- home
- Advanced Search
- Energy Research
- Open Access
- FR
- Tsinghua University
- Energy Research
- Open Access
- FR
- Tsinghua University
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Babar Zahoor; Melissa Songer; Xuehua Liu; Qiongyu Huang; Yunchuan Dai;Global warming due to anthropogenic activities has alarming effects on biodiversity. It could negatively impact the interactions between predators and their prey by shifting or eliminating their suitable habitats. The predator common leopard (Panthera pardus) and two prey species, Himalayan grey goral (Naemorhedus goral) and Himalayan grey langur (Semnopithecus ajax) play important roles in balancing the forest ecosystem in northern Pakistan. The common leopard is listed as a Vulnerable species on the IUCN Red List, while grey goral and grey langur are listed as Near Threatened and Endangered respectively. For this study, we used Maximum Entropy Model (MaxEnt) to model the current (average for 1950–2000) and future (in 2070) suitable habitat for each of these species using three General Circulation Models [GCMs; i.e. Beijing Climate Center Climate System Model (BCC-CSM1–1), Community Climate System Model (CCSM4), and Hadley Global Environment Model 2 (HadGEM2-AO)]. We used two climate change emission scenarios, i.e., a moderate carbon emission scenario (RCP4.5) and an extreme carbon emission scenario (RCP8.5). Our results indicated that an area of 18,360 km2, 34,142 km2 and 10,636 km2 are currently suitable for the common leopard, grey goral, and grey langur, respectively. In the future, common leopard, grey goral and grey langur were predicted to lose over 11%, 43%, and 44% of currently inhabited areas under the most severe climate scenario (RCP8.5), respectively. Overall, 56–89% of the current suitable habitat area was predicted as stable suitable habitat for all the species. The study projected that currently, 14,321 km2 is suitable for both common leopard and grey goral. Whereas, 7096 km2 of current habitat is suitable for both common leopard and grey langur. Overlapping areas were predicted to be reduced in the future (due to fluctuations in temperature and precipitation), ranging from 2% (under RCP8.5) to 8% (under RCP45) for areas suitable for common leopard and grey goral, and from 30% (under RCP4.5) to 47% (under RCP8.5) for areas suitable for common leopard and grey langur, respectively. Most of the overlapping areas that remained suitable were projected between the altitudinal range of 1000 m – 3000 m for common leopard and grey goral, and from 2000 m to 4000 m for common leopard and grey langur. Our results inform management plans and conservation strategies (e.g., establishment of new or improving the status of existing protected areas) for mitigating the impacts of climate change on endangered predator and prey species in the northern Pakistan.
Global Ecology and C... arrow_drop_down Global Ecology and ConservationArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gecco.2023.e02418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Ecology and C... arrow_drop_down Global Ecology and ConservationArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gecco.2023.e02418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report , Research , Preprint , Journal 2018Embargo end date: 10 Jul 2018 Italy, Hungary, Portugal, Germany, Spain, Switzerland, Belgium, United States, Italy, United Kingdom, United States, Germany, United States, United States, Portugal, France, United Kingdom, Italy, Italy, Hungary, Greece, United Kingdom, Brazil, France, United Kingdom, Germany, FrancePublisher:Elsevier BV Publicly fundedFunded by:EC | AMVA4NewPhysics, , GSRIEC| AMVA4NewPhysics ,[no funder available] ,GSRINathan Mirman; Riccardo Paramatti; Annika Vanhoefer; Thomas Ferguson; Thierry Maerschalk; Gregor Mittag; Faridah Mohamad Idris; Cesare Calabria; Sanjay Padhi; Daniele Trocino; Carlos Florez; Michal Olszewski; David Cussans; Luca Pacher; Grant Riley; Marco Alexander Harrendorf; Giacomo Ortona; Georgios Daskalakis; Shuichi Kunori; William John Womersley; Sandra S. Padula; Apichart Hortiangtham; James Rohlf; Heiner Tholen; Konrad Deiters; Vincenzo Daponte; Yacine Haddad; Carlo Battilana; Prakash Thapa; Weimin Wu; Gino Bolla; Alessia Tricomi; Dhanush Anil Hangal; Kirika Uchida; Pierre Piroué; Davide Cieri; Peter Wittich; Federica Primavera; Samuel Bein; Andrey Popov; Andrew Hart; Salvatore Costa; Martino Margoni; Martino Margoni; Markus Spanring; Alice Cocoros; Andreas Kornmayer; Marco Paganoni; Marco Paganoni; Suman Chatterjee; Robert Fischer; Michael Reichmann; Marina Chadeeva; Fábio Lúcio Alves; Jared Turkewitz; Houmani El Mamouni; Johan Borg; Ta-Yung Ling; Thi Hien Doan; Andris Skuja; Amina Zghiche; Shervin Nourbakhsh; Damir Lelas; Fabrizio Margaroli; Kai Yi; Fred-Markus Helmut Stober; Yi-ting Duh; Nathan Kellams; Russell Richard Betts; Johannes Grossmann; Zoltan Laszlo Trocsanyi; Andre Sznajder; Alessio Magitteri; Oliver Buchmuller; Ferdinando Giordano; David Colling; Daniel Robert Marlow; J William Gary; Jan Krolikowski; Souvik Das; Yongbin Feng; Wit Busza; Rachael Bucci; Jack Wright; Georgios Mavromanolakis; Luiz Mundim; Konstantinos Theofilatos; Richard Loveless; Elizabeth Locci; Olga Kodolova; Ferenc Sikler; Cristina Oropeza Barrera; Giancarlo Mantovani; Ada Solano; Nikolay Terentyev; Paul Sheldon; Robert Klanner; Zhoudunming Tu; Paul David Luckey; Mia Tosi; Roumyana Hadjiiska; Mauro Verzetti; Ravi Janjam; Daniele Vadruccio; Aobo Zhang; Pietro Faccioli; Helio Nogima; Peter Thomassen; Ian R Tomalin; Thomas James; Stephan Linn; Martti Raidal; Iurii Antropov; Rino Castaldi; Douglas Berry; Susan Dittmer; Thomas Weiler; Simranjit Singh Chhibra; James Alexander; Andrew Mehta; Yang Yang; Ksenia Shchelina; Igor Bayshev; Alberto Sánchez Hernández; Helena Malbouisson; Rafael Teixeira De Lima; Christian Veelken; Alfredo Castaneda Hernandez; Yuta Takahashi; Steven R. Simon; Simon Kudella; Quan Wang; Armen Tumasyan; Diego Beghin; Diego Ciangottini; Yagya Raj Joshi; Martina Vit; Engin Eren; Livio Fanò; Ajeeta Khatiwada; Frank Hartmann; Tao Huang; David Mark Raymond; Shubham Pandey; Aditee Rane; Frédéric Drouhin; Andreas Hinzmann; C. A. Carrillo Montoya; Joseph Heideman; Ignacio Redondo; Marc M Baarmand; Alexander Zhokin; Clemens Wöhrmann; Adolf Bornheim; Maxwell Chertok; Luca Perrozzi; Gigi Rolandi; Valentin Sulimov; Basil Schneider; Alexander Ershov; Kunal Kothekar; Alessandro Montanari; Thomas Esch; Kelly Beernaert; Emanuele Di Marco; Georgios Anagnostou; Jacopo Pazzini; Sudhir Malik; Yong Ban; Kyungwook Nam; Bruno Galinhas; James D. Olsen; Jamal Rorie; Dominik Nowatschin; Candan Dozen; Marc Osherson; Salvatore My; Harry Cheung; Ioannis Papadopoulos; Salvatore Nuzzo; Hannsjoerg Artur Weber; Christian Barth; Abhigyan Dasgupta; Hui Li; Juan Pablo Fernández Ramos; Andrew Whitbeck; Cédric Prieels; Deborah Pinna; Antonio María Pérez-Calero Yzquierdo; Ivan Marchesini; Gregory R Snow; Mariana Shopova; Dmitry Elumakhov; John N. Wood; Andreas Künsken; Vadim Oreshkin; Manuel Giffels; Andrew Melo; Raman Khurana; Joosep Pata;doi: 10.1016/j.physletb.2018.05.062 , 10.3929/ethz-b-000269943 , 10.5167/uzh-160181 , 10.48550/arxiv.1801.01846 , 10.3204/pubdb-2019-00404 , 10.3204/pubdb-2018-00232 , 10.18154/rwth-2018-227120
arXiv: 1801.01846
A search is presented for new physics in events with two low-momentum, oppositely charged leptons (electrons or muons) and missing transverse momentum in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data collected using the CMS detector at the LHC correspond to an integrated luminosity of 35.9. The observed event yields are consistent with the expectations from the standard model. The results are interpreted in terms of pair production of charginos and neutralinos (X1 and X2) with nearly degenerate masses, as expected in natural supersymmetry models with light higgsinos, as well as in terms of the pair production of top squarks (t), when the lightest neutralino and the top squark have similar masses. At 95% confidence level, wino-like X1/X2 masses are excluded up to 230 GeV for a mass difference of 20 GeV relative to the lightest neutralino. In the higgsino-like model, masses are excluded up to 168 GeV for the same mass difference. For pair production, top squark masses up to 450 GeV are excluded for a mass difference of 40 GeV relative to the lightest neutralino. Physics Letters B, 782 ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445
e-Prints Soton arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/62301Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2018Full-Text: https://arxiv.org/abs/1801.01846Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Rice Research RepositoryArticle . 2018License: CC BYFull-Text: https://hdl.handle.net/1911/103464Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2018License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveArchivio Istituzionale Università di BergamoArticle . 2018Data sources: Archivio Istituzionale Università di BergamoÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2018.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 79 citations 79 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/62301Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2018Full-Text: https://arxiv.org/abs/1801.01846Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Rice Research RepositoryArticle . 2018License: CC BYFull-Text: https://hdl.handle.net/1911/103464Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2018License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveArchivio Istituzionale Università di BergamoArticle . 2018Data sources: Archivio Istituzionale Università di BergamoÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2018.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Research Square Platform LLC Authors: Babar Zahoor; Xuehua Liu; Melissa Songer;pmid: 35297000
Abstract Global temperatures are predicted to rise from between 1.4 to 5.8°C by 21st century, which could result in a 20 to 30% extinction of species. The negative impacts of climate change on the northern highlands of Pakistan (NHP) could change the species composition. Range shifts and range reduction in the forested landscapes will dramatically affect the distribution of forest dwelling species, including the Galliformes (ground birds). Three Galliformes (e.g., Lophophorus impejanus, Pucrasia macrolopha and Tragopan melanocephalus) are indicator species of the environment and currently distributed in NHP. For this study, we used Maximum Entropy Model (MaxEnt) to simulate the current and future (in 2050 and 2070) distributions of the species using three General Circulation Models (GCMs) and two climate change scenarios, i.e., RCP4.5 (moderate carbon emission scenario) and RCP8.5 (peak carbon emission scenario). Our results indicated that (i) all the three species would be negatively affected by the climate change in 2050 and in 2070. (ii) Under all three climate scenarios, species distribution was predicted to both reduce and shift towards higher altitudes. (iii) Across the provinces in the NHP, the species were predicted to lose over one quarter in 2050 and one-third by 2070 of the current suitable habitat. (iv) The maximum area of climate refugia was projected between the altitudinal range of 2000 m to 4000 m and predicted to shift towards higher altitudes primarily >3000 m in the future. The proposed implications such as establishment and upgradation of the protected areas, ban on hunting, timber mafia and temporary settlements of the local people in the forested landscapes should be under special consideration to mitigate the impact of climate change.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-980782/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-980782/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 FrancePublisher:Elsevier BV Authors: Gao, Yan; Roux, J.J.; Zhao, L.H.; Jiang, Yuchao;Abstract Thermal bridges losses represent an increasing part of heat losses owing to significant three-dimensional heat transfer characteristics in modern buildings, but one-dimensional models are used in most simulation software for thermal analyses to simplify the calculations. State model reduction techniques were used to develop low-order three-dimensional heat transfer model for additional losses of thermal bridges, which is efficient and accuracy. Coupling this technique with traditional one-dimensional model for walls losses, it is possible to reduce a large amount of time simulations. Low-order model was validated from frequency response and time-domain output. And the effect of this model was shown with its implementation in software “TRNSYS”.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2008.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2008.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Xiao Zhang; Enshen Long; Zhiyuan Wei; Shurui Guo; Yin Zhang; Yin Zhang;Abstract Variable refrigerant flow (VRF) air conditioning system is widely used in commercial buildings for space cooling and heating. However, some VRF systems used in high-rise buildings cannot work efficiently or even stop working because of the relatively high ambient air temperature, caused by the thermal plume effect of exhaust heat from outdoor units. In this paper, the thermal plume air flow of the layer-based VRF systems is investigated through computational fluids dynamics (CFD) simulation. Moreover, an illustrative example of practical VRF system in a 30-storey office building in Shenzhen is analyzed to optimize the layout of the outdoor units. Preliminary results show that the exhaust heat of outdoor units can cause ascending thermal plume flow, leading to higher inlet temperatures for VRF air conditioners on upper floors, even exceeding the warning upper threshold value. It also indicates that enlarging the distance between outdoor units on different floors is an effective way to impair the thermal plume effect for VRF outdoor units and improve the thermal performance of the whole system. For the studied case, the average inlet temperatures can be decreased by 22% for VRF outdoor units with floor interval. This work can provide guidance for the optimization layout design of practical VRF air conditioning systems used in high-rise buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2017Embargo end date: 01 Jan 2016 Netherlands, France, United KingdomPublisher:Springer Science and Business Media LLC Funded by:MESTD | ATLAS experiment and part..., EC | JETS IN QCD MATTER, UKRI | New Ideas in Gauge, Strin... +5 projectsMESTD| ATLAS experiment and particle physics at the LHC energies ,EC| JETS IN QCD MATTER ,UKRI| New Ideas in Gauge, String and Lattice Theory ,MESTD| Bioinformatic promoter predictions and theoretical modeling of gene circuits in bacteria ,DFG| Isolated quantum systems and universality in extreme conditions (ISOQUANT) ,EC| CMSHInBeauty ,EC| QGPDYN ,NWO| Characterisation of a novel state of matter: The Quark-Gluon PlasmaM. Schmelling; Mikko Laine; Magdalena Djordjevic; R. Granier de Cassagnac; Johanna Stachel; Jörg Aichelin; A. C. Oliveira Da Silva; A. C. Oliveira Da Silva; Enrico Scomparin; A. D. Frawley; H. Dembinski; Chris Allton; Nora Brambilla; Torsten Dahms; Nu Xu; Roberta Arnaldi; Elena G. Ferreiro; P. Zhuang; Marlene Nahrgang; Steffen A. Bass; Alexandre Alarcon Do Passo Suaide; Antonio Uras; P. Braun-Munzinger; Andre Mischke; M. Nguyen; Gert Aarts; Santosh K. Das; L. V. R. van Doremalen; Alessandro Grelli; S. Vigolo; M. Jo; Zhenyu Ye; G. M. Innocenti; Luuk Vermunt; Barbara Antonina Trzeciak; Cristina Bedda; Paulus Gerardus Kuijer; Laura Tolos; Laura Tolos; Elena Bratkovskaya; Alexander Rothkopf; M G Munhoz; Giacomo Bruno; W. A. Horowitz; Pol Bernard Gossiaux; Henrique Jose Correa Zanoli; Henrique Jose Correa Zanoli; Peter Petreczky; Olaf Kaczmarek; Maria Paola Lombardo; Taesoo Song; Min He;La physique ouverte et cachée des saveurs lourdes dans les collisions nucléaires à haute énergie entre dans une nouvelle étape passionnante vers une compréhension plus claire des nouveaux résultats expérimentaux avec la possibilité de les lier directement à l'avancement de la chromodynamique quantique en treillis (QCD). Des résultats récents d'expériences et de développements théoriques concernant la dynamique des saveurs lourdes ouvertes et cachées ont été débattus lors de l'atelier de Lorentz Tomography of the Quark-Gluon Plasma with Heavy Quarks, qui s'est tenu en octobre 2016 à Leiden, aux Pays-Bas. Dans cette contribution, nous résumons les compréhensions communes identifiées et les stratégies développées pour les cinq prochaines années, qui visent à acquérir une connaissance approfondie des propriétés dynamiques du plasma quark-gluon. La física de sabor intenso abierta y oculta en colisiones nucleares de alta energía está entrando en una nueva y emocionante etapa para alcanzar una comprensión más clara de los nuevos resultados experimentales con la posibilidad de vincularlos directamente con el avance en la cromodinámica cuántica reticular (QCD). Los resultados recientes de experimentos y desarrollos teóricos sobre dinámicas abiertas y ocultas de sabor intenso se han debatido en el Lorentz Workshop Tomography of the Quark-Gluon Plasma with Heavy Quarks, que se celebró en octubre de 2016 en Leiden, Países Bajos. En esta contribución, resumimos los entendimientos comunes identificados y las estrategias desarrolladas para los próximos cinco años, que tienen como objetivo lograr un conocimiento profundo de las propiedades dinámicas del plasma de quarks y gluones. Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Recent results from experiments and theoretical developments regarding open and hidden heavy-flavor dynamics have been debated at the Lorentz Workshop Tomography of the Quark-Gluon Plasma with Heavy Quarks, which was held in October 2016 in Leiden, The Netherlands. In this contribution, we summarize identified common understandings and developed strategies for the upcoming five years, which aim at achieving a profound knowledge of the dynamical properties of the quark-gluon plasma. تدخل فيزياء النكهة الثقيلة المفتوحة والمخفية في التصادمات النووية عالية الطاقة مرحلة جديدة ومثيرة نحو الوصول إلى فهم أوضح للنتائج التجريبية الجديدة مع إمكانية ربطها مباشرة بالتقدم في الديناميكيات الكمومية الشبكية (QCD). تمت مناقشة النتائج الأخيرة من التجارب والتطورات النظرية المتعلقة بديناميكيات النكهة الثقيلة المفتوحة والمخفية في ورشة لورنتز للتصوير المقطعي لبلازما كوارك- غلوون مع الكواركات الثقيلة، والتي عقدت في أكتوبر 2016 في ليدن، هولندا. في هذه المساهمة، نلخص التفاهمات المشتركة المحددة والاستراتيجيات المطورة للسنوات الخمس القادمة، والتي تهدف إلى تحقيق معرفة عميقة بالخصائص الديناميكية لبلازما كوارك- غلوون.
The European Physica... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverhttps://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: DataciteThe European Physical Journal AArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epja/i2017-12282-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The European Physica... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverhttps://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: DataciteThe European Physical Journal AArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epja/i2017-12282-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Elsevier BV Cheng, Yuan; Yu, Qinqin; Liu, Jiumeng; Zhu, Shengqiang; Zhang, Mengyuan; Zhang, Hongliang; Zheng, Bo; He, Kebin;pmid: 33280910
Complex air pollutant sources and distinct meteorological conditions resulted in unique wintertime haze pollution in the Harbin-Changchun (HC) metropolitan area, China's only national-level city cluster located in the severe cold climate region. In this study, field observation and air quality modeling were combined to investigate fine particulate matter (PM2.5) pollution during a six-month long heating season in HC's central city (Harbin). The model significantly underpredicted PM2.5 and organic carbon (by up to ∼230 μg/m3 and 110 μgC/m3, respectively, in terms of daily average) when levoglucosan concentrations were above 0.5 μg/m3. Based on a synthesis of levoglucosan concentrations and fire counts, the large gaps were attributed to underestimation of open burning emissions by the model. However, the model tended to overpredict elemental carbon (more significantly at higher NO2), likely pointing to an overestimation of vehicle emissions. With increasing levoglucosan, the difference between observed and simulated nitrate (nitrateobs ‒ nitratemod, i.e., Δnitrate) showed a transition from negative to positive values. The positive Δnitrate were attributed to underprediction of the open-burning related nitrate, whereas the negative Δnitrate were likely caused by overprediction of nitrate from other sources (presumably vehicle emissions). The dependence of Δnitrate on levoglucosan indicated that with stronger impact of open burning, the overprediction effect was gradually offset and finally overwhelmed. Influence of open burning on sulfate formation was evident as well, but less apparent compared to nitrate. This study illustrates how the uncertainties in open burning emissions will influence PM2.5 simulation, on not only primary components but also secondary species.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2020.116167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2020.116167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Wenjuan Li;doi: 10.3390/su13147671
This research particularly aims to investigate how trust and perceived risk influence citizens’ e-government adoption. The findings of the study reveal that citizens’ trust of the government (TOG) and trust of the internet (TOI) positively affect citizens’ e-government adoption (EGA); perceived risk (PR) is negatively associated with citizens’ EGA. Interestingly, this study also demonstrates the negative moderating effect of PR on the relationship between TOG and EGA, TOI and EGA. The results also indicate that performance expectancy (PE), effort expectancy (EE), social influence (SI), and facilitation conditions (FC) influence citizens’ EGA positively. Lastly, implications for practice and research are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13147671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13147671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Nan Li; Wenying Chen; Huan Wang; Jingcheng Shi;Abstract The global energy system will have to face profound transformation in order to realize the 2 degree target. The uncertainty in social and economic development is the one of the most key factors that influences future pathways of energy consumption and carbon emissions. This paper generated energy consumption and carbon emissions scenarios under moderate social economic pathway SSP2 based on a global multi-region energy system model GTIMES, conducted a series of quantitative analysis on different income group regions’ building energy consumption and mitigation potential, and made comparisons between SSP2 scenario and RCP2.6 emission pathways. The energy efficiency and energy structure of building sector in low, medium and high income regions will all experience rapid improvement in next decades, however, the mitigation gap between SSP2 scenario and RCP2.6 pathway will still be huge, so more and stronger mitigation measures are needed to be promoted further.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Yunfu Gu; Yunfu Gu; Nona R. Chiariello; Tong Yuan; Audrey Niboyet; Mengting Yuan; Shikui Dong; Sihang Yang; Qiaoshu Zheng; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Zhou Shi; Jessica L. M. Gutknecht; Xingyu Ma; Kathryn M. Docherty; Christopher B. Field; Bruce A. Hungate; Xavier Le Roux; Yunfeng Yang;pmid: 30586832
The continuously increasing concentration of atmospheric CO2 has considerably altered ecosystem functioning. However, few studies have examined the long-term (i.e. over a decade) effect of elevated CO2 on soil microbial communities. Using 16S rRNA gene amplicons and a GeoChip microarray, we investigated soil microbial communities from a Californian annual grassland after 14 years of experimentally elevated CO2 (275 ppm higher than ambient). Both taxonomic and functional gene compositions of the soil microbial community were modified by elevated CO2. There was decrease in relative abundance for taxa with higher ribosomal RNA operon (rrn) copy number under elevated CO2, which is a functional trait that responds positively to resource availability in culture. In contrast, taxa with lower rrn copy number were increased by elevated CO2. As a consequence, the abundance-weighted average rrn copy number of significantly changed OTUs declined from 2.27 at ambient CO2 to 2.01 at elevated CO2. The nitrogen (N) fixation gene nifH and the ammonium-oxidizing gene amoA significantly decreased under elevated CO2 by 12.6% and 6.1%, respectively. Concomitantly, nitrifying enzyme activity decreased by 48.3% under elevated CO2, albeit this change was not significant. There was also a substantial but insignificant decrease in available soil N, with both nitrate (NO3-) (-27.4%) and ammonium (NH4+) (-15.4%) declining. Further, a large number of microbial genes related to carbon (C) degradation were also affected by elevated CO2, whereas those related to C fixation remained largely unchanged. The overall changes in microbial communities and soil N pools induced by long-term elevated CO2 suggest constrained microbial N decomposition, thereby slowing the potential maximum growth rate of the microbial community.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 42 citations 42 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Babar Zahoor; Melissa Songer; Xuehua Liu; Qiongyu Huang; Yunchuan Dai;Global warming due to anthropogenic activities has alarming effects on biodiversity. It could negatively impact the interactions between predators and their prey by shifting or eliminating their suitable habitats. The predator common leopard (Panthera pardus) and two prey species, Himalayan grey goral (Naemorhedus goral) and Himalayan grey langur (Semnopithecus ajax) play important roles in balancing the forest ecosystem in northern Pakistan. The common leopard is listed as a Vulnerable species on the IUCN Red List, while grey goral and grey langur are listed as Near Threatened and Endangered respectively. For this study, we used Maximum Entropy Model (MaxEnt) to model the current (average for 1950–2000) and future (in 2070) suitable habitat for each of these species using three General Circulation Models [GCMs; i.e. Beijing Climate Center Climate System Model (BCC-CSM1–1), Community Climate System Model (CCSM4), and Hadley Global Environment Model 2 (HadGEM2-AO)]. We used two climate change emission scenarios, i.e., a moderate carbon emission scenario (RCP4.5) and an extreme carbon emission scenario (RCP8.5). Our results indicated that an area of 18,360 km2, 34,142 km2 and 10,636 km2 are currently suitable for the common leopard, grey goral, and grey langur, respectively. In the future, common leopard, grey goral and grey langur were predicted to lose over 11%, 43%, and 44% of currently inhabited areas under the most severe climate scenario (RCP8.5), respectively. Overall, 56–89% of the current suitable habitat area was predicted as stable suitable habitat for all the species. The study projected that currently, 14,321 km2 is suitable for both common leopard and grey goral. Whereas, 7096 km2 of current habitat is suitable for both common leopard and grey langur. Overlapping areas were predicted to be reduced in the future (due to fluctuations in temperature and precipitation), ranging from 2% (under RCP8.5) to 8% (under RCP45) for areas suitable for common leopard and grey goral, and from 30% (under RCP4.5) to 47% (under RCP8.5) for areas suitable for common leopard and grey langur, respectively. Most of the overlapping areas that remained suitable were projected between the altitudinal range of 1000 m – 3000 m for common leopard and grey goral, and from 2000 m to 4000 m for common leopard and grey langur. Our results inform management plans and conservation strategies (e.g., establishment of new or improving the status of existing protected areas) for mitigating the impacts of climate change on endangered predator and prey species in the northern Pakistan.
Global Ecology and C... arrow_drop_down Global Ecology and ConservationArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gecco.2023.e02418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Ecology and C... arrow_drop_down Global Ecology and ConservationArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gecco.2023.e02418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report , Research , Preprint , Journal 2018Embargo end date: 10 Jul 2018 Italy, Hungary, Portugal, Germany, Spain, Switzerland, Belgium, United States, Italy, United Kingdom, United States, Germany, United States, United States, Portugal, France, United Kingdom, Italy, Italy, Hungary, Greece, United Kingdom, Brazil, France, United Kingdom, Germany, FrancePublisher:Elsevier BV Publicly fundedFunded by:EC | AMVA4NewPhysics, , GSRIEC| AMVA4NewPhysics ,[no funder available] ,GSRINathan Mirman; Riccardo Paramatti; Annika Vanhoefer; Thomas Ferguson; Thierry Maerschalk; Gregor Mittag; Faridah Mohamad Idris; Cesare Calabria; Sanjay Padhi; Daniele Trocino; Carlos Florez; Michal Olszewski; David Cussans; Luca Pacher; Grant Riley; Marco Alexander Harrendorf; Giacomo Ortona; Georgios Daskalakis; Shuichi Kunori; William John Womersley; Sandra S. Padula; Apichart Hortiangtham; James Rohlf; Heiner Tholen; Konrad Deiters; Vincenzo Daponte; Yacine Haddad; Carlo Battilana; Prakash Thapa; Weimin Wu; Gino Bolla; Alessia Tricomi; Dhanush Anil Hangal; Kirika Uchida; Pierre Piroué; Davide Cieri; Peter Wittich; Federica Primavera; Samuel Bein; Andrey Popov; Andrew Hart; Salvatore Costa; Martino Margoni; Martino Margoni; Markus Spanring; Alice Cocoros; Andreas Kornmayer; Marco Paganoni; Marco Paganoni; Suman Chatterjee; Robert Fischer; Michael Reichmann; Marina Chadeeva; Fábio Lúcio Alves; Jared Turkewitz; Houmani El Mamouni; Johan Borg; Ta-Yung Ling; Thi Hien Doan; Andris Skuja; Amina Zghiche; Shervin Nourbakhsh; Damir Lelas; Fabrizio Margaroli; Kai Yi; Fred-Markus Helmut Stober; Yi-ting Duh; Nathan Kellams; Russell Richard Betts; Johannes Grossmann; Zoltan Laszlo Trocsanyi; Andre Sznajder; Alessio Magitteri; Oliver Buchmuller; Ferdinando Giordano; David Colling; Daniel Robert Marlow; J William Gary; Jan Krolikowski; Souvik Das; Yongbin Feng; Wit Busza; Rachael Bucci; Jack Wright; Georgios Mavromanolakis; Luiz Mundim; Konstantinos Theofilatos; Richard Loveless; Elizabeth Locci; Olga Kodolova; Ferenc Sikler; Cristina Oropeza Barrera; Giancarlo Mantovani; Ada Solano; Nikolay Terentyev; Paul Sheldon; Robert Klanner; Zhoudunming Tu; Paul David Luckey; Mia Tosi; Roumyana Hadjiiska; Mauro Verzetti; Ravi Janjam; Daniele Vadruccio; Aobo Zhang; Pietro Faccioli; Helio Nogima; Peter Thomassen; Ian R Tomalin; Thomas James; Stephan Linn; Martti Raidal; Iurii Antropov; Rino Castaldi; Douglas Berry; Susan Dittmer; Thomas Weiler; Simranjit Singh Chhibra; James Alexander; Andrew Mehta; Yang Yang; Ksenia Shchelina; Igor Bayshev; Alberto Sánchez Hernández; Helena Malbouisson; Rafael Teixeira De Lima; Christian Veelken; Alfredo Castaneda Hernandez; Yuta Takahashi; Steven R. Simon; Simon Kudella; Quan Wang; Armen Tumasyan; Diego Beghin; Diego Ciangottini; Yagya Raj Joshi; Martina Vit; Engin Eren; Livio Fanò; Ajeeta Khatiwada; Frank Hartmann; Tao Huang; David Mark Raymond; Shubham Pandey; Aditee Rane; Frédéric Drouhin; Andreas Hinzmann; C. A. Carrillo Montoya; Joseph Heideman; Ignacio Redondo; Marc M Baarmand; Alexander Zhokin; Clemens Wöhrmann; Adolf Bornheim; Maxwell Chertok; Luca Perrozzi; Gigi Rolandi; Valentin Sulimov; Basil Schneider; Alexander Ershov; Kunal Kothekar; Alessandro Montanari; Thomas Esch; Kelly Beernaert; Emanuele Di Marco; Georgios Anagnostou; Jacopo Pazzini; Sudhir Malik; Yong Ban; Kyungwook Nam; Bruno Galinhas; James D. Olsen; Jamal Rorie; Dominik Nowatschin; Candan Dozen; Marc Osherson; Salvatore My; Harry Cheung; Ioannis Papadopoulos; Salvatore Nuzzo; Hannsjoerg Artur Weber; Christian Barth; Abhigyan Dasgupta; Hui Li; Juan Pablo Fernández Ramos; Andrew Whitbeck; Cédric Prieels; Deborah Pinna; Antonio María Pérez-Calero Yzquierdo; Ivan Marchesini; Gregory R Snow; Mariana Shopova; Dmitry Elumakhov; John N. Wood; Andreas Künsken; Vadim Oreshkin; Manuel Giffels; Andrew Melo; Raman Khurana; Joosep Pata;doi: 10.1016/j.physletb.2018.05.062 , 10.3929/ethz-b-000269943 , 10.5167/uzh-160181 , 10.48550/arxiv.1801.01846 , 10.3204/pubdb-2019-00404 , 10.3204/pubdb-2018-00232 , 10.18154/rwth-2018-227120
arXiv: 1801.01846
A search is presented for new physics in events with two low-momentum, oppositely charged leptons (electrons or muons) and missing transverse momentum in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data collected using the CMS detector at the LHC correspond to an integrated luminosity of 35.9. The observed event yields are consistent with the expectations from the standard model. The results are interpreted in terms of pair production of charginos and neutralinos (X1 and X2) with nearly degenerate masses, as expected in natural supersymmetry models with light higgsinos, as well as in terms of the pair production of top squarks (t), when the lightest neutralino and the top squark have similar masses. At 95% confidence level, wino-like X1/X2 masses are excluded up to 230 GeV for a mass difference of 20 GeV relative to the lightest neutralino. In the higgsino-like model, masses are excluded up to 168 GeV for the same mass difference. For pair production, top squark masses up to 450 GeV are excluded for a mass difference of 40 GeV relative to the lightest neutralino. Physics Letters B, 782 ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445
e-Prints Soton arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/62301Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2018Full-Text: https://arxiv.org/abs/1801.01846Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Rice Research RepositoryArticle . 2018License: CC BYFull-Text: https://hdl.handle.net/1911/103464Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2018License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveArchivio Istituzionale Università di BergamoArticle . 2018Data sources: Archivio Istituzionale Università di BergamoÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2018.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 79 citations 79 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/62301Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2018Full-Text: https://arxiv.org/abs/1801.01846Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Rice Research RepositoryArticle . 2018License: CC BYFull-Text: https://hdl.handle.net/1911/103464Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2018License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveArchivio Istituzionale Università di BergamoArticle . 2018Data sources: Archivio Istituzionale Università di BergamoÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2018.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Research Square Platform LLC Authors: Babar Zahoor; Xuehua Liu; Melissa Songer;pmid: 35297000
Abstract Global temperatures are predicted to rise from between 1.4 to 5.8°C by 21st century, which could result in a 20 to 30% extinction of species. The negative impacts of climate change on the northern highlands of Pakistan (NHP) could change the species composition. Range shifts and range reduction in the forested landscapes will dramatically affect the distribution of forest dwelling species, including the Galliformes (ground birds). Three Galliformes (e.g., Lophophorus impejanus, Pucrasia macrolopha and Tragopan melanocephalus) are indicator species of the environment and currently distributed in NHP. For this study, we used Maximum Entropy Model (MaxEnt) to simulate the current and future (in 2050 and 2070) distributions of the species using three General Circulation Models (GCMs) and two climate change scenarios, i.e., RCP4.5 (moderate carbon emission scenario) and RCP8.5 (peak carbon emission scenario). Our results indicated that (i) all the three species would be negatively affected by the climate change in 2050 and in 2070. (ii) Under all three climate scenarios, species distribution was predicted to both reduce and shift towards higher altitudes. (iii) Across the provinces in the NHP, the species were predicted to lose over one quarter in 2050 and one-third by 2070 of the current suitable habitat. (iv) The maximum area of climate refugia was projected between the altitudinal range of 2000 m to 4000 m and predicted to shift towards higher altitudes primarily >3000 m in the future. The proposed implications such as establishment and upgradation of the protected areas, ban on hunting, timber mafia and temporary settlements of the local people in the forested landscapes should be under special consideration to mitigate the impact of climate change.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-980782/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-980782/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 FrancePublisher:Elsevier BV Authors: Gao, Yan; Roux, J.J.; Zhao, L.H.; Jiang, Yuchao;Abstract Thermal bridges losses represent an increasing part of heat losses owing to significant three-dimensional heat transfer characteristics in modern buildings, but one-dimensional models are used in most simulation software for thermal analyses to simplify the calculations. State model reduction techniques were used to develop low-order three-dimensional heat transfer model for additional losses of thermal bridges, which is efficient and accuracy. Coupling this technique with traditional one-dimensional model for walls losses, it is possible to reduce a large amount of time simulations. Low-order model was validated from frequency response and time-domain output. And the effect of this model was shown with its implementation in software “TRNSYS”.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2008.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2008.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Xiao Zhang; Enshen Long; Zhiyuan Wei; Shurui Guo; Yin Zhang; Yin Zhang;Abstract Variable refrigerant flow (VRF) air conditioning system is widely used in commercial buildings for space cooling and heating. However, some VRF systems used in high-rise buildings cannot work efficiently or even stop working because of the relatively high ambient air temperature, caused by the thermal plume effect of exhaust heat from outdoor units. In this paper, the thermal plume air flow of the layer-based VRF systems is investigated through computational fluids dynamics (CFD) simulation. Moreover, an illustrative example of practical VRF system in a 30-storey office building in Shenzhen is analyzed to optimize the layout of the outdoor units. Preliminary results show that the exhaust heat of outdoor units can cause ascending thermal plume flow, leading to higher inlet temperatures for VRF air conditioners on upper floors, even exceeding the warning upper threshold value. It also indicates that enlarging the distance between outdoor units on different floors is an effective way to impair the thermal plume effect for VRF outdoor units and improve the thermal performance of the whole system. For the studied case, the average inlet temperatures can be decreased by 22% for VRF outdoor units with floor interval. This work can provide guidance for the optimization layout design of practical VRF air conditioning systems used in high-rise buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2017Embargo end date: 01 Jan 2016 Netherlands, France, United KingdomPublisher:Springer Science and Business Media LLC Funded by:MESTD | ATLAS experiment and part..., EC | JETS IN QCD MATTER, UKRI | New Ideas in Gauge, Strin... +5 projectsMESTD| ATLAS experiment and particle physics at the LHC energies ,EC| JETS IN QCD MATTER ,UKRI| New Ideas in Gauge, String and Lattice Theory ,MESTD| Bioinformatic promoter predictions and theoretical modeling of gene circuits in bacteria ,DFG| Isolated quantum systems and universality in extreme conditions (ISOQUANT) ,EC| CMSHInBeauty ,EC| QGPDYN ,NWO| Characterisation of a novel state of matter: The Quark-Gluon PlasmaM. Schmelling; Mikko Laine; Magdalena Djordjevic; R. Granier de Cassagnac; Johanna Stachel; Jörg Aichelin; A. C. Oliveira Da Silva; A. C. Oliveira Da Silva; Enrico Scomparin; A. D. Frawley; H. Dembinski; Chris Allton; Nora Brambilla; Torsten Dahms; Nu Xu; Roberta Arnaldi; Elena G. Ferreiro; P. Zhuang; Marlene Nahrgang; Steffen A. Bass; Alexandre Alarcon Do Passo Suaide; Antonio Uras; P. Braun-Munzinger; Andre Mischke; M. Nguyen; Gert Aarts; Santosh K. Das; L. V. R. van Doremalen; Alessandro Grelli; S. Vigolo; M. Jo; Zhenyu Ye; G. M. Innocenti; Luuk Vermunt; Barbara Antonina Trzeciak; Cristina Bedda; Paulus Gerardus Kuijer; Laura Tolos; Laura Tolos; Elena Bratkovskaya; Alexander Rothkopf; M G Munhoz; Giacomo Bruno; W. A. Horowitz; Pol Bernard Gossiaux; Henrique Jose Correa Zanoli; Henrique Jose Correa Zanoli; Peter Petreczky; Olaf Kaczmarek; Maria Paola Lombardo; Taesoo Song; Min He;La physique ouverte et cachée des saveurs lourdes dans les collisions nucléaires à haute énergie entre dans une nouvelle étape passionnante vers une compréhension plus claire des nouveaux résultats expérimentaux avec la possibilité de les lier directement à l'avancement de la chromodynamique quantique en treillis (QCD). Des résultats récents d'expériences et de développements théoriques concernant la dynamique des saveurs lourdes ouvertes et cachées ont été débattus lors de l'atelier de Lorentz Tomography of the Quark-Gluon Plasma with Heavy Quarks, qui s'est tenu en octobre 2016 à Leiden, aux Pays-Bas. Dans cette contribution, nous résumons les compréhensions communes identifiées et les stratégies développées pour les cinq prochaines années, qui visent à acquérir une connaissance approfondie des propriétés dynamiques du plasma quark-gluon. La física de sabor intenso abierta y oculta en colisiones nucleares de alta energía está entrando en una nueva y emocionante etapa para alcanzar una comprensión más clara de los nuevos resultados experimentales con la posibilidad de vincularlos directamente con el avance en la cromodinámica cuántica reticular (QCD). Los resultados recientes de experimentos y desarrollos teóricos sobre dinámicas abiertas y ocultas de sabor intenso se han debatido en el Lorentz Workshop Tomography of the Quark-Gluon Plasma with Heavy Quarks, que se celebró en octubre de 2016 en Leiden, Países Bajos. En esta contribución, resumimos los entendimientos comunes identificados y las estrategias desarrolladas para los próximos cinco años, que tienen como objetivo lograr un conocimiento profundo de las propiedades dinámicas del plasma de quarks y gluones. Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Recent results from experiments and theoretical developments regarding open and hidden heavy-flavor dynamics have been debated at the Lorentz Workshop Tomography of the Quark-Gluon Plasma with Heavy Quarks, which was held in October 2016 in Leiden, The Netherlands. In this contribution, we summarize identified common understandings and developed strategies for the upcoming five years, which aim at achieving a profound knowledge of the dynamical properties of the quark-gluon plasma. تدخل فيزياء النكهة الثقيلة المفتوحة والمخفية في التصادمات النووية عالية الطاقة مرحلة جديدة ومثيرة نحو الوصول إلى فهم أوضح للنتائج التجريبية الجديدة مع إمكانية ربطها مباشرة بالتقدم في الديناميكيات الكمومية الشبكية (QCD). تمت مناقشة النتائج الأخيرة من التجارب والتطورات النظرية المتعلقة بديناميكيات النكهة الثقيلة المفتوحة والمخفية في ورشة لورنتز للتصوير المقطعي لبلازما كوارك- غلوون مع الكواركات الثقيلة، والتي عقدت في أكتوبر 2016 في ليدن، هولندا. في هذه المساهمة، نلخص التفاهمات المشتركة المحددة والاستراتيجيات المطورة للسنوات الخمس القادمة، والتي تهدف إلى تحقيق معرفة عميقة بالخصائص الديناميكية لبلازما كوارك- غلوون.
The European Physica... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverhttps://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: DataciteThe European Physical Journal AArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epja/i2017-12282-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The European Physica... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverhttps://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: DataciteThe European Physical Journal AArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epja/i2017-12282-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Elsevier BV Cheng, Yuan; Yu, Qinqin; Liu, Jiumeng; Zhu, Shengqiang; Zhang, Mengyuan; Zhang, Hongliang; Zheng, Bo; He, Kebin;pmid: 33280910
Complex air pollutant sources and distinct meteorological conditions resulted in unique wintertime haze pollution in the Harbin-Changchun (HC) metropolitan area, China's only national-level city cluster located in the severe cold climate region. In this study, field observation and air quality modeling were combined to investigate fine particulate matter (PM2.5) pollution during a six-month long heating season in HC's central city (Harbin). The model significantly underpredicted PM2.5 and organic carbon (by up to ∼230 μg/m3 and 110 μgC/m3, respectively, in terms of daily average) when levoglucosan concentrations were above 0.5 μg/m3. Based on a synthesis of levoglucosan concentrations and fire counts, the large gaps were attributed to underestimation of open burning emissions by the model. However, the model tended to overpredict elemental carbon (more significantly at higher NO2), likely pointing to an overestimation of vehicle emissions. With increasing levoglucosan, the difference between observed and simulated nitrate (nitrateobs ‒ nitratemod, i.e., Δnitrate) showed a transition from negative to positive values. The positive Δnitrate were attributed to underprediction of the open-burning related nitrate, whereas the negative Δnitrate were likely caused by overprediction of nitrate from other sources (presumably vehicle emissions). The dependence of Δnitrate on levoglucosan indicated that with stronger impact of open burning, the overprediction effect was gradually offset and finally overwhelmed. Influence of open burning on sulfate formation was evident as well, but less apparent compared to nitrate. This study illustrates how the uncertainties in open burning emissions will influence PM2.5 simulation, on not only primary components but also secondary species.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2020.116167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2020.116167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Wenjuan Li;doi: 10.3390/su13147671
This research particularly aims to investigate how trust and perceived risk influence citizens’ e-government adoption. The findings of the study reveal that citizens’ trust of the government (TOG) and trust of the internet (TOI) positively affect citizens’ e-government adoption (EGA); perceived risk (PR) is negatively associated with citizens’ EGA. Interestingly, this study also demonstrates the negative moderating effect of PR on the relationship between TOG and EGA, TOI and EGA. The results also indicate that performance expectancy (PE), effort expectancy (EE), social influence (SI), and facilitation conditions (FC) influence citizens’ EGA positively. Lastly, implications for practice and research are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13147671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13147671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Nan Li; Wenying Chen; Huan Wang; Jingcheng Shi;Abstract The global energy system will have to face profound transformation in order to realize the 2 degree target. The uncertainty in social and economic development is the one of the most key factors that influences future pathways of energy consumption and carbon emissions. This paper generated energy consumption and carbon emissions scenarios under moderate social economic pathway SSP2 based on a global multi-region energy system model GTIMES, conducted a series of quantitative analysis on different income group regions’ building energy consumption and mitigation potential, and made comparisons between SSP2 scenario and RCP2.6 emission pathways. The energy efficiency and energy structure of building sector in low, medium and high income regions will all experience rapid improvement in next decades, however, the mitigation gap between SSP2 scenario and RCP2.6 pathway will still be huge, so more and stronger mitigation measures are needed to be promoted further.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Yunfu Gu; Yunfu Gu; Nona R. Chiariello; Tong Yuan; Audrey Niboyet; Mengting Yuan; Shikui Dong; Sihang Yang; Qiaoshu Zheng; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Zhou Shi; Jessica L. M. Gutknecht; Xingyu Ma; Kathryn M. Docherty; Christopher B. Field; Bruce A. Hungate; Xavier Le Roux; Yunfeng Yang;pmid: 30586832
The continuously increasing concentration of atmospheric CO2 has considerably altered ecosystem functioning. However, few studies have examined the long-term (i.e. over a decade) effect of elevated CO2 on soil microbial communities. Using 16S rRNA gene amplicons and a GeoChip microarray, we investigated soil microbial communities from a Californian annual grassland after 14 years of experimentally elevated CO2 (275 ppm higher than ambient). Both taxonomic and functional gene compositions of the soil microbial community were modified by elevated CO2. There was decrease in relative abundance for taxa with higher ribosomal RNA operon (rrn) copy number under elevated CO2, which is a functional trait that responds positively to resource availability in culture. In contrast, taxa with lower rrn copy number were increased by elevated CO2. As a consequence, the abundance-weighted average rrn copy number of significantly changed OTUs declined from 2.27 at ambient CO2 to 2.01 at elevated CO2. The nitrogen (N) fixation gene nifH and the ammonium-oxidizing gene amoA significantly decreased under elevated CO2 by 12.6% and 6.1%, respectively. Concomitantly, nitrifying enzyme activity decreased by 48.3% under elevated CO2, albeit this change was not significant. There was also a substantial but insignificant decrease in available soil N, with both nitrate (NO3-) (-27.4%) and ammonium (NH4+) (-15.4%) declining. Further, a large number of microbial genes related to carbon (C) degradation were also affected by elevated CO2, whereas those related to C fixation remained largely unchanged. The overall changes in microbial communities and soil N pools induced by long-term elevated CO2 suggest constrained microbial N decomposition, thereby slowing the potential maximum growth rate of the microbial community.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 42 citations 42 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu