant applications is reported by way of example, including newer and less developed strategies as well.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoReview . 2022License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22041627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoReview . 2022License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22041627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Report 2020 FinlandPublisher:Publications Office of the European Union Funded by:EC | IPODD, EC | SONNETEC| IPODD ,EC| SONNETAuthors: MIKKONEN IRMELI; GYNTHER LEA;MATSCHOSS KAISA;
MATSCHOSS KAISA
MATSCHOSS KAISA in OpenAIREKOUKOUFIKIS GEORGIOS;
+2 AuthorsKOUKOUFIKIS GEORGIOS
KOUKOUFIKIS GEORGIOS in OpenAIREMIKKONEN IRMELI; GYNTHER LEA;MATSCHOSS KAISA;
MATSCHOSS KAISA
MATSCHOSS KAISA in OpenAIREKOUKOUFIKIS GEORGIOS;
MURAUSKAITE INGRIDA; UIHLEIN ANDREAS;KOUKOUFIKIS GEORGIOS
KOUKOUFIKIS GEORGIOS in OpenAIREdoi: 10.2760/555111
handle: 10138/322291
This report reflects upon the concept of social innovation and the way it is used in the energy sector. It does so by bringing together theoretical investigations and empirical knowledge. We aim to clarify the concept of social innovation in the energy sector by reviewing the literature and reflecting over a number of social innovation projects in Europe. The analysis of the projects against various contextual factors and their goals reveals the significant potential of social innovation on accelerating the energy transition while tackling societal problems. Energy production, energy efficiency and energy literacy are the main domains to which socially innovative activities contribute the most. High competences of project leadership and management observed though projects are often small in scale and context-dependent. This indicates that successful socially innovative energy initiatives require advanced bottom-up governance structures even if that may imply limitations for scaling up. This setting may complicate top-down support as legal, financial or even cultural policy-making must be tailor-made and reinvent or adjust continuously. Nevertheless, social innovative activities are expected to further proliferate the following years and move towards a sound environmental, cultural, political, economic and social direction, as knowledge creation and diffusion of technological and governance innovations accompanied with policy support are on the rise. JRC.C.7-Knowledge for the Energy Union
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2760/555111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2760/555111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2021 FranceAuthors: Tedesco, Pauline;Cette thèse est basée sur des simulations numériques régionales et aborde, d’un point de vue énergétique, la variabilité à Méso (O(10-100)km) et Sous-mésoéchelle (O(0.1-10)km) dans la région du Courant des Aiguilles.(i) La variabilité de sous-mésoéchelle à la transition entre les deux branches du Courant des Aiguilles (28◦E-26◦E) est dominée, en l’absence de méandres de mésoéchelle, par des tourbillons cycloniques frontaux formant un ‘vortex street’. La tension ambiante frontogénétique intensifie le cisaillement frontal qui déclenche l’instabilité barotrope menant à la génération de tourbillons de sous-mésoéchelle.(ii) Un budget modal d’Energie Cinétique des Tourbillons est développé pour caractériser les transferts d’énergie entre les différentes structures verticales. Les interactions canalisées par la topographie (3 processus) résultent globalement en une perte d’énergie pour les tourbillons de mésoéchelle plus grande que les processus de dissipation (friction au fond et vent) et une cascade verticale inverse (interactions triadiques) renforce les tourbillons de mésoéchelle dans les zones au large.(iii) Notre budget modal permet de caractériser la région du Courant des Aiguilles comme une source nette d’énergie pour les tourbillons de mésoéchelle en contradiction avec celui estimé à partir de données d’altimétrie. Cette différence vient des données d’altimétrie ne tenant pas compte de la contribution principale de la dynamique aux sources et puits d’énergie des tourbillons de mésoéchelle (partie linéaire de la dynamique agéostrophique du mode barotrope et du 1er mode barocline). This dissertation is based on regional numerical simulations and addresses, from an energetic perspective, the Meso (O(10-100)km) and Submesoscale (O(0.1- 10)km) variability in the Agulhas Current region.(i) Submesoscale variability at the transition between the two Agulhas Current branches (28◦E-26◦E) is dominated, in the absence of mesoscale meanders, by cyclonic frontal eddies forming a ’vortex street’. The frontogenetic background strain intensifies the frontal shear which triggers the barotropic instability leading to submesoscale eddies generation.(ii) A modal Eddy Kinetic Energy budget is derived to characterize the energy transfers between the different vertical structures. Interactions canalized by topography (3 processes) globally result in a larger energy loss for mesoscale eddies than dissipation processes (bottom friction and wind) and an inverse vertical cascade (triadic interactions) reinforces mesoscale eddies in offshore areas.(iii) Our modal budget allows to characterize the Agulhas Current region as a net energy source for mesoscale eddies in contradiction with one inferred from altimetry data. The discrepancies come from altimetry data not accounting for the main contribution of the dynamics to mesoscale eddies energy sources and sinks (ageostrophic linear part of the dynamics of the barotropic and 1st baroclinic modes).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::b4379d3276497aeae451971a487eeb99&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::b4379d3276497aeae451971a487eeb99&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Authors: Yuanyuan Zhao; Hongqiang Wu; Chaobin Dang;Pool boiling in porous media has been applied in various thermal management systems by using latent heat and increasing the heat transfer area and thermal conduction path to improve the heat transfer performance. In mechanical equipment, vibration is an inevitable problem due to reasons such as engine operation and high-speed relative motion between transmission system components, which causes the system components to be affected by vibration forces or vibration accelerations. This study focuses on a review of published articles about the effects of mechanical vibration on the characteristics of boiling process in porous media by two aspects: heat transfer performance and bubble dynamics. Heat transfer coefficient (HTC) and critical heat flux are two main parameters used to measure the boiling heat transfer characteristics of porous media. For bubble dynamics investigations, properties such as migration, fragment, coalescence, departure diameter and frequency are the focus of research attention. Different mechanical vibration parameters, i.e., direction, frequency, and amplitude, will have different effects on the above characteristics. It is worth mentioning that the greatest influence occurs under resonance conditions, and this has been verified through experimental and simulation calculations. This review highlights the importance of considering mechanical vibrations in the design and optimization of porous media systems for efficient heat transfer applications. Further research is warranted to explore the detailed mechanisms and optimize the vibration parameters for enhanced heat transfer performance in thermal management systems using porous media.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1288515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1288515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:MDPI AG Authors:Rakesh A. Afre;
Ka Yeon Ryu; Won Suk Shin;Rakesh A. Afre
Rakesh A. Afre in OpenAIREDiego Pugliese;
Diego Pugliese
Diego Pugliese in OpenAIREdoi: 10.3390/en17246466
handle: 11696/82499
This study introduces novel phenothiazine-based organic dyes, 2-LBH-100, 2-LBH-44, and 2-Ryu-4, specifically designed for quasi-solid-state dye-sensitized solar cells (QsDSSCs). Employing a donor-π-acceptor architecture, these dyes incorporate varying electron-donating moieties, including bis(3-(hexyloxy)phenyl)amine and diphenylamino, coupled with a cyanoacrylic acid acceptor. Alkoxy substitutions in 2-LBH-100 and 2-LBH-44 enhanced solubility and dye loading on TiO2, leading to improved performance in QsDSSCs. 2-LBH-100 exhibited a power conversion efficiency (PCE) exceeding 5% with excellent stability, while 2-LBH-44 demonstrated a PCE of over 3%, increasing to 4% over time. 2-Ryu-4, with its diphenylamino donor, achieved an initial PCE of over 6%. This research highlights the crucial role of donor–acceptor interactions in optimizing organic dye design for high-performance QsDSSCs, paving the way for efficient and stable next-generation solar energy technologies.
METRology Institutio... arrow_drop_down METRology Institutional CAtalogArticle . 2024License: CC BYData sources: METRology Institutional CAtalogadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246466&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert METRology Institutio... arrow_drop_down METRology Institutional CAtalogArticle . 2024License: CC BYData sources: METRology Institutional CAtalogadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246466&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Conference object , Report 2016 FrancePublisher:HAL CCSD Funded by:ANR | ARBREANR| ARBREAuthors:Brunette, Marielle;
Brunette, Marielle
Brunette, Marielle in OpenAIRECouture, Stéphane;
Couture, Stéphane
Couture, Stéphane in OpenAIREPannequin, François;
Pannequin, François
Pannequin, François in OpenAIRE• Key message Insurance might be an efficient tool to strengthen adaptation of forest management to climate change. A theoretical model under uncertainty is proposed to highlight the effect, on adaptation decisions, of considering adaptation efforts in forest insurance contracts. Results show that insurance is relevant to increase adaptation efforts under some realistic conditions on forest owner’s uncertainty and risk preferences, and on the observability or not of adaptation efforts. • Context One of the challenges of forest adaptation to climate change is to encourage private forest owners to implement adaptation strategies. • Aims We suggest the analysis of forest insurance contracts against natural hazards as a vector to promote the implementation of adaptation efforts by private forest owners. • Methods We propose a theoretical model of insurance economics under risk and under uncertainty. • Results Our results indicate that when climate change makes the probability of the occurrence of the natural event uncertain, then it may be relevant to include adaptation efforts in the insurance contract, leading to an increase in the adaptation efforts of risk-averse and uncertainty-averse forest owners. In addition, we show that the relevance of insurance as a vector to promote adaptation efforts is greater when the forest owner’s effort is unobservable by the insurer as compared to a situation of perfectly observable effort. • Conclusion Under some realistic assumptions, the forest insurance contract seems to be a relevant tool to encourage forest owners to adapt to climate change.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneConference object . 2016Full-Text: https://hal.inrae.fr/hal-02794195/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationConference object . 2016Full-Text: https://hal.inrae.fr/hal-02794195/documentadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a4228c53a73436df9b066712ac4f537a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneConference object . 2016Full-Text: https://hal.inrae.fr/hal-02794195/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationConference object . 2016Full-Text: https://hal.inrae.fr/hal-02794195/documentadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a4228c53a73436df9b066712ac4f537a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 FrancePublisher:Wiley Authors:Rodrigo Garcia Da Silva;
Rodrigo Garcia Da Silva;Rodrigo Garcia Da Silva
Rodrigo Garcia Da Silva in OpenAIRECláudia Morais;
Cláudia Morais
Cláudia Morais in OpenAIREKarine Servat;
+3 AuthorsKarine Servat
Karine Servat in OpenAIRERodrigo Garcia Da Silva;
Rodrigo Garcia Da Silva;Rodrigo Garcia Da Silva
Rodrigo Garcia Da Silva in OpenAIRECláudia Morais;
Cláudia Morais
Cláudia Morais in OpenAIREKarine Servat;
Karine Servat
Karine Servat in OpenAIREKouakou Boniface Kokoh;
Kouakou Boniface Kokoh
Kouakou Boniface Kokoh in OpenAIREAdalgisa Rodrigues de Andrade;
Adalgisa Rodrigues de Andrade
Adalgisa Rodrigues de Andrade in OpenAIRETeko W. Napporn;
Teko W. Napporn
Teko W. Napporn in OpenAIREAbstractThe ethylene glycol oxidation reaction on nickel and ruthenium modified palladium nanocatalysts was investigated with electrochemical, spectroelectrochemical, and chromatographic methods. These carbon‐supported materials, prepared by a revisited polyol approach, exhibited high activity towards the ethylene glycol electrooxidation in alkaline medium. Electrolysis coupled with high performance liquid chromatography/mass spectrometry (HPLC‐MS) and in situ Fourier transform infrared spectroscopy (FTIRS) measurements allowed us to determine the different compounds electrogenerated in the oxidative conversion of this two‐carbon molecule. High value‐added products such as oxalate, glyoxylate, and glycolate were identified in all electrolytic solutions, whereas glyoxylate was selectively formed at the Ru45@Pd55/C electrode surface. In situ FTIRS results also showed a decrease in the pH value in the thin layer near the electrode as a consequence of OH− consumption during the spectroelectrochemical experiments.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03049212Data sources: Bielefeld Academic Search Engine (BASE)ChemElectroChemArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/celc.202001019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03049212Data sources: Bielefeld Academic Search Engine (BASE)ChemElectroChemArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/celc.202001019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Elsevier BV Authors:Chaker Briki;
Maha M. Almoneef; Abdelhakim Settar; Mbarek Mohamed; +1 AuthorsChaker Briki
Chaker Briki in OpenAIREChaker Briki;
Maha M. Almoneef; Abdelhakim Settar; Mbarek Mohamed; Abdelmajid Jemni;Chaker Briki
Chaker Briki in OpenAIREIn the present study, we explored the temperature evolution and hydrogen desorption properties of the Mg50Ni50 alloy through both numerical simulation and experimental analyses. Desorption kinetics characterization was carried out using the volumetric method, specifically employing a Sievert's-type apparatus to investigate solid-gas reactions. The experiments covered a temperature range from 313 K to 353 K, with an initial hydrogen pressure of 12 bar. Simultaneously, a mathematical approach was employed to numerically investigate the temperature evolution within the hydride bed. Using COMSOL Multiphysics as a simulator, a numerical simulation was conducted based on experimental data. The study examined the impact of cooling temperature on hydride temperature evolution. Results revealed that hydrogen desorption kinetics of the amorphous Mg50Ni50 alloy are more significant compared to those of Mg2Ni compounds. Moreover, the effect of the warming temperature on the equilibrium pressure can also be observed in the hydrogen desorption isotherm curves. The experimental study of the Mg50Ni50 alloy provided activation energy data, along with determination of hydride formation enthalpy and entropy. On the other hand, we showed that the hydride temperature is maximum at the hydride-hydrogen interface within the hydride center.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2024.e31019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2024.e31019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu