- home
- Advanced Search
- Energy Research
- DE
- FR
- Energy Research
- DE
- FR
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 27 Aug 2024 United States, SwitzerlandPublisher:Proceedings of the National Academy of Sciences Han Hu; Chao Qian; Ke Xue; Rainer Georg Jörgensen; Marco Keiluweit; Chao Liang; Xuefeng Zhu; Ji Chen; Yishen Sun; Haowei Ni; Jixian Ding; Weigen Huang; Jingdong Mao; Rong-Xi Tan; Jizhong Zhou; Thomas W. Crowther; Zhi-Hua Zhou; Jiabao Zhang; Yuting Liang;Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the proportional contribution of MDC are plagued by uncertainties due to limited sample sizes and the neglect of bacterial group composition effects. Here, we compiled the comprehensive global dataset and employed machine learning approaches to refine our quantitative understanding of MDC contributions to total carbon storage. Our efforts resulted in a reduction in the relative standard errors in prevailing estimations by an average of 71% and minimized the effect of global variations in bacterial group compositions on estimating MDC. Our estimation indicates that MDC contributes approximately 758 Pg, representing approximately 40% of the global soil carbon stock. Our study updated the formulas of MDC estimation with improving the accuracy and preserving simplicity and practicality. Given the unique biochemistry and functioning of the MDC pool, our study has direct implications for modeling efforts and predicting the land–atmosphere carbon balance under current and future climate scenarios.
Old Dominion Univers... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/18c0j63vData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2401916121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Old Dominion Univers... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/18c0j63vData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2401916121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Elsevier BV Yunfu Gu; Yunfu Gu; Nona R. Chiariello; Tong Yuan; Audrey Niboyet; Mengting Yuan; Shikui Dong; Sihang Yang; Qiaoshu Zheng; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Zhou Shi; Jessica L. M. Gutknecht; Xingyu Ma; Kathryn M. Docherty; Christopher B. Field; Bruce A. Hungate; Xavier Le Roux; Yunfeng Yang;pmid: 30586832
The continuously increasing concentration of atmospheric CO2 has considerably altered ecosystem functioning. However, few studies have examined the long-term (i.e. over a decade) effect of elevated CO2 on soil microbial communities. Using 16S rRNA gene amplicons and a GeoChip microarray, we investigated soil microbial communities from a Californian annual grassland after 14 years of experimentally elevated CO2 (275 ppm higher than ambient). Both taxonomic and functional gene compositions of the soil microbial community were modified by elevated CO2. There was decrease in relative abundance for taxa with higher ribosomal RNA operon (rrn) copy number under elevated CO2, which is a functional trait that responds positively to resource availability in culture. In contrast, taxa with lower rrn copy number were increased by elevated CO2. As a consequence, the abundance-weighted average rrn copy number of significantly changed OTUs declined from 2.27 at ambient CO2 to 2.01 at elevated CO2. The nitrogen (N) fixation gene nifH and the ammonium-oxidizing gene amoA significantly decreased under elevated CO2 by 12.6% and 6.1%, respectively. Concomitantly, nitrifying enzyme activity decreased by 48.3% under elevated CO2, albeit this change was not significant. There was also a substantial but insignificant decrease in available soil N, with both nitrate (NO3-) (-27.4%) and ammonium (NH4+) (-15.4%) declining. Further, a large number of microbial genes related to carbon (C) degradation were also affected by elevated CO2, whereas those related to C fixation remained largely unchanged. The overall changes in microbial communities and soil N pools induced by long-term elevated CO2 suggest constrained microbial N decomposition, thereby slowing the potential maximum growth rate of the microbial community.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012Publisher:Springer Science and Business Media LLC Raphael Lamed; Yue Huang; Bernard Henrissat; Ilya Borovok; Christopher L. Hemme; Jizhong Zhou; Pedro M. Coutinho; Edward A. Bayer; Bareket Dassa;Abstract Background Microbial degradation of plant cell walls and its conversion to sugars and other byproducts is a key step in the carbon cycle on Earth. In order to process heterogeneous plant-derived biomass, specialized anaerobic bacteria use an elaborate multi-enzyme cellulosome complex to synergistically deconstruct cellulosic substrates. The cellulosome was first discovered in the cellulolytic thermophile, Clostridium thermocellum, and much of our knowledge of this intriguing type of protein composite is based on the cellulosome of this environmentally and biotechnologically important bacterium. The recently sequenced genome of the cellulolytic mesophile, Acetivibrio cellulolyticus, allows detailed comparison of the cellulosomes of these two select cellulosome-producing bacteria. Results Comprehensive analysis of the A. cellulolyticus draft genome sequence revealed a very sophisticated cellulosome system. Compared to C. thermocellum, the cellulosomal architecture of A. cellulolyticus is much more extensive, whereby the genome encodes for twice the number of cohesin- and dockerin-containing proteins. The A. cellulolyticus genome has thus evolved an inflated number of 143 dockerin-containing genes, coding for multimodular proteins with distinctive catalytic and carbohydrate-binding modules that play critical roles in biomass degradation. Additionally, 41 putative cohesin modules distributed in 16 different scaffoldin proteins were identified in the genome, representing a broader diversity and modularity than those of Clostridium thermocellum. Although many of the A. cellulolyticus scaffoldins appear in unconventional modular combinations, elements of the basic structural scaffoldins are maintained in both species. In addition, both species exhibit similarly elaborate cell-anchoring and cellulosome-related gene- regulatory elements. Conclusions This work portrays a particularly intricate, cell-surface cellulosome system in A. cellulolyticus and provides a blueprint for examining the specific roles of the various cellulosomal components in the degradation of complex carbohydrate substrates of the plant cell wall by the bacterium.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1471-2164-13-210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1471-2164-13-210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United States, FrancePublisher:Wiley Funded by:NSF | CAREER: Ecosystem Respons...NSF| CAREER: Ecosystem Responses to Rising Carbon Dioxide and Climate Change: Feedbacks through the Nitrogen CycleXingyu Ma; Jessica Gutknecht; N. R. Chiariello; Audrey Niboyet; Audrey Niboyet; Christopher B. Field; Bruce A. Hungate; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Yunfeng Yang; Qiaoshu Zheng; Mengting Yuan; Sihang Yang; Xavier Le Roux; Kathryn M. Docherty;doi: 10.1111/gcb.14852
pmid: 31562826
AbstractFire is a crucial event regulating the structure and functioning of many ecosystems. Yet few studies have focused on how fire affects taxonomic and functional diversities of soil microbial communities, along with changes in plant communities and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects in a grassland ecosystem 9 months after an experimental fire at the Jasper Ridge Global Change Experiment site in California, USA. Fire altered soil microbial communities considerably, with community assembly process analysis showing that environmental selection pressure was higher in burned sites. However, a small subset of highly connected taxa was able to withstand the disturbance. In addition, fire decreased the relative abundances of most functional genes associated with C degradation and N cycling, implicating a slowdown of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated above‐ and belowground plant growth, likely enhancing plant–microbe competition for soil inorganic N, which was reduced by a factor of about 2. To synthesize those findings, we performed structural equation modeling, which showed that plants but not microbial communities were responsible for significantly higher soil respiration rates in burned sites. Together, our results demonstrate that fire ‘reboots’ the grassland ecosystem by differentially regulating plant and soil microbial communities, leading to significant changes in soil C and N dynamics.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/6d68c6jfData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/6d68c6jfData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United States, Germany, Russian FederationPublisher:Wiley Nianpeng He; Yuan Liu; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Jing Tian; Qun Gao; Qun Gao; Guirui Yu; Evgenia Blagodatskaya; Yakov Kuzyakov; Lauren Hale; Shuli Niu;Abstract Bacteria are one of the most abundant and diverse groups of micro‐organisms and mediate many critical terrestrial ecosystem processes. Despite the crucial ecological role of bacteria, our understanding of their large‐scale biogeography patterns across forests, and the processes that determine these patterns lags significantly behind that of macroorganisms. Here, we evaluated the geographic distributions of bacterial diversity and their driving factors across nine latitudinal forests along a 3,700‐km north–south transect in eastern China, using high‐throughput 16S rRNA gene sequencing. Four of 32 phyla detected were dominant: Acidobacteria, Actinobacteria, Alphaproteobacteria and Chloroflexi (relative abundance > 5%). Significant increases in bacterial richness and phylogenetic diversity were observed for temperate forests compared with subtropical or tropical forests. The soil organic matter (SOM) mineralisation rate (SOMmin, an index of SOM availability) explained the largest significant variations in bacterial richness. Variation partition analysis revealed that the bacterial community structure was closely correlated with environmental variables and geographic distance, which together explained 80.5% of community variation. Among all environmental factors, climatic features (MAT and MAP) were the best predictors of the bacterial community structure, whereas soil pH and SOMmin emerged as the most important edaphic drivers of the bacterial community structure. Plant functional traits (community weighted means of litter N content) and diversity resulted in weak but significant correlations with the bacterial community structure. Our findings provide new evidence of bacterial biogeography patterns from tropical to cold temperate forests. Additionally, the results indicated a close linkage among soil bacterial diversity, climate and SOM decomposition, which is critical for predicting continental‐scale responses under future climate change scenarios and promoting sustainable forest ecosystem services. A plain language summary is available for this article.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2zj6512nData sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Functional EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.12952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 137 citations 137 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2zj6512nData sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Functional EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.12952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Wiley Funded by:NSF | CAREER: Ecosystem Respons...NSF| CAREER: Ecosystem Responses to Rising Carbon Dioxide and Climate Change: Feedbacks through the Nitrogen CycleMengmeng Wang; Xin Sun; Baichuan Cao; Nona R. Chiariello; Kathryn M. Docherty; Christopher B. Field; Qun Gao; Jessica L. M. Gutknecht; Xue Guo; Genhe He; Bruce A. Hungate; Jiesi Lei; Audrey Niboyet; Xavier Le Roux; Zhou Shi; Wensheng Shu; Mengting Yuan; Jizhong Zhou; Yunfeng Yang;doi: 10.1111/gcb.16811
pmid: 37317051
AbstractGlobal climate models predict that the frequency and intensity of precipitation events will increase in many regions across the world. However, the biosphere‐climate feedback to elevated precipitation (eP) remains elusive. Here, we report a study on one of the longest field experiments assessing the effects of eP, alone or in combination with other climate change drivers such as elevated CO2 (eCO2), warming and nitrogen deposition. Soil total carbon (C) decreased after a decade of eP treatment, while plant root production decreased after 2 years. To explain this asynchrony, we found that the relative abundances of fungal genes associated with chitin and protein degradation increased and were positively correlated with bacteriophage genes, suggesting a potential viral shunt in C degradation. In addition, eP increased the relative abundances of microbial stress tolerance genes, which are essential for coping with environmental stressors. Microbial responses to eP were phylogenetically conserved. The effects of eP on soil total C, root production, and microbes were interactively affected by eCO2. Collectively, we demonstrate that long‐term eP induces soil C loss, owing to changes in microbial community composition, functional traits, root production, and soil moisture. Our study unveils an important, previously unknown biosphere‐climate feedback in Mediterranean‐type water‐limited ecosystems, namely how eP induces soil C loss via microbe‐plant–soil interplay.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Full-Text: https://doi.org/10.5281/zenodo.7964426Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Full-Text: https://doi.org/10.5281/zenodo.7964426Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United States, France, FrancePublisher:Oxford University Press (OUP) Erin E. Nuccio; Kelly D. Craven; Lauren Hale; Don Herman; Daliang Ning; Arthur Escalas; Gangsheng Wang; Xiaoling Wan; Amrita Bhattacharyya; Amrita Bhattacharyya; Jialiang Kuang; Malay C. Saha; Mary K. Firestone; Mary K. Firestone; Yuan Wang; Jizhong Zhou; Eoin L. Brodie; Liyou Wu; Ying Fu; Jennifer Pett-Ridge; Yunfeng Yang; Colin T. Bates; Renmao Tian;Abstract Switchgrass is a deep-rooted perennial native to the US prairies and an attractive feedstock for bioenergy production; when cultivated on marginal soils it can provide a potential mechanism to sequester and accumulate soil carbon (C). However, the impacts of switchgrass establishment on soil biotic/abiotic properties are poorly understood. Additionally, few studies have reported the effects of switchgrass cultivation on marginal lands that have low soil nutrient quality (N/P) or in areas that have experienced high rates of soil erosion. Here, we report a comparative analyses of soil greenhouse gases (GHG), soil chemistry, and microbial communities in two contrasting soil types (with or without switchgrass) over 17 months (1428 soil samples). These soils are highly eroded, ‘Dust Bowl’ remnant field sites in southern Oklahoma, USA. Our results revealed that soil C significantly increased at the sandy-loam (SL) site, but not at the clay-loam (CL) site. Significantly higher CO2 flux was observed from the CL switchgrass site, along with reduced microbial diversity (both alpha and beta). Strikingly, methane (CH4) consumption was significantly reduced by an estimated 39 and 47% at the SL and CL switchgrass sites, respectively. Together, our results suggest that soil C stocks and GHG fluxes are distinctly different at highly degraded sites when switchgrass has been cultivated, implying that carbon balance considerations should be accounted for to fully evaluate the sustainability of deep-rooted perennial grass cultivation in marginal lands.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/4h07s93qData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremereScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41396-021-00916-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/4h07s93qData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremereScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41396-021-00916-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 GermanyPublisher:American Society for Microbiology Jian Xu; Aifen Zhou; Liyou Wu; Qiang He; Jizhong Zhou; Jizhong Zhou; Christopher L. Hemme; Zheng Zuo; Zhili He; Matthew W. Fields; Bradley D. Ramsay; Ye Deng; Housna Mouttaki; Xueyang Feng; Tommy J. Phelps; Joy D. Van Nostrand; Qichao Tu; Lu Lin; Lu Lin; Juergen Wiegel; Yinjie J. Tang;ABSTRACT Thermophilic anaerobic noncellulolytic Thermoanaerobacter species are of great biotechnological importance in cellulosic ethanol production due to their ability to produce high ethanol yields by simultaneous fermentation of hexose and pentose. Understanding the genome structure of these species is critical to improving and implementing these bacteria for possible biotechnological use in consolidated bioprocessing schemes (CBP) for cellulosic ethanol production. Here we describe a comparative genome analysis of two ethanologenic bacteria, Thermoanaerobacter sp. X514 and Thermoanaerobacter pseudethanolicus 39E. Compared to 39E, X514 has several unique key characteristics important to cellulosic biotechnology, including additional alcohol dehydrogenases and xylose transporters, modifications to pentose metabolism, and a complete vitamin B 12 biosynthesis pathway. Experimental results from growth, metabolic flux, and microarray gene expression analyses support genome sequencing-based predictions which help to explain the distinct differences in ethanol production between these strains. The availability of whole-genome sequence and comparative genomic analyses will aid in engineering and optimizing Thermoanaerobacter strains for viable CBP strategies.
Applied and Environm... arrow_drop_down Applied and Environmental MicrobiologyArticle . 2011 . Peer-reviewedLicense: ASM Journals Non-Commercial TDMData sources: CrossrefPublication Server of Helmholtz Zentrum München (PuSH)Article . 2011Data sources: Publication Server of Helmholtz Zentrum München (PuSH)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/aem.05677-11&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied and Environm... arrow_drop_down Applied and Environmental MicrobiologyArticle . 2011 . Peer-reviewedLicense: ASM Journals Non-Commercial TDMData sources: CrossrefPublication Server of Helmholtz Zentrum München (PuSH)Article . 2011Data sources: Publication Server of Helmholtz Zentrum München (PuSH)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/aem.05677-11&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Xue, K; van Nostrand, J. D.; Vangronsveld, J.; Witters, N.; Janssen, J. O.; Kumpiene, J.; Siebielec, G.; Galazka, R.; GIAGNONI, LAURA; ARENELLA, MARIARITA; Zhou, J. Z.; RENELLA, GIANCARLO;pmid: 26183942
handle: 11577/3313856 , 11379/538229 , 2158/1007769
We studied the microbial functional diversity, biochemical activity, heavy metals (HM) availability and soil toxicity of Cd, Pb and Zn contaminated soils, kept under grassland or short rotation coppice (SRC) to attenuate the risks associated with HM contamination and restore the soil ecological functions. Soil microbial functional diversity was analyzed by the GeoChip, a functional gene microarray containing probes for genes involved in nutrient cycling, metal resistance and stress response. Soil under SRC showed a higher abundance of microbial genes involved in C, N, P and S cycles and resistance to various HM, higher microbial biomass, respiration and enzyme activity rates, and lower HM availability than the grassland soil. The linkages between functional genes of soil microbial communities and soil chemical properties, HM availability and biochemical activity were also investigated. Soil toxicity and N, P and Pb availability were important factors in shaping the microbial functional diversity, as determined by CCA. We concluded that in HM contaminated soils the microbial functional diversity was positively influenced by SRC management through the reduction of HM availability and soil toxicity increase of nutrient cycling. The presented results can be important in predicting the long term environmental sustainability of plant-based soil remediation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2015.06.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2015.06.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United StatesPublisher:American Society for Microbiology Safiyh Taghavi; Housna Mouttaki; Liyou Wu; Alla Lapidus; Jonathan R. Mielenz; Elizabeth Saunders; Joy D. Van Nostrand; Nikos C. Kyrpides; Matthew W. Fields; Bradley S. Stevenson; Bernard Henrissat; Sam Pitluck; Michael E. Himmel; Raymond L. Huhnke; Zhili He; Cliff Han; Tijana Glavina del Rio; Michael J. McInerney; Qiang He; Jizhong Zhou; Lynne Goodwin; Gengxin Zhang; Natalia Mikhailova; Aijie Wang; Hope Tice; Christopher W. Schadt; Yunfeng Yang; Daniel van der Lelie; Yong-Jin Lee; Defeng Xing; Shi You Ding; Susan Lucas; Ralph S. Tanner; Miriam Land; Loren Hauser; Thomas Brettin; Thomas Brettin; Christopher L. Hemme; Adam P. Arkin; Hailiang Dong; Edward M. Rubin; Nanqi Ren; Juergen Wiegel; Alex Copeland; John C. Detter; Paul A. Lawson; Lee R. Lynd;ABSTRACT Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae . Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.
Journal of Bacteriol... arrow_drop_down Journal of BacteriologyArticle . 2010 . Peer-reviewedLicense: ASM Journals Non-Commercial TDMData sources: CrossrefUniversity of Oklahoma/Oklahoma State University: SHAREOK RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/jb.01064-10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 76 citations 76 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Bacteriol... arrow_drop_down Journal of BacteriologyArticle . 2010 . Peer-reviewedLicense: ASM Journals Non-Commercial TDMData sources: CrossrefUniversity of Oklahoma/Oklahoma State University: SHAREOK RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/jb.01064-10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 27 Aug 2024 United States, SwitzerlandPublisher:Proceedings of the National Academy of Sciences Han Hu; Chao Qian; Ke Xue; Rainer Georg Jörgensen; Marco Keiluweit; Chao Liang; Xuefeng Zhu; Ji Chen; Yishen Sun; Haowei Ni; Jixian Ding; Weigen Huang; Jingdong Mao; Rong-Xi Tan; Jizhong Zhou; Thomas W. Crowther; Zhi-Hua Zhou; Jiabao Zhang; Yuting Liang;Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the proportional contribution of MDC are plagued by uncertainties due to limited sample sizes and the neglect of bacterial group composition effects. Here, we compiled the comprehensive global dataset and employed machine learning approaches to refine our quantitative understanding of MDC contributions to total carbon storage. Our efforts resulted in a reduction in the relative standard errors in prevailing estimations by an average of 71% and minimized the effect of global variations in bacterial group compositions on estimating MDC. Our estimation indicates that MDC contributes approximately 758 Pg, representing approximately 40% of the global soil carbon stock. Our study updated the formulas of MDC estimation with improving the accuracy and preserving simplicity and practicality. Given the unique biochemistry and functioning of the MDC pool, our study has direct implications for modeling efforts and predicting the land–atmosphere carbon balance under current and future climate scenarios.
Old Dominion Univers... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/18c0j63vData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2401916121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Old Dominion Univers... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/18c0j63vData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2401916121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Elsevier BV Yunfu Gu; Yunfu Gu; Nona R. Chiariello; Tong Yuan; Audrey Niboyet; Mengting Yuan; Shikui Dong; Sihang Yang; Qiaoshu Zheng; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Zhou Shi; Jessica L. M. Gutknecht; Xingyu Ma; Kathryn M. Docherty; Christopher B. Field; Bruce A. Hungate; Xavier Le Roux; Yunfeng Yang;pmid: 30586832
The continuously increasing concentration of atmospheric CO2 has considerably altered ecosystem functioning. However, few studies have examined the long-term (i.e. over a decade) effect of elevated CO2 on soil microbial communities. Using 16S rRNA gene amplicons and a GeoChip microarray, we investigated soil microbial communities from a Californian annual grassland after 14 years of experimentally elevated CO2 (275 ppm higher than ambient). Both taxonomic and functional gene compositions of the soil microbial community were modified by elevated CO2. There was decrease in relative abundance for taxa with higher ribosomal RNA operon (rrn) copy number under elevated CO2, which is a functional trait that responds positively to resource availability in culture. In contrast, taxa with lower rrn copy number were increased by elevated CO2. As a consequence, the abundance-weighted average rrn copy number of significantly changed OTUs declined from 2.27 at ambient CO2 to 2.01 at elevated CO2. The nitrogen (N) fixation gene nifH and the ammonium-oxidizing gene amoA significantly decreased under elevated CO2 by 12.6% and 6.1%, respectively. Concomitantly, nitrifying enzyme activity decreased by 48.3% under elevated CO2, albeit this change was not significant. There was also a substantial but insignificant decrease in available soil N, with both nitrate (NO3-) (-27.4%) and ammonium (NH4+) (-15.4%) declining. Further, a large number of microbial genes related to carbon (C) degradation were also affected by elevated CO2, whereas those related to C fixation remained largely unchanged. The overall changes in microbial communities and soil N pools induced by long-term elevated CO2 suggest constrained microbial N decomposition, thereby slowing the potential maximum growth rate of the microbial community.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012Publisher:Springer Science and Business Media LLC Raphael Lamed; Yue Huang; Bernard Henrissat; Ilya Borovok; Christopher L. Hemme; Jizhong Zhou; Pedro M. Coutinho; Edward A. Bayer; Bareket Dassa;Abstract Background Microbial degradation of plant cell walls and its conversion to sugars and other byproducts is a key step in the carbon cycle on Earth. In order to process heterogeneous plant-derived biomass, specialized anaerobic bacteria use an elaborate multi-enzyme cellulosome complex to synergistically deconstruct cellulosic substrates. The cellulosome was first discovered in the cellulolytic thermophile, Clostridium thermocellum, and much of our knowledge of this intriguing type of protein composite is based on the cellulosome of this environmentally and biotechnologically important bacterium. The recently sequenced genome of the cellulolytic mesophile, Acetivibrio cellulolyticus, allows detailed comparison of the cellulosomes of these two select cellulosome-producing bacteria. Results Comprehensive analysis of the A. cellulolyticus draft genome sequence revealed a very sophisticated cellulosome system. Compared to C. thermocellum, the cellulosomal architecture of A. cellulolyticus is much more extensive, whereby the genome encodes for twice the number of cohesin- and dockerin-containing proteins. The A. cellulolyticus genome has thus evolved an inflated number of 143 dockerin-containing genes, coding for multimodular proteins with distinctive catalytic and carbohydrate-binding modules that play critical roles in biomass degradation. Additionally, 41 putative cohesin modules distributed in 16 different scaffoldin proteins were identified in the genome, representing a broader diversity and modularity than those of Clostridium thermocellum. Although many of the A. cellulolyticus scaffoldins appear in unconventional modular combinations, elements of the basic structural scaffoldins are maintained in both species. In addition, both species exhibit similarly elaborate cell-anchoring and cellulosome-related gene- regulatory elements. Conclusions This work portrays a particularly intricate, cell-surface cellulosome system in A. cellulolyticus and provides a blueprint for examining the specific roles of the various cellulosomal components in the degradation of complex carbohydrate substrates of the plant cell wall by the bacterium.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1471-2164-13-210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1471-2164-13-210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United States, FrancePublisher:Wiley Funded by:NSF | CAREER: Ecosystem Respons...NSF| CAREER: Ecosystem Responses to Rising Carbon Dioxide and Climate Change: Feedbacks through the Nitrogen CycleXingyu Ma; Jessica Gutknecht; N. R. Chiariello; Audrey Niboyet; Audrey Niboyet; Christopher B. Field; Bruce A. Hungate; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Yunfeng Yang; Qiaoshu Zheng; Mengting Yuan; Sihang Yang; Xavier Le Roux; Kathryn M. Docherty;doi: 10.1111/gcb.14852
pmid: 31562826
AbstractFire is a crucial event regulating the structure and functioning of many ecosystems. Yet few studies have focused on how fire affects taxonomic and functional diversities of soil microbial communities, along with changes in plant communities and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects in a grassland ecosystem 9 months after an experimental fire at the Jasper Ridge Global Change Experiment site in California, USA. Fire altered soil microbial communities considerably, with community assembly process analysis showing that environmental selection pressure was higher in burned sites. However, a small subset of highly connected taxa was able to withstand the disturbance. In addition, fire decreased the relative abundances of most functional genes associated with C degradation and N cycling, implicating a slowdown of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated above‐ and belowground plant growth, likely enhancing plant–microbe competition for soil inorganic N, which was reduced by a factor of about 2. To synthesize those findings, we performed structural equation modeling, which showed that plants but not microbial communities were responsible for significantly higher soil respiration rates in burned sites. Together, our results demonstrate that fire ‘reboots’ the grassland ecosystem by differentially regulating plant and soil microbial communities, leading to significant changes in soil C and N dynamics.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/6d68c6jfData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/6d68c6jfData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United States, Germany, Russian FederationPublisher:Wiley Nianpeng He; Yuan Liu; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Jing Tian; Qun Gao; Qun Gao; Guirui Yu; Evgenia Blagodatskaya; Yakov Kuzyakov; Lauren Hale; Shuli Niu;Abstract Bacteria are one of the most abundant and diverse groups of micro‐organisms and mediate many critical terrestrial ecosystem processes. Despite the crucial ecological role of bacteria, our understanding of their large‐scale biogeography patterns across forests, and the processes that determine these patterns lags significantly behind that of macroorganisms. Here, we evaluated the geographic distributions of bacterial diversity and their driving factors across nine latitudinal forests along a 3,700‐km north–south transect in eastern China, using high‐throughput 16S rRNA gene sequencing. Four of 32 phyla detected were dominant: Acidobacteria, Actinobacteria, Alphaproteobacteria and Chloroflexi (relative abundance > 5%). Significant increases in bacterial richness and phylogenetic diversity were observed for temperate forests compared with subtropical or tropical forests. The soil organic matter (SOM) mineralisation rate (SOMmin, an index of SOM availability) explained the largest significant variations in bacterial richness. Variation partition analysis revealed that the bacterial community structure was closely correlated with environmental variables and geographic distance, which together explained 80.5% of community variation. Among all environmental factors, climatic features (MAT and MAP) were the best predictors of the bacterial community structure, whereas soil pH and SOMmin emerged as the most important edaphic drivers of the bacterial community structure. Plant functional traits (community weighted means of litter N content) and diversity resulted in weak but significant correlations with the bacterial community structure. Our findings provide new evidence of bacterial biogeography patterns from tropical to cold temperate forests. Additionally, the results indicated a close linkage among soil bacterial diversity, climate and SOM decomposition, which is critical for predicting continental‐scale responses under future climate change scenarios and promoting sustainable forest ecosystem services. A plain language summary is available for this article.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2zj6512nData sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Functional EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.12952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 137 citations 137 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2zj6512nData sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Functional EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.12952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Wiley Funded by:NSF | CAREER: Ecosystem Respons...NSF| CAREER: Ecosystem Responses to Rising Carbon Dioxide and Climate Change: Feedbacks through the Nitrogen CycleMengmeng Wang; Xin Sun; Baichuan Cao; Nona R. Chiariello; Kathryn M. Docherty; Christopher B. Field; Qun Gao; Jessica L. M. Gutknecht; Xue Guo; Genhe He; Bruce A. Hungate; Jiesi Lei; Audrey Niboyet; Xavier Le Roux; Zhou Shi; Wensheng Shu; Mengting Yuan; Jizhong Zhou; Yunfeng Yang;doi: 10.1111/gcb.16811
pmid: 37317051
AbstractGlobal climate models predict that the frequency and intensity of precipitation events will increase in many regions across the world. However, the biosphere‐climate feedback to elevated precipitation (eP) remains elusive. Here, we report a study on one of the longest field experiments assessing the effects of eP, alone or in combination with other climate change drivers such as elevated CO2 (eCO2), warming and nitrogen deposition. Soil total carbon (C) decreased after a decade of eP treatment, while plant root production decreased after 2 years. To explain this asynchrony, we found that the relative abundances of fungal genes associated with chitin and protein degradation increased and were positively correlated with bacteriophage genes, suggesting a potential viral shunt in C degradation. In addition, eP increased the relative abundances of microbial stress tolerance genes, which are essential for coping with environmental stressors. Microbial responses to eP were phylogenetically conserved. The effects of eP on soil total C, root production, and microbes were interactively affected by eCO2. Collectively, we demonstrate that long‐term eP induces soil C loss, owing to changes in microbial community composition, functional traits, root production, and soil moisture. Our study unveils an important, previously unknown biosphere‐climate feedback in Mediterranean‐type water‐limited ecosystems, namely how eP induces soil C loss via microbe‐plant–soil interplay.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Full-Text: https://doi.org/10.5281/zenodo.7964426Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Full-Text: https://doi.org/10.5281/zenodo.7964426Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United States, France, FrancePublisher:Oxford University Press (OUP) Erin E. Nuccio; Kelly D. Craven; Lauren Hale; Don Herman; Daliang Ning; Arthur Escalas; Gangsheng Wang; Xiaoling Wan; Amrita Bhattacharyya; Amrita Bhattacharyya; Jialiang Kuang; Malay C. Saha; Mary K. Firestone; Mary K. Firestone; Yuan Wang; Jizhong Zhou; Eoin L. Brodie; Liyou Wu; Ying Fu; Jennifer Pett-Ridge; Yunfeng Yang; Colin T. Bates; Renmao Tian;Abstract Switchgrass is a deep-rooted perennial native to the US prairies and an attractive feedstock for bioenergy production; when cultivated on marginal soils it can provide a potential mechanism to sequester and accumulate soil carbon (C). However, the impacts of switchgrass establishment on soil biotic/abiotic properties are poorly understood. Additionally, few studies have reported the effects of switchgrass cultivation on marginal lands that have low soil nutrient quality (N/P) or in areas that have experienced high rates of soil erosion. Here, we report a comparative analyses of soil greenhouse gases (GHG), soil chemistry, and microbial communities in two contrasting soil types (with or without switchgrass) over 17 months (1428 soil samples). These soils are highly eroded, ‘Dust Bowl’ remnant field sites in southern Oklahoma, USA. Our results revealed that soil C significantly increased at the sandy-loam (SL) site, but not at the clay-loam (CL) site. Significantly higher CO2 flux was observed from the CL switchgrass site, along with reduced microbial diversity (both alpha and beta). Strikingly, methane (CH4) consumption was significantly reduced by an estimated 39 and 47% at the SL and CL switchgrass sites, respectively. Together, our results suggest that soil C stocks and GHG fluxes are distinctly different at highly degraded sites when switchgrass has been cultivated, implying that carbon balance considerations should be accounted for to fully evaluate the sustainability of deep-rooted perennial grass cultivation in marginal lands.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/4h07s93qData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremereScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41396-021-00916-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/4h07s93qData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremereScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41396-021-00916-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 GermanyPublisher:American Society for Microbiology Jian Xu; Aifen Zhou; Liyou Wu; Qiang He; Jizhong Zhou; Jizhong Zhou; Christopher L. Hemme; Zheng Zuo; Zhili He; Matthew W. Fields; Bradley D. Ramsay; Ye Deng; Housna Mouttaki; Xueyang Feng; Tommy J. Phelps; Joy D. Van Nostrand; Qichao Tu; Lu Lin; Lu Lin; Juergen Wiegel; Yinjie J. Tang;ABSTRACT Thermophilic anaerobic noncellulolytic Thermoanaerobacter species are of great biotechnological importance in cellulosic ethanol production due to their ability to produce high ethanol yields by simultaneous fermentation of hexose and pentose. Understanding the genome structure of these species is critical to improving and implementing these bacteria for possible biotechnological use in consolidated bioprocessing schemes (CBP) for cellulosic ethanol production. Here we describe a comparative genome analysis of two ethanologenic bacteria, Thermoanaerobacter sp. X514 and Thermoanaerobacter pseudethanolicus 39E. Compared to 39E, X514 has several unique key characteristics important to cellulosic biotechnology, including additional alcohol dehydrogenases and xylose transporters, modifications to pentose metabolism, and a complete vitamin B 12 biosynthesis pathway. Experimental results from growth, metabolic flux, and microarray gene expression analyses support genome sequencing-based predictions which help to explain the distinct differences in ethanol production between these strains. The availability of whole-genome sequence and comparative genomic analyses will aid in engineering and optimizing Thermoanaerobacter strains for viable CBP strategies.
Applied and Environm... arrow_drop_down Applied and Environmental MicrobiologyArticle . 2011 . Peer-reviewedLicense: ASM Journals Non-Commercial TDMData sources: CrossrefPublication Server of Helmholtz Zentrum München (PuSH)Article . 2011Data sources: Publication Server of Helmholtz Zentrum München (PuSH)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/aem.05677-11&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied and Environm... arrow_drop_down Applied and Environmental MicrobiologyArticle . 2011 . Peer-reviewedLicense: ASM Journals Non-Commercial TDMData sources: CrossrefPublication Server of Helmholtz Zentrum München (PuSH)Article . 2011Data sources: Publication Server of Helmholtz Zentrum München (PuSH)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/aem.05677-11&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Xue, K; van Nostrand, J. D.; Vangronsveld, J.; Witters, N.; Janssen, J. O.; Kumpiene, J.; Siebielec, G.; Galazka, R.; GIAGNONI, LAURA; ARENELLA, MARIARITA; Zhou, J. Z.; RENELLA, GIANCARLO;pmid: 26183942
handle: 11577/3313856 , 11379/538229 , 2158/1007769
We studied the microbial functional diversity, biochemical activity, heavy metals (HM) availability and soil toxicity of Cd, Pb and Zn contaminated soils, kept under grassland or short rotation coppice (SRC) to attenuate the risks associated with HM contamination and restore the soil ecological functions. Soil microbial functional diversity was analyzed by the GeoChip, a functional gene microarray containing probes for genes involved in nutrient cycling, metal resistance and stress response. Soil under SRC showed a higher abundance of microbial genes involved in C, N, P and S cycles and resistance to various HM, higher microbial biomass, respiration and enzyme activity rates, and lower HM availability than the grassland soil. The linkages between functional genes of soil microbial communities and soil chemical properties, HM availability and biochemical activity were also investigated. Soil toxicity and N, P and Pb availability were important factors in shaping the microbial functional diversity, as determined by CCA. We concluded that in HM contaminated soils the microbial functional diversity was positively influenced by SRC management through the reduction of HM availability and soil toxicity increase of nutrient cycling. The presented results can be important in predicting the long term environmental sustainability of plant-based soil remediation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2015.06.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2015.06.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United StatesPublisher:American Society for Microbiology Safiyh Taghavi; Housna Mouttaki; Liyou Wu; Alla Lapidus; Jonathan R. Mielenz; Elizabeth Saunders; Joy D. Van Nostrand; Nikos C. Kyrpides; Matthew W. Fields; Bradley S. Stevenson; Bernard Henrissat; Sam Pitluck; Michael E. Himmel; Raymond L. Huhnke; Zhili He; Cliff Han; Tijana Glavina del Rio; Michael J. McInerney; Qiang He; Jizhong Zhou; Lynne Goodwin; Gengxin Zhang; Natalia Mikhailova; Aijie Wang; Hope Tice; Christopher W. Schadt; Yunfeng Yang; Daniel van der Lelie; Yong-Jin Lee; Defeng Xing; Shi You Ding; Susan Lucas; Ralph S. Tanner; Miriam Land; Loren Hauser; Thomas Brettin; Thomas Brettin; Christopher L. Hemme; Adam P. Arkin; Hailiang Dong; Edward M. Rubin; Nanqi Ren; Juergen Wiegel; Alex Copeland; John C. Detter; Paul A. Lawson; Lee R. Lynd;ABSTRACT Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae . Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.
Journal of Bacteriol... arrow_drop_down Journal of BacteriologyArticle . 2010 . Peer-reviewedLicense: ASM Journals Non-Commercial TDMData sources: CrossrefUniversity of Oklahoma/Oklahoma State University: SHAREOK RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/jb.01064-10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 76 citations 76 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Bacteriol... arrow_drop_down Journal of BacteriologyArticle . 2010 . Peer-reviewedLicense: ASM Journals Non-Commercial TDMData sources: CrossrefUniversity of Oklahoma/Oklahoma State University: SHAREOK RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/jb.01064-10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu