Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied and Environm...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied and Environmental Microbiology
Article . 2011 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Correlation of Genomic and Physiological Traits of Thermoanaerobacter Species with Biofuel Yields

Authors: Jian Xu; Aifen Zhou; Liyou Wu; Qiang He; Jizhong Zhou; Jizhong Zhou; Christopher L. Hemme; +14 Authors

Correlation of Genomic and Physiological Traits of Thermoanaerobacter Species with Biofuel Yields

Abstract

ABSTRACT Thermophilic anaerobic noncellulolytic Thermoanaerobacter species are of great biotechnological importance in cellulosic ethanol production due to their ability to produce high ethanol yields by simultaneous fermentation of hexose and pentose. Understanding the genome structure of these species is critical to improving and implementing these bacteria for possible biotechnological use in consolidated bioprocessing schemes (CBP) for cellulosic ethanol production. Here we describe a comparative genome analysis of two ethanologenic bacteria, Thermoanaerobacter sp. X514 and Thermoanaerobacter pseudethanolicus 39E. Compared to 39E, X514 has several unique key characteristics important to cellulosic biotechnology, including additional alcohol dehydrogenases and xylose transporters, modifications to pentose metabolism, and a complete vitamin B 12 biosynthesis pathway. Experimental results from growth, metabolic flux, and microarray gene expression analyses support genome sequencing-based predictions which help to explain the distinct differences in ethanol production between these strains. The availability of whole-genome sequence and comparative genomic analyses will aid in engineering and optimizing Thermoanaerobacter strains for viable CBP strategies.

Country
Germany
Keywords

Ethanol, Gene Expression Profiling, Thermoanaerobacter, secondary-alcohol dehydrogenase; ethanol-production; clostridium-thermocellum; thermophilic bacterium; shewanella-oneidensis; metabolic pathways; fermentation; cellulose; biomass; strain, Genes, Bacterial, Biofuels, Cellulose, Genome, Bacterial, Metabolic Networks and Pathways

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Energy Research