- home
- Advanced Search
- Energy Research
- 15. Life on land
- 2. Zero hunger
- FR
- AUS (United States)
- Energy Research
- 15. Life on land
- 2. Zero hunger
- FR
- AUS (United States)
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Sweden, United Kingdom, Ireland, Netherlands, France, Australia, France, France, France, France, France, SwitzerlandPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | Peatlands and the global ...UKRI| Peatlands and the global Carbon cycle during the past millennium: a global assessment using observations and modelsAtte Korhola; Tatiana Blyakharchuk; Miriam C. Jones; Michael J. Clifford; Pierre Friedlingstein; Charly Massa; Paul Mathijssen; Eric S. Klein; Yan Zhao; Sarah A. Finkelstein; Jonathan E. Nichols; Gabriel Magnan; Rob Marchant; Fraser J.G. Mitchell; Philip Camill; Tim Mighall; Maara S. Packalen; David W. Beilman; Steve Moreton; Terri Lacourse; D. Mauquoy; James R. Holmquist; T. Edward Turner; T. Edward Turner; Lisa C. Orme; Lisa C. Orme; Susan Page; Chris D. Jones; Glen M. MacDonald; Svante Björck; A. Britta K. Sannel; Ulla Kokfelt; Helen Mackay; Nicole K. Sanderson; Antonio Martínez Cortizas; Mariusz Lamentowicz; I. Colin Prentice; Esther Githumbi; Joana Zaragoza-Castells; Robert K. Booth; Edgar Karofeld; Julie Loisel; Colin J Courtney-Mustaphi; Colin J Courtney-Mustaphi; Bas van Geel; Graeme T. Swindles; Angela V. Gallego-Sala; Joan Bunbury; François De Vleeschouwer; Dan J. Charman; Joanna Uglow; David Large; Stephen Robinson; Natascha Steinberg; Minna Väliranta; Donna Carless; Michelle Garneau; Guoping Wang; Markku Mäkilä; Thomas P. Roland; Simon van Bellen; Katarzyna Marcisz; Katarzyna Marcisz; Barbara Fiałkiewicz-Kozieł; Pirita Oksanen; Rixt de Jong; Elizabeth L. Cressey; Marjolein van der Linden; Christopher Bochicchio; Zicheng Yu; Zicheng Yu; John Hribjlan; Paul D.M. Hughes; Patrick Moss; Martin Lavoie; Simon Brewer; Rodney A. Chimner; Matthew J. Amesbury; Noemí Silva-Sánchez; Gaël Le Roux;The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around AD 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.
CORE arrow_drop_down EnlightenArticle . 2018Full-Text: http://eprints.gla.ac.uk/168775/1/168775.pdfData sources: CORE (RIOXX-UK Aggregator)Open Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2018 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)MURAL - Maynooth University Research Archive LibraryArticle . 2018 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryPublikationer från Uppsala UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2018Data sources: Universiteit van Amsterdam Digital Academic RepositoryAberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0271-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 218 citations 218 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 33visibility views 33 download downloads 22 Powered bymore_vert CORE arrow_drop_down EnlightenArticle . 2018Full-Text: http://eprints.gla.ac.uk/168775/1/168775.pdfData sources: CORE (RIOXX-UK Aggregator)Open Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2018 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)MURAL - Maynooth University Research Archive LibraryArticle . 2018 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryPublikationer från Uppsala UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2018Data sources: Universiteit van Amsterdam Digital Academic RepositoryAberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0271-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 23 Feb 2021 United States, Switzerland, FrancePublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ..., NSF | Belmont Forum Collaborati...NSF| Collaborative Research: Combining NEON and remotely sensed habitats to determine climate impacts on community dynamics ,NSF| Belmont Forum Collaborative Research: Scenarios of Biodiversity and Ecosystem ServiceOrrin Myers; Georges Kunstler; Jalene M. LaMontagne; James A. Lutz; Istem Fer; Jordan Luongo; Renata Poulton-Kamakura; Janneke HilleRisLambers; Yassine Messaoud; Sam Pearse; Gregory S. Gilbert; Natalie L. Cleavitt; C. D. Reid; Inés Ibáñez; Michael A. Steele; Miranda D. Redmond; Susan L. Cohen; Jerry F. Franklin; Benoît Courbaud; Don C. Bragg; Ethan Ready; C. Lane Scher; Andreas P. Wion; William H. Schlesinger; Shubhi Sharma; Robert R. Parmenter; Amanda M. Schwantes; Scott M. Pearson; Thomas G. Whitham; Thomas T. Veblen; Christopher L. Kilner; Samantha Sutton; Chase L. Nuñez; Emily V. Moran; Nathan L. Stephenson; Adrian J. Das; Jennifer J. Swenson; Cathryn H. Greenberg; Roman Zlotin; James S. Clark; James S. Clark; Walter D. Koenig; Robert A. Andrus; Amy V. Whipple; Jill F. Johnstone; Eliot J. B. McIntire; Kyle C. Rodman; Timothy J. Fahey; Erin Shanahan; Jonathan Myers; Johannes M. H. Knops; Catherine A. Gehring; Diana Macias; Qinfeng Guo; Christopher M. Moore; Michael Dietze; Mélaine Aubry-Kientz; Dale G. Brockway; Michał Bogdziewicz; Kai Zhu; Yves Bergeron; Robert Daley; Margaret Swift; Kristin Legg;AbstractIndirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/9q78n5tzData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/9q78n5tzData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 France, France, Australia, SwitzerlandPublisher:Canadian Science Publishing Abigail J. Lynch; Amanda A. Hyman; Steven J. Cooke; Samantha J. Capon; Paul A. Franklin; Sonja C. Jähnig; Matthew McCartney; Nguyễn Phú Hòa; Margaret Awuor Owuor; Jamie Pittock; Michael J. Samways; Luiz G. M. Silva; E. Ashley Steel; David Tickner;handle: 10072/426211 , 10568/131695
Freshwater biodiversity loss is accelerating globally, but humanity can change this trajectory through actions that enable recovery. To be successful, these actions require coordination and planning at a global scale. The Emergency Recovery Plan for global freshwater biodiversity aims to reduce the risk for freshwater biodiversity loss through six priority actions: (1) accelerate implementation of environmental flows; (2) improve water quality to sustain aquatic life; (3) protect and restore critical habitats; (4) manage exploitation of freshwater species and riverine aggregates; (5) prevent and control nonnative species invasions in freshwater habitats; and (6) safeguard and restore freshwater connectivity. These actions can be implemented using future-proofing approaches that anticipate future risks (e.g., emerging pollutants, new invaders, and synergistic effects) and minimize likely stressors to make conservation of freshwater biodiversity more resilient to climate change and other global environmental challenges. While uncertainty with respect to past observations is not a new concern for freshwater biodiversity, future-proofing has the distinction of accounting for the uncertainty of future conditions that have no historical baseline. The level of uncertainty with respect to future conditions is unprecedented. Future-proofing of the Emergency Recovery Plan for freshwater biodiversity will require anticipating future changes and developing and implementing actions to address those future changes. Here, we showcase future-proofing approaches likely to be successful using local case studies and examples. Ensuring that response options within the Emergency Recovery Plan are future-proofed will provide decision makers with science-informed choices, even in the face of uncertain and potentially new future conditions. We are at an inflection point for global freshwater biodiversity loss; learning from defeats and successes can support improved actions toward a sustainable future.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/426211Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/131695Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/er-2022-0116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/426211Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/131695Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/er-2022-0116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Embargo end date: 06 Dec 2017 Switzerland, France, France, FrancePublisher:Springer Science and Business Media LLC Jean-Marc Thirion; David A. W. Miller; Michael J. Adams; Jan W. Arntzen; Blake R. Hossack; Odile Grolet; Robert N. Fisher; Benedikt R. Schmidt; Wendy J. Palen; David S. Pilliod; E. H. Campbell Grant; Erin Muths; Justin M. Garwood; Gary M. Fellers; Pierre Joly; Marc Cheylan; Thierry Chambert; Thierry Chambert; Aurélien Besnard; David M. Green; Rebecca McCaffery; Rebecca McCaffery;AbstractThe pervasive and unabated nature of global amphibian declines suggests common demographic responses to a given driver, and quantification of major drivers and responses could inform broad-scale conservation actions. We explored the influence of climate on demographic parameters (i.e., changes in the probabilities of survival and recruitment) using 31 datasets from temperate zone amphibian populations (North America and Europe) with more than a decade of observations each. There was evidence for an influence of climate on population demographic rates, but the direction and magnitude of responses to climate drivers was highly variable among taxa and among populations within taxa. These results reveal that climate drivers interact with variation in life-history traits and population-specific attributes resulting in a diversity of responses. This heterogeneity complicates the identification of conservation ‘rules of thumb’ for these taxa, and supports the notion of local focus as the most effective approach to overcome global-scale conservation challenges.
Scientific Reports arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverZurich Open Repository and ArchiveArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-17105-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Scientific Reports arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverZurich Open Repository and ArchiveArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-17105-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, Germany, United StatesPublisher:The Royal Society Funded by:NSF | Type 1- L012170218: Colla..., NSERC, EC | GREENCYCLESII +7 projectsNSF| Type 1- L012170218: Collaborative Research: Ecosystem Impacts of Variability and Extreme Events in the Arctic ,NSERC ,EC| GREENCYCLESII ,NSF| SEES Fellows: Atmospheric Water Transport from Mexico to the U.S. - A Holistic, Binational Approach to Reducing Vulnerability to the North American Monsoon ,NSF| Collaborative Research: Type 1 - Improved Cold Region Hydrology Process Representation as a Cornerstone of Arctic Biogeochemical Modeling (L02170157) ,NSF| Collaborative Research: P2C2: Contributions of northern cold-climate peatlands and lakes to abrupt changes in atmospheric methane during the last deglaciation ,EC| PAGE21 ,NSF| Warming and drying effects on tundra carbon balance ,EC| PETA-CARB ,NSF| Collaborative Research: Research, Synthesis, and Knowledge Transfer in a Changing Arctic: Science Support for the Study of Environmental Arctic Change (SEARCH)Koven, C.D; Schuur, E.A.G.; Schädel, C; Bohn, T. J; Burke, E.J.; Chen, G.; Chen, X; Ciais, Philippe; Grosse, G; Harden, J.W; Hayes, D.J; Hugelius, G; Jafarov, E.E; Krinner, G; Kuhry, P; Lawrence, D.M.; Macdougall, A.H; Marchenko, S.S; Mcguire, A.D; Natali, S.M; Nicolsky, D. J.; Olefeldt, D; Peng, S; Romanovsky, V. E.; Schaefer, K.M; Strauss, J; Treat, C.C; Turetsky, M.;We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γsensitivity) of −14 to −19 Pg C °C−1on a 100 year time scale. For CH4emissions, our approach assumes a fixed saturated area and that increases in CH4emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.
Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2015Full-Text: https://insu.hal.science/insu-01326116Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2015Full-Text: https://insu.hal.science/insu-01326116Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://insu.hal.science/insu-01326116Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/7t14r7vvData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://insu.hal.science/insu-01326116Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2015Data sources: Electronic Publication Information CenterInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2015 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1098/rsta...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2014.0423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 162 citations 162 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2015Full-Text: https://insu.hal.science/insu-01326116Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2015Full-Text: https://insu.hal.science/insu-01326116Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://insu.hal.science/insu-01326116Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/7t14r7vvData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://insu.hal.science/insu-01326116Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2015Data sources: Electronic Publication Information CenterInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2015 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1098/rsta...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2014.0423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021 Argentina, Argentina, France, Finland, United Kingdom, France, Belgium, ItalyPublisher:Wiley Funded by:UKRI | UK Status, Change and Pro..., NSF | 3rd Collaborative Researc...UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,NSF| 3rd Collaborative Research Network Program (CRN3)Christian Torsten Seltmann; Alon Rimmer; Heidrun Feuchtmayr; Hilary M. Swain; Maria Eugenia del Rosario Llames; Dietmar Straile; Orlane Anneville; Emily R. Nodine; Georgiy Kirillin; Donald C. Pierson; Scott F. Girdner; María Belén Alfonso; Pablo Urrutia-Cordero; Pablo Urrutia-Cordero; Patrick Venail; Lars G. Rudstam; James A. Rusak; James A. Rusak; Shin-ichiro S. Matsuzaki; Evelyn E. Gaiser; Josef Hejzlar; Jennifer L. Graham; Hans-Peter Grossart; Hans-Peter Grossart; Vijay P. Patil; Jonathan P. Doubek; Elvira de Eyto; Stéphan Jacquet; Tamar Zohary; María Cintia Piccolo; Aleksandra M. Lewandowska; Wim Thiery; Steven Sadro; Stephen J. Thackeray; Curtis L. DeGasperi; Piet Verburg; Nico Salmaso; Rita Adrian; Rita Adrian; Gaël Dur; Jason D. Stockwell;AbstractThe intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind‐induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long‐term and high‐frequency lake datasets from 11 countries to assess the magnitude of wind‐ vs. rainstorm‐induced changes in epilimnetic temperature. We found small day‐to‐day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day‐to‐day epilimnetic temperature decreased, on average, by 0.28°C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 ± 2.7 m s−1, 1 SD) and by 0.15°C after the heaviest rainstorms (storm mean daily rainfall: 21.3 ± 9.0 mm). The largest decreases in epilimnetic temperature were observed ≥2 d after sustained strong wind or heavy rain (top 5th percentile of wind and rain events for each lake) in shallow and medium‐depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm‐induced mean epilimnetic temperature decreases were typically <2°C. Day‐to‐day temperature change, in the absence of storms, often exceeded storm‐induced temperature changes. Because storm‐induced temperature changes to lake surface waters were minimal, changes in other limnological variables (e.g., nutrient concentrations or light) from storms may have larger impacts on biological communities than temperature changes.
NERC Open Research A... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2021Full-Text: http://hdl.handle.net/10449/69028Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.science/hal-03230686Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lno.11739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2021Full-Text: http://hdl.handle.net/10449/69028Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.science/hal-03230686Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lno.11739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Frontiers Media SA Jorge León-Muñoz; Jorge León-Muñoz; Rodrigo Aguayo; Rafael Marcé; Rafael Marcé; Núria Catalán; Núria Catalán; Núria Catalán; Stefan Woelfl; Jorge Nimptsch; Ivan Arismendi; Camila Contreras; Doris Soto; Alejandro Miranda; Alejandro Miranda;handle: 10256/25512
Freshwater inputs strongly influence oceanographic conditions in coastal systems of northwestern Patagonia (41–45°S). Nevertheless, the influence of freshwater on these systems has weakened in recent decades due to a marked decrease in precipitation. Here we evaluate potential influences of climate and land cover trends on the Puelo River (640 m3s–1), the main source of freshwater input of the Reloncaví Fjord (41.5°S). Water quality was analyzed along the Puelo River basin (six sampling points) and at the discharge site in the Reloncaví Fjord (1, 8, and 25 m depth), through six field campaigns carried out under contrasting streamflow scenarios. We also used several indicators of hydrological alteration, and cross-wavelet transform and coherence analyses to evaluate the association between the Puelo River streamflow and precipitation (1950–2019). Lastly, using the WEAP hydrological model, land cover maps (2001–2016) and burned area reconstructions (1985–2019), we simulated future land cover impacts (2030) on the hydrological processes of the Puelo River. Total Nitrogen and total phosphorus, dissolved carbon, and dissolved iron concentrations measured in the river were 3–15 times lower than those in the fjord. Multivariate analyses showed that streamflow drives the carbon composition in the river. High streamflow conditions contribute with humic and colored materials, while low streamflow conditions corresponded to higher arrival of protein-like materials from the basin. The Puelo River streamflow showed significant trends in magnitude (lower streamflow in summer and autumn), duration (minimum annual streamflow), timing (more floods in spring), and frequency (fewer prolonged floods). The land cover change (LCC) analysis indicated that more than 90% of the basin area maintained its land cover, and that the main changes were attributed to recent large wildfires. Considering these land cover trends, the hydrological simulations project a slight increase in the Puelo River streamflow mainly due to a decrease in evapotranspiration. According to previous simulations, these projections present a direction opposite to the trends forced by climate change. The combined effect of reduction in freshwater input to fiords and potential decline in water quality highlights the need for more robust data and robust analysis of the influence of climate and LCC on this river-fjord complex of northwestern Patagonia.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03318297Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03318297Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.628454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03318297Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03318297Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.628454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Frontiers Media SA Funded by:NSF | Collaborative Research: E..., NSF | Collaborative Research: E..., NSF | Collaborative Research: I... +1 projectsNSF| Collaborative Research: Effects of Trophic Status Alterations on Pathways of Mercury Methylation in Northern Wetlands ,NSF| Collaborative Research: Effects of Trophic Status Alterations on Pathways of Mercury Methylation in Northern Wetlands ,NSF| Collaborative Research: Investigating Northern Peatland Methane Dynamics by Synthesizing Measurements, Remote Sensing and Modeling from Local to Regional to Continental Scales ,NSF| Graduate Research Fellowship Program(GRFP)Spencer Roth; Spencer Roth; Brett A. Poulin; Zofia Baumann; Xiao Liu; Xiao Liu; Lin Zhang; David P. Krabbenhoft; Mark E. Hines; Jeffra K. Schaefer; Tamar Barkay;Climate change dramatically impacts Arctic and subarctic regions, inducing shifts in wetland nutrient regimes as a consequence of thawing permafrost. Altered hydrological regimes may drive changes in the dynamics of microbial mercury (Hg) methylation and bioavailability. Important knowledge gaps remain on the contribution of specific microbial groups to methylmercury (MeHg) production in wetlands of various trophic status. Here, we measured aqueous chemistry, potential methylation rates (kmeth), volatile fatty acid (VFA) dynamics in peat-soil incubations, and genetic potential for Hg methylation across a groundwater-driven nutrient gradient in an interior Alaskan fen. We tested the hypotheses that (1) nutrient inputs will result in increased methylation potentials, and (2) syntrophic interactions contribute to methylation in subarctic wetlands. We observed that concentrations of nutrients, total Hg, and MeHg, abundance of hgcA genes, and rates of methylation in peat incubations (kmeth) were highest near the groundwater input and declined downgradient. hgcA sequences near the input were closely related to those from sulfate-reducing bacteria (SRB), methanogens, and syntrophs. Hg methylation in peat incubations collected near the input source (FPF2) were impacted by the addition of sulfate and some metabolic inhibitors while those down-gradient (FPF5) were not. Sulfate amendment to FPF2 incubations had higher kmeth relative to unamended controls despite no effect on kmeth from addition of the sulfate reduction inhibitor molybdate. The addition of the methanogenic inhibitor BES (25 mM) led to the accumulation of VFAs, but unlike molybdate, it did not affect Hg methylation rates. Rather, the concurrent additions of BES and molybdate significantly decreased kmeth, suggesting a role for interactions between SRB and methanogens in Hg methylation. The reduction in kmeth with combined addition of BES and molybdate, and accumulation of VFA in peat incubations containing BES, and a high abundance of syntroph-related hgcA sequences in peat metagenomes provide evidence for MeHg production by microorganisms growing in syntrophy. Collectively the results suggest that wetland nutrient regimes influence the activity of Hg methylating microorganisms and, consequently, Hg methylation rates. Our results provide key information about microbial Hg methylation and methylating communities under nutrient conditions that are expected to become more common as permafrost soils thaw.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2021.741523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2021.741523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Netherlands, Spain, United Kingdom, SpainPublisher:American Association for the Advancement of Science (AAAS) Aleksi Lehikoinen; Richard D. Gregory; Thomas Sattler; Ruud P. B. Foppen; Jean-Yves Paquet; John R. Sauer; Stuart H. M. Butchart; Stuart H. M. Butchart; David G. Noble; Stephen G. Willis; Frédéric Jiguet; Virginia Escandell; Tibor Szép; Arco J. van Strien; Olivia Crowe; Chris A. M. van Turnhout; Sergi Herrando; Jiri Reif; Tomasz Chodkiewicz; Philip A. Stephens; Sven Trautmann; Åke Lindström; Henning Heldbjerg; Petr Vorisek; Lluís Brotons; Rhys E. Green; Rhys E. Green; Norbert Teufelbauer; Jaanus Elts; Przemysław Chylarecki; Lucy R. Mason; Ainars Aunins; Tommaso Campedelli; Magne Husby; Jamie Alison;Birds populations allied in abundance Changes in climate can cause populations of species to decline, to increase, or to remain steady. Stephens et al. looked across species of common birds in Europe and the United States. Despite many differences between the two regions, expectations about how a species might respond to climate change did predict actual responses. Species predicted to benefit from increasing temperatures, or their associated effects, tended to increase, whereas those predicted to be negatively affected declined. Thus, even across widely varying ecological conditions and communities, climate change can be expected to alter population sizes. Science , this issue p. 84
Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/17922/1/17922.pdfData sources: Durham Research OnlineRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTADurham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac4858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 231 citations 231 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/17922/1/17922.pdfData sources: Durham Research OnlineRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTADurham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac4858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Sweden, United Kingdom, Ireland, Netherlands, France, Australia, France, France, France, France, France, SwitzerlandPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | Peatlands and the global ...UKRI| Peatlands and the global Carbon cycle during the past millennium: a global assessment using observations and modelsAtte Korhola; Tatiana Blyakharchuk; Miriam C. Jones; Michael J. Clifford; Pierre Friedlingstein; Charly Massa; Paul Mathijssen; Eric S. Klein; Yan Zhao; Sarah A. Finkelstein; Jonathan E. Nichols; Gabriel Magnan; Rob Marchant; Fraser J.G. Mitchell; Philip Camill; Tim Mighall; Maara S. Packalen; David W. Beilman; Steve Moreton; Terri Lacourse; D. Mauquoy; James R. Holmquist; T. Edward Turner; T. Edward Turner; Lisa C. Orme; Lisa C. Orme; Susan Page; Chris D. Jones; Glen M. MacDonald; Svante Björck; A. Britta K. Sannel; Ulla Kokfelt; Helen Mackay; Nicole K. Sanderson; Antonio Martínez Cortizas; Mariusz Lamentowicz; I. Colin Prentice; Esther Githumbi; Joana Zaragoza-Castells; Robert K. Booth; Edgar Karofeld; Julie Loisel; Colin J Courtney-Mustaphi; Colin J Courtney-Mustaphi; Bas van Geel; Graeme T. Swindles; Angela V. Gallego-Sala; Joan Bunbury; François De Vleeschouwer; Dan J. Charman; Joanna Uglow; David Large; Stephen Robinson; Natascha Steinberg; Minna Väliranta; Donna Carless; Michelle Garneau; Guoping Wang; Markku Mäkilä; Thomas P. Roland; Simon van Bellen; Katarzyna Marcisz; Katarzyna Marcisz; Barbara Fiałkiewicz-Kozieł; Pirita Oksanen; Rixt de Jong; Elizabeth L. Cressey; Marjolein van der Linden; Christopher Bochicchio; Zicheng Yu; Zicheng Yu; John Hribjlan; Paul D.M. Hughes; Patrick Moss; Martin Lavoie; Simon Brewer; Rodney A. Chimner; Matthew J. Amesbury; Noemí Silva-Sánchez; Gaël Le Roux;The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around AD 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.
CORE arrow_drop_down EnlightenArticle . 2018Full-Text: http://eprints.gla.ac.uk/168775/1/168775.pdfData sources: CORE (RIOXX-UK Aggregator)Open Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2018 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)MURAL - Maynooth University Research Archive LibraryArticle . 2018 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryPublikationer från Uppsala UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2018Data sources: Universiteit van Amsterdam Digital Academic RepositoryAberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0271-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 218 citations 218 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 33visibility views 33 download downloads 22 Powered bymore_vert CORE arrow_drop_down EnlightenArticle . 2018Full-Text: http://eprints.gla.ac.uk/168775/1/168775.pdfData sources: CORE (RIOXX-UK Aggregator)Open Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2018 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)MURAL - Maynooth University Research Archive LibraryArticle . 2018 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryPublikationer från Uppsala UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2018Data sources: Universiteit van Amsterdam Digital Academic RepositoryAberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0271-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 23 Feb 2021 United States, Switzerland, FrancePublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ..., NSF | Belmont Forum Collaborati...NSF| Collaborative Research: Combining NEON and remotely sensed habitats to determine climate impacts on community dynamics ,NSF| Belmont Forum Collaborative Research: Scenarios of Biodiversity and Ecosystem ServiceOrrin Myers; Georges Kunstler; Jalene M. LaMontagne; James A. Lutz; Istem Fer; Jordan Luongo; Renata Poulton-Kamakura; Janneke HilleRisLambers; Yassine Messaoud; Sam Pearse; Gregory S. Gilbert; Natalie L. Cleavitt; C. D. Reid; Inés Ibáñez; Michael A. Steele; Miranda D. Redmond; Susan L. Cohen; Jerry F. Franklin; Benoît Courbaud; Don C. Bragg; Ethan Ready; C. Lane Scher; Andreas P. Wion; William H. Schlesinger; Shubhi Sharma; Robert R. Parmenter; Amanda M. Schwantes; Scott M. Pearson; Thomas G. Whitham; Thomas T. Veblen; Christopher L. Kilner; Samantha Sutton; Chase L. Nuñez; Emily V. Moran; Nathan L. Stephenson; Adrian J. Das; Jennifer J. Swenson; Cathryn H. Greenberg; Roman Zlotin; James S. Clark; James S. Clark; Walter D. Koenig; Robert A. Andrus; Amy V. Whipple; Jill F. Johnstone; Eliot J. B. McIntire; Kyle C. Rodman; Timothy J. Fahey; Erin Shanahan; Jonathan Myers; Johannes M. H. Knops; Catherine A. Gehring; Diana Macias; Qinfeng Guo; Christopher M. Moore; Michael Dietze; Mélaine Aubry-Kientz; Dale G. Brockway; Michał Bogdziewicz; Kai Zhu; Yves Bergeron; Robert Daley; Margaret Swift; Kristin Legg;AbstractIndirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/9q78n5tzData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/9q78n5tzData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 France, France, Australia, SwitzerlandPublisher:Canadian Science Publishing Abigail J. Lynch; Amanda A. Hyman; Steven J. Cooke; Samantha J. Capon; Paul A. Franklin; Sonja C. Jähnig; Matthew McCartney; Nguyễn Phú Hòa; Margaret Awuor Owuor; Jamie Pittock; Michael J. Samways; Luiz G. M. Silva; E. Ashley Steel; David Tickner;handle: 10072/426211 , 10568/131695
Freshwater biodiversity loss is accelerating globally, but humanity can change this trajectory through actions that enable recovery. To be successful, these actions require coordination and planning at a global scale. The Emergency Recovery Plan for global freshwater biodiversity aims to reduce the risk for freshwater biodiversity loss through six priority actions: (1) accelerate implementation of environmental flows; (2) improve water quality to sustain aquatic life; (3) protect and restore critical habitats; (4) manage exploitation of freshwater species and riverine aggregates; (5) prevent and control nonnative species invasions in freshwater habitats; and (6) safeguard and restore freshwater connectivity. These actions can be implemented using future-proofing approaches that anticipate future risks (e.g., emerging pollutants, new invaders, and synergistic effects) and minimize likely stressors to make conservation of freshwater biodiversity more resilient to climate change and other global environmental challenges. While uncertainty with respect to past observations is not a new concern for freshwater biodiversity, future-proofing has the distinction of accounting for the uncertainty of future conditions that have no historical baseline. The level of uncertainty with respect to future conditions is unprecedented. Future-proofing of the Emergency Recovery Plan for freshwater biodiversity will require anticipating future changes and developing and implementing actions to address those future changes. Here, we showcase future-proofing approaches likely to be successful using local case studies and examples. Ensuring that response options within the Emergency Recovery Plan are future-proofed will provide decision makers with science-informed choices, even in the face of uncertain and potentially new future conditions. We are at an inflection point for global freshwater biodiversity loss; learning from defeats and successes can support improved actions toward a sustainable future.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/426211Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/131695Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/er-2022-0116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/426211Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/131695Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/er-2022-0116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Embargo end date: 06 Dec 2017 Switzerland, France, France, FrancePublisher:Springer Science and Business Media LLC Jean-Marc Thirion; David A. W. Miller; Michael J. Adams; Jan W. Arntzen; Blake R. Hossack; Odile Grolet; Robert N. Fisher; Benedikt R. Schmidt; Wendy J. Palen; David S. Pilliod; E. H. Campbell Grant; Erin Muths; Justin M. Garwood; Gary M. Fellers; Pierre Joly; Marc Cheylan; Thierry Chambert; Thierry Chambert; Aurélien Besnard; David M. Green; Rebecca McCaffery; Rebecca McCaffery;AbstractThe pervasive and unabated nature of global amphibian declines suggests common demographic responses to a given driver, and quantification of major drivers and responses could inform broad-scale conservation actions. We explored the influence of climate on demographic parameters (i.e., changes in the probabilities of survival and recruitment) using 31 datasets from temperate zone amphibian populations (North America and Europe) with more than a decade of observations each. There was evidence for an influence of climate on population demographic rates, but the direction and magnitude of responses to climate drivers was highly variable among taxa and among populations within taxa. These results reveal that climate drivers interact with variation in life-history traits and population-specific attributes resulting in a diversity of responses. This heterogeneity complicates the identification of conservation ‘rules of thumb’ for these taxa, and supports the notion of local focus as the most effective approach to overcome global-scale conservation challenges.
Scientific Reports arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverZurich Open Repository and ArchiveArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-17105-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Scientific Reports arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverZurich Open Repository and ArchiveArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-17105-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, Germany, United StatesPublisher:The Royal Society Funded by:NSF | Type 1- L012170218: Colla..., NSERC, EC | GREENCYCLESII +7 projectsNSF| Type 1- L012170218: Collaborative Research: Ecosystem Impacts of Variability and Extreme Events in the Arctic ,NSERC ,EC| GREENCYCLESII ,NSF| SEES Fellows: Atmospheric Water Transport from Mexico to the U.S. - A Holistic, Binational Approach to Reducing Vulnerability to the North American Monsoon ,NSF| Collaborative Research: Type 1 - Improved Cold Region Hydrology Process Representation as a Cornerstone of Arctic Biogeochemical Modeling (L02170157) ,NSF| Collaborative Research: P2C2: Contributions of northern cold-climate peatlands and lakes to abrupt changes in atmospheric methane during the last deglaciation ,EC| PAGE21 ,NSF| Warming and drying effects on tundra carbon balance ,EC| PETA-CARB ,NSF| Collaborative Research: Research, Synthesis, and Knowledge Transfer in a Changing Arctic: Science Support for the Study of Environmental Arctic Change (SEARCH)Koven, C.D; Schuur, E.A.G.; Schädel, C; Bohn, T. J; Burke, E.J.; Chen, G.; Chen, X; Ciais, Philippe; Grosse, G; Harden, J.W; Hayes, D.J; Hugelius, G; Jafarov, E.E; Krinner, G; Kuhry, P; Lawrence, D.M.; Macdougall, A.H; Marchenko, S.S; Mcguire, A.D; Natali, S.M; Nicolsky, D. J.; Olefeldt, D; Peng, S; Romanovsky, V. E.; Schaefer, K.M; Strauss, J; Treat, C.C; Turetsky, M.;We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γsensitivity) of −14 to −19 Pg C °C−1on a 100 year time scale. For CH4emissions, our approach assumes a fixed saturated area and that increases in CH4emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.
Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2015Full-Text: https://insu.hal.science/insu-01326116Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2015Full-Text: https://insu.hal.science/insu-01326116Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://insu.hal.science/insu-01326116Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/7t14r7vvData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://insu.hal.science/insu-01326116Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2015Data sources: Electronic Publication Information CenterInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2015 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1098/rsta...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2014.0423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 162 citations 162 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2015Full-Text: https://insu.hal.science/insu-01326116Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2015Full-Text: https://insu.hal.science/insu-01326116Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://insu.hal.science/insu-01326116Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/7t14r7vvData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://insu.hal.science/insu-01326116Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2015Data sources: Electronic Publication Information CenterInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2015 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1098/rsta...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2014.0423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021 Argentina, Argentina, France, Finland, United Kingdom, France, Belgium, ItalyPublisher:Wiley Funded by:UKRI | UK Status, Change and Pro..., NSF | 3rd Collaborative Researc...UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,NSF| 3rd Collaborative Research Network Program (CRN3)Christian Torsten Seltmann; Alon Rimmer; Heidrun Feuchtmayr; Hilary M. Swain; Maria Eugenia del Rosario Llames; Dietmar Straile; Orlane Anneville; Emily R. Nodine; Georgiy Kirillin; Donald C. Pierson; Scott F. Girdner; María Belén Alfonso; Pablo Urrutia-Cordero; Pablo Urrutia-Cordero; Patrick Venail; Lars G. Rudstam; James A. Rusak; James A. Rusak; Shin-ichiro S. Matsuzaki; Evelyn E. Gaiser; Josef Hejzlar; Jennifer L. Graham; Hans-Peter Grossart; Hans-Peter Grossart; Vijay P. Patil; Jonathan P. Doubek; Elvira de Eyto; Stéphan Jacquet; Tamar Zohary; María Cintia Piccolo; Aleksandra M. Lewandowska; Wim Thiery; Steven Sadro; Stephen J. Thackeray; Curtis L. DeGasperi; Piet Verburg; Nico Salmaso; Rita Adrian; Rita Adrian; Gaël Dur; Jason D. Stockwell;AbstractThe intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind‐induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long‐term and high‐frequency lake datasets from 11 countries to assess the magnitude of wind‐ vs. rainstorm‐induced changes in epilimnetic temperature. We found small day‐to‐day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day‐to‐day epilimnetic temperature decreased, on average, by 0.28°C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 ± 2.7 m s−1, 1 SD) and by 0.15°C after the heaviest rainstorms (storm mean daily rainfall: 21.3 ± 9.0 mm). The largest decreases in epilimnetic temperature were observed ≥2 d after sustained strong wind or heavy rain (top 5th percentile of wind and rain events for each lake) in shallow and medium‐depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm‐induced mean epilimnetic temperature decreases were typically <2°C. Day‐to‐day temperature change, in the absence of storms, often exceeded storm‐induced temperature changes. Because storm‐induced temperature changes to lake surface waters were minimal, changes in other limnological variables (e.g., nutrient concentrations or light) from storms may have larger impacts on biological communities than temperature changes.
NERC Open Research A... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2021Full-Text: http://hdl.handle.net/10449/69028Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.science/hal-03230686Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lno.11739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2021Full-Text: http://hdl.handle.net/10449/69028Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.science/hal-03230686Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lno.11739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Frontiers Media SA Jorge León-Muñoz; Jorge León-Muñoz; Rodrigo Aguayo; Rafael Marcé; Rafael Marcé; Núria Catalán; Núria Catalán; Núria Catalán; Stefan Woelfl; Jorge Nimptsch; Ivan Arismendi; Camila Contreras; Doris Soto; Alejandro Miranda; Alejandro Miranda;handle: 10256/25512
Freshwater inputs strongly influence oceanographic conditions in coastal systems of northwestern Patagonia (41–45°S). Nevertheless, the influence of freshwater on these systems has weakened in recent decades due to a marked decrease in precipitation. Here we evaluate potential influences of climate and land cover trends on the Puelo River (640 m3s–1), the main source of freshwater input of the Reloncaví Fjord (41.5°S). Water quality was analyzed along the Puelo River basin (six sampling points) and at the discharge site in the Reloncaví Fjord (1, 8, and 25 m depth), through six field campaigns carried out under contrasting streamflow scenarios. We also used several indicators of hydrological alteration, and cross-wavelet transform and coherence analyses to evaluate the association between the Puelo River streamflow and precipitation (1950–2019). Lastly, using the WEAP hydrological model, land cover maps (2001–2016) and burned area reconstructions (1985–2019), we simulated future land cover impacts (2030) on the hydrological processes of the Puelo River. Total Nitrogen and total phosphorus, dissolved carbon, and dissolved iron concentrations measured in the river were 3–15 times lower than those in the fjord. Multivariate analyses showed that streamflow drives the carbon composition in the river. High streamflow conditions contribute with humic and colored materials, while low streamflow conditions corresponded to higher arrival of protein-like materials from the basin. The Puelo River streamflow showed significant trends in magnitude (lower streamflow in summer and autumn), duration (minimum annual streamflow), timing (more floods in spring), and frequency (fewer prolonged floods). The land cover change (LCC) analysis indicated that more than 90% of the basin area maintained its land cover, and that the main changes were attributed to recent large wildfires. Considering these land cover trends, the hydrological simulations project a slight increase in the Puelo River streamflow mainly due to a decrease in evapotranspiration. According to previous simulations, these projections present a direction opposite to the trends forced by climate change. The combined effect of reduction in freshwater input to fiords and potential decline in water quality highlights the need for more robust data and robust analysis of the influence of climate and LCC on this river-fjord complex of northwestern Patagonia.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03318297Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03318297Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.628454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03318297Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03318297Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.628454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Frontiers Media SA Funded by:NSF | Collaborative Research: E..., NSF | Collaborative Research: E..., NSF | Collaborative Research: I... +1 projectsNSF| Collaborative Research: Effects of Trophic Status Alterations on Pathways of Mercury Methylation in Northern Wetlands ,NSF| Collaborative Research: Effects of Trophic Status Alterations on Pathways of Mercury Methylation in Northern Wetlands ,NSF| Collaborative Research: Investigating Northern Peatland Methane Dynamics by Synthesizing Measurements, Remote Sensing and Modeling from Local to Regional to Continental Scales ,NSF| Graduate Research Fellowship Program(GRFP)Spencer Roth; Spencer Roth; Brett A. Poulin; Zofia Baumann; Xiao Liu; Xiao Liu; Lin Zhang; David P. Krabbenhoft; Mark E. Hines; Jeffra K. Schaefer; Tamar Barkay;Climate change dramatically impacts Arctic and subarctic regions, inducing shifts in wetland nutrient regimes as a consequence of thawing permafrost. Altered hydrological regimes may drive changes in the dynamics of microbial mercury (Hg) methylation and bioavailability. Important knowledge gaps remain on the contribution of specific microbial groups to methylmercury (MeHg) production in wetlands of various trophic status. Here, we measured aqueous chemistry, potential methylation rates (kmeth), volatile fatty acid (VFA) dynamics in peat-soil incubations, and genetic potential for Hg methylation across a groundwater-driven nutrient gradient in an interior Alaskan fen. We tested the hypotheses that (1) nutrient inputs will result in increased methylation potentials, and (2) syntrophic interactions contribute to methylation in subarctic wetlands. We observed that concentrations of nutrients, total Hg, and MeHg, abundance of hgcA genes, and rates of methylation in peat incubations (kmeth) were highest near the groundwater input and declined downgradient. hgcA sequences near the input were closely related to those from sulfate-reducing bacteria (SRB), methanogens, and syntrophs. Hg methylation in peat incubations collected near the input source (FPF2) were impacted by the addition of sulfate and some metabolic inhibitors while those down-gradient (FPF5) were not. Sulfate amendment to FPF2 incubations had higher kmeth relative to unamended controls despite no effect on kmeth from addition of the sulfate reduction inhibitor molybdate. The addition of the methanogenic inhibitor BES (25 mM) led to the accumulation of VFAs, but unlike molybdate, it did not affect Hg methylation rates. Rather, the concurrent additions of BES and molybdate significantly decreased kmeth, suggesting a role for interactions between SRB and methanogens in Hg methylation. The reduction in kmeth with combined addition of BES and molybdate, and accumulation of VFA in peat incubations containing BES, and a high abundance of syntroph-related hgcA sequences in peat metagenomes provide evidence for MeHg production by microorganisms growing in syntrophy. Collectively the results suggest that wetland nutrient regimes influence the activity of Hg methylating microorganisms and, consequently, Hg methylation rates. Our results provide key information about microbial Hg methylation and methylating communities under nutrient conditions that are expected to become more common as permafrost soils thaw.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2021.741523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2021.741523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Netherlands, Spain, United Kingdom, SpainPublisher:American Association for the Advancement of Science (AAAS) Aleksi Lehikoinen; Richard D. Gregory; Thomas Sattler; Ruud P. B. Foppen; Jean-Yves Paquet; John R. Sauer; Stuart H. M. Butchart; Stuart H. M. Butchart; David G. Noble; Stephen G. Willis; Frédéric Jiguet; Virginia Escandell; Tibor Szép; Arco J. van Strien; Olivia Crowe; Chris A. M. van Turnhout; Sergi Herrando; Jiri Reif; Tomasz Chodkiewicz; Philip A. Stephens; Sven Trautmann; Åke Lindström; Henning Heldbjerg; Petr Vorisek; Lluís Brotons; Rhys E. Green; Rhys E. Green; Norbert Teufelbauer; Jaanus Elts; Przemysław Chylarecki; Lucy R. Mason; Ainars Aunins; Tommaso Campedelli; Magne Husby; Jamie Alison;Birds populations allied in abundance Changes in climate can cause populations of species to decline, to increase, or to remain steady. Stephens et al. looked across species of common birds in Europe and the United States. Despite many differences between the two regions, expectations about how a species might respond to climate change did predict actual responses. Species predicted to benefit from increasing temperatures, or their associated effects, tended to increase, whereas those predicted to be negatively affected declined. Thus, even across widely varying ecological conditions and communities, climate change can be expected to alter population sizes. Science , this issue p. 84
Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/17922/1/17922.pdfData sources: Durham Research OnlineRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTADurham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac4858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 231 citations 231 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/17922/1/17922.pdfData sources: Durham Research OnlineRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTADurham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac4858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu