Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
8 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Open Source
  • Embargo
  • 13. Climate action
  • 12. Responsible consumption
  • 11. Sustainability
  • FR

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Saygin, D.;
    Saygin, D.
    ORCID
    Harvested from ORCID Public Data File

    Saygin, D. in OpenAIRE
    orcid Patel, M.K.;
    Patel, M.K.
    ORCID
    Harvested from ORCID Public Data File

    Patel, M.K. in OpenAIRE
    Worrell, E.; Tam, C.; +1 Authors

    The chemical and petrochemical sector is by far the largest industrial energy user, accounting for 30% of the industry's total final energy use. However, due to its complexity its energy efficiency potential is not well understood. This article analyses the energy efficiency potential on a country level if Best Practice Technologies (BPT) were implemented in chemical processes. Two approaches are applied and an improved dataset referring to Europe has been developed for BPT energy use. This methodology has been applied to 66 products in fifteen countries that represent 70% of chemical and petrochemical sector's energy use worldwide. The results suggest a global energy efficiency potential of 16% for this sector, excluding savings in electricity use and by higher levels of process integration, combined heat and power (CHP) and post-consumer plastic waste treatment. The results are more accurate than previous estimates. The results suggest significant differences between countries, but a cross-check based on two different methods shows that important methodological and data issues remain to be resolved. Further refinement is needed for target setting, monitoring and informing energy and climate negotiation processes. For the short and medium term, a combination of benchmarking and country level analysis is recommended.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Energy
    Article . 2011
    addClaim
    82
    citations82
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Energy
      Article . 2011
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Diana Mangalagiu;
    Diana Mangalagiu
    ORCID
    Harvested from ORCID Public Data File

    Diana Mangalagiu in OpenAIRE
    Diana Mangalagiu; Yuge Ma; Thomas F. Thornton; +2 Authors

    Abstract Urban transformation is vital to global sustainable development as humans increasingly come to dwell in cities. Within cities, the mobility sector promises the highest potential of carbon emission reduction. The disruptive business innovation brought about by the advent of app-based smart-sharing systems is emancipating collaborative consumption of mobility at larger and deeper scales, ranging from car-pooling, expanded electric vehicle (EV) use to bike-sharing. Synchronizing the existing yet under-realized low-carbon transport modes in cities, such as public transport, with emerging and diversifying app-based sharing mobility business models, offers huge potential to transform urban mobility toward sustainability. Yet, the rapid business expansion and innovation of the sharing mobility companies have profoundly challenged existing socio-economic relationships, knowledge systems and physical infrastructures in cities. This study explores the synergy between the social-ecological innovation in the sharing economy and the sustainable development of urban systems, using empirical data from three business cases in the emerging sharing mobility sector – in modes of ride-sharing, EV-sharing and bike-sharing - of Shanghai, China. It indicates that there is a strong co-evolution mechanism between the transformation towards more sustainable city at the macro-level and the business ecosystem innovation towards greener and smarter transport at the meso-level. We argue that the two level transformations, triggered by the disruptive innovation of the sharing economy and led by urban transformation towards sustainability, mutually influence each other and re-enforce sustainable values and practices in the fast changing urban context and business innovations in Shanghai.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oxford University Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    117
    citations117
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oxford University Re...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Patrick Rousset;
    Patrick Rousset
    ORCID
    Harvested from ORCID Public Data File

    Patrick Rousset in OpenAIRE
    Mark Daniel G. de Luna; orcid Arjay A. Arpia;
    Arjay A. Arpia
    ORCID
    Harvested from ORCID Public Data File

    Arjay A. Arpia in OpenAIRE
    Arjay A. Arpia; +5 Authors

    Abstract With drastic fossil fuel depletion and environmental deterioration concerns, a move towards a more sustainable bioenergy-based economy is essential. Lately, the application of microwave (MW) irradiation for waste processing has been attracting interest globally. MW-assisted heating possesses several advantages such as the provision of high microwave energy into dielectric materials with deeper penetration for internal heat generation, showing beneficial features in improving the heating rate and reducing the reaction time. Consequently, the most recent literature regarding the applications of MW-assisted heating for biomass pretreatment as well as biofuel and bioenergy production was reviewed and consolidated in this study. An impressive increase in the product yield and improvement of the product properties are reported, with the use of MW-assisted heating in several conversion routes to produce biofuels. Despite being a promising technology for biofuel production, some major fundamental data of MW-assisted heating have not been comprehensively identified. Therefore, the feasibility of this technology for large-scale implementation is still subpar. Understanding the interaction between the feedstock and the microwave electromagnetic field, and the optimization of several operational and mechanical parameters are the two main keystones that would propel the industrialization of MW heating in the near future. This provides key insights leading to increased feasibility and more advanced application of MW heating.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agritroparrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agritrop
    Article . 2021
    Data sources: Agritrop
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Chemical Engineering Journal
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    270
    citations270
    popularityTop 0.1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agritroparrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agritrop
      Article . 2021
      Data sources: Agritrop
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Chemical Engineering Journal
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Harris, Itamar; orcid Ortega Del Rosario, Maria De Los Á.;
    Ortega Del Rosario, Maria De Los Á.
    ORCID
    Harvested from ORCID Public Data File

    Ortega Del Rosario, Maria De Los Á. in OpenAIRE
    orcid James Rivas, Arthur;
    James Rivas, Arthur
    ORCID
    Harvested from ORCID Public Data File

    James Rivas, Arthur in OpenAIRE
    Bruneau, Denis;

    Phase change materials (PCM) are materials with the ability to store a large amount of energy (latent heat) during their change from solid to a liquid phase. This takes place at a certain melting temperature. Amid the global energy crisis, multiple applications of these materials have been studied at the theoretical, numerical and experimental approach, obtaining promising results in terms of an increase in the efficiency of these systems. However, the application of these materials is being studied since there are no rules or predictions of the feasibility of its application in diverse weather conditions. The tropical climate condition is one of the least studied in this context. In this work, a review of the main findings of recent studies conducted in tropical climate conditions is presented. Additionally, an analysis of the main challenges and opportunities of the application of PCM in the climate of Panama is performed. It was concluded that some applications in passive cooling and solar water heating systems might have the potential for their implementation. However, further studies are required to take into account other applications.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UTP-RIDDA2arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    UTP-RIDDA2
    Article . 2016
    Data sources: UTP-RIDDA2
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/iestec...
    Conference object . 2019 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    2
    citations2
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UTP-RIDDA2arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      UTP-RIDDA2
      Article . 2016
      Data sources: UTP-RIDDA2
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/iestec...
      Conference object . 2019 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Henri Berestycki;
    Henri Berestycki
    ORCID
    Harvested from ORCID Public Data File

    Henri Berestycki in OpenAIRE
    Laurent Desvillettes; orcid Odo Diekmann;
    Odo Diekmann
    ORCID
    Harvested from ORCID Public Data File

    Odo Diekmann in OpenAIRE

    Consider a situation where spatial heterogeneity leads to a cline, a gradual transition in dominance of two competing species. We first prove, in the context of a simplified competition–diffusion model, that there exists a stationary solution showing that the two species coexist in a transition zone. What happens then if, owing to climate change, the environmental profile moves with constant speed in space? We show here that, when the speed with which the environmental condition shifts exceeds the Fisher invasion speed of the advancing species, an expanding gap will form. We raise the question of whether such a phenomenon has been or can be observed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Complexity
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    47
    citations47
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Complexity
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Paola De Bernardi;
    Paola De Bernardi
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Paola De Bernardi in OpenAIRE
    orcid bw Alberto Bertello;
    Alberto Bertello
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Alberto Bertello in OpenAIRE
    orcid bw Francesco Venuti;
    Francesco Venuti
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Francesco Venuti in OpenAIRE
    orcid Alessandro Zardini;
    Alessandro Zardini
    ORCID
    Harvested from ORCID Public Data File

    Alessandro Zardini in OpenAIRE

    Alternative Food Networks (AFNs) are challenging the traditional food system by leveraging concepts such as self-organisation and self-management aiming to shorten the food supply chain and give cu...

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS - Università de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Knowledge Management Research & Practice
    Article . 2019 . Peer-reviewed
    Data sources: Crossref
    addClaim
    24
    citations24
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Stef Haesen;
    Stef Haesen
    ORCID
    Harvested from ORCID Public Data File

    Stef Haesen in OpenAIRE
    orcid Jonathan Lenoir;
    Jonathan Lenoir
    ORCID
    Harvested from ORCID Public Data File

    Jonathan Lenoir in OpenAIRE
    orcid Eva Gril;
    Eva Gril
    ORCID
    Harvested from ORCID Public Data File

    Eva Gril in OpenAIRE
    orcid bw Pieter De Frenne;
    Pieter De Frenne
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Pieter De Frenne in OpenAIRE
    +6 Authors

    AbstractSpecies distributions are conventionally modelled using coarse‐grained macroclimate data measured in open areas, potentially leading to biased predictions since most terrestrial species reside in the shade of trees. For forest plant species across Europe, we compared conventional macroclimate‐based species distribution models (SDMs) with models corrected for forest microclimate buffering. We show that microclimate‐based SDMs at high spatial resolution outperformed models using macroclimate and microclimate data at coarser resolution. Additionally, macroclimate‐based models introduced a systematic bias in modelled species response curves, which could result in erroneous range shift predictions. Critically important for conservation science, these models were unable to identify warm and cold refugia at the range edges of species distributions. Our study emphasizes the crucial role of microclimate data when SDMs are used to gain insights into biodiversity conservation in the face of climate change, particularly given the growing policy and management focus on the conservation of refugia worldwide.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Institutional Reposi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecology Letters
    Article . 2023 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    Ecology Letters
    Article . 2023
    addClaim
    34
    citations34
    popularityTop 10%
    influenceAverage
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Institutional Reposi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecology Letters
      Article . 2023 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      Ecology Letters
      Article . 2023
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ekhtiari, Sadaf;

    This thesis investigates the agricultural greenhouse sector in a cold climate, which requires a large amount of natural gas for supplying the substantial heating demands. The heating demand of these structures is calculated, and potential sustainable design methods are implemented to reduce the reliance on carbon-based fuels. Assessment of the environmental impacts of a bell pepper greenhouse in Southwestern Ontario, Canada heated by natural gas was studied. A life cycle assessment (LCA) method is employed to scrutinize the bell pepper greenhouse, pinpointing areas that need improvement. It was concluded that Global Warming (GW) is the significant environmental hazard among other environmental categories (3.87e-2 kg ??2-Eq). It should be noted, the main contributor to global warming is the natural gas being used as the heating resource (3.2e-2 kg ??2-Eq). The analysis is extended to explore the deployment of solar energy as an alternative source for heating. Solar energy is found to be a superior alternative in terms of emissions. Furthermore, in order to integrate solar energy into the energy supplying systems of the greenhouses, a hybrid Solar Thermal/Photovoltaic-Battery Energy Storage (ST/PV-BES) system is modeled. Evaluation of the best configuration of photovoltaic (PV) and solar thermal (ST) modules, and battery energy storage (BES) size to have the minimum Levelized Cost of Energy (LCOE) was conducted. It is proved that the system is economically optimized. Moreover, to improve operational efficiency and reduce the energy demand of commercial greenhouses, parametric optimization of major growing environment variables including cladding material and window to wall ratio as well as the characteristics of the solar thermal model elements such as hot water tank capacity and heat exchanger effectiveness was carried out. It is demonstrated that the best greenhouse configuration which is a system with 80% window area and 20% brick wall area in both lower nodes and upper nodes results in heating and cooling demand energy reduction without significantly compromising the solar energy absorption. This scenario leads to increasing system performance from 36% to 39%. It is also concluded that doubling the tank capacity improves system performance from 36% to 43% and changing the heat exchanger effectiveness has minor impacts on the system performance.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Scholarship at UWind...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Scholarship at UWindsor
    Master thesis . 2021
    License: CC BY NC ND
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Scholarship at UWind...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Scholarship at UWindsor
      Master thesis . 2021
      License: CC BY NC ND
      addClaim
Powered by OpenAIRE graph