- home
- Advanced Search
- Energy Research
- 2025-2025
- 7. Clean energy
- 13. Climate action
- DE
- GB
- AT
- Energy Research
- 2025-2025
- 7. Clean energy
- 13. Climate action
- DE
- GB
- AT
description Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object , Article 2025 GermanyPublisher:Springer Nature Switzerland Authors:Heinz, Daniel;
Hu, Mingli; Benz, Carina; Satzger, Gerhard;Heinz, Daniel
Heinz, Daniel in OpenAIRECreating and delivering products and services that promote sustainability is increasingly important in today’s economy. Novel services based on digital technologies and infrastructure can significantly contribute to sustainable development, as demonstrated by digitally enabled car-sharing services where increased asset utilization reduces production-related greenhouse gas emissions. However, there is still limited knowledge on how digital service innovation can purposefully be applied to promote sustainability. To address this gap, we conduct a systematic literature review and perform a qualitative inductive analysis of 50 articles on the impact of digital service innovation on social, environmental, and economic sustainability. We provide a comprehensive overview of real-world applications and identify five underlying mechanisms through which innovation with digital services can drive sustainable development. In doing so, we aim to pave the way to purposefully conceive, design, and implement digital services for sustainability.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-80125-9_10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-80125-9_10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object , Article 2025 GermanyPublisher:Springer Nature Switzerland Authors:Heinz, Daniel;
Hu, Mingli; Benz, Carina; Satzger, Gerhard;Heinz, Daniel
Heinz, Daniel in OpenAIRECreating and delivering products and services that promote sustainability is increasingly important in today’s economy. Novel services based on digital technologies and infrastructure can significantly contribute to sustainable development, as demonstrated by digitally enabled car-sharing services where increased asset utilization reduces production-related greenhouse gas emissions. However, there is still limited knowledge on how digital service innovation can purposefully be applied to promote sustainability. To address this gap, we conduct a systematic literature review and perform a qualitative inductive analysis of 50 articles on the impact of digital service innovation on social, environmental, and economic sustainability. We provide a comprehensive overview of real-world applications and identify five underlying mechanisms through which innovation with digital services can drive sustainable development. In doing so, we aim to pave the way to purposefully conceive, design, and implement digital services for sustainability.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-80125-9_10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-80125-9_10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2021Publisher:Springer Science and Business Media LLC Funded by:UKRI | The Alan Turing Institute...UKRI| The Alan Turing Institute 21/22 - Additional FundingAbstract Future “net-zero” electricity systems in which all or most generation is renewable may require very high volumes of storage in order to manage the associated variability in the generation-demand balance. The physical and economic characteristics of storage technologies are such that a mixture of technologies is likely to be required. This poses nontrivial problems in storage dimensioning and in real-time management. We develop the mathematics of optimal scheduling for system adequacy, and show that, to a good approximation, the problem to be solved at each successive point in time reduces to a linear programme with a particularly simple solution. We argue that approximately optimal scheduling may be achieved without the need for a running forecast of the future generation-demand balance. We consider an extended application to GB storage needs, where savings of tens of billions of pounds may be achieved, relative to the use of a single technology, and explain why similar savings may be expected elsewhere.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12667-025-00734-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12667-025-00734-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2021Publisher:Springer Science and Business Media LLC Funded by:UKRI | The Alan Turing Institute...UKRI| The Alan Turing Institute 21/22 - Additional FundingAbstract Future “net-zero” electricity systems in which all or most generation is renewable may require very high volumes of storage in order to manage the associated variability in the generation-demand balance. The physical and economic characteristics of storage technologies are such that a mixture of technologies is likely to be required. This poses nontrivial problems in storage dimensioning and in real-time management. We develop the mathematics of optimal scheduling for system adequacy, and show that, to a good approximation, the problem to be solved at each successive point in time reduces to a linear programme with a particularly simple solution. We argue that approximately optimal scheduling may be achieved without the need for a running forecast of the future generation-demand balance. We consider an extended application to GB storage needs, where savings of tens of billions of pounds may be achieved, relative to the use of a single technology, and explain why similar savings may be expected elsewhere.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12667-025-00734-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12667-025-00734-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2025Publisher:Zenodo Hörsch, Jonas; Hofmann, Fabian; Schlachtberger, David; Glaum, Philipp;Neumann, Fabian;
Brown, Tom; Riepin, Iegor; Xiong, Bobby; Schledorn, Amos;Neumann, Fabian
Neumann, Fabian in OpenAIREPyPSA-Eur is an open model dataset of the European power system at the transmission network level that covers the full ENTSO-E area. It can be built using the code provided at https://github.com/PyPSA/PyPSA-eur. It contains alternating current lines at and above 220 kV voltage level and all high voltage direct current lines, substations, an open database of conventional power plants, time series for electrical demand and variable renewable generator availability, and geographic potentials for the expansion of wind and solar power. Not all data dependencies are shipped with the code repository, since git is not suited for handling large changing files. Instead we provide separate data bundles to be downloaded and extracted as noted in the documentation. This is the full data bundle to be used for rigorous research. It includes large bathymetry and natural protection area datasets. While the code in PyPSA-Eur is released as free software under the MIT, different licenses and terms of use apply to the various input data, which are summarised below: corine/* CORINE Land Cover (CLC) database Source: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012/ Terms of Use: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012?tab=metadata natura/* Natura 2000 natural protection areas Source: https://www.eea.europa.eu/data-and-maps/data/natura-10 Terms of Use: https://www.eea.europa.eu/data-and-maps/data/natura-10#tab-metadata gebco/GEBCO_2014_2D.nc GEBCO bathymetric dataset Source: https://www.gebco.net/data_and_products/gridded_bathymetry_data/version_20141103/ Terms of Use: https://www.gebco.net/data_and_products/gridded_bathymetry_data/documents/gebco_2014_historic.pdf je-e-21.03.02.xls Population and GDP data for Swiss Cantons Source: https://www.bfs.admin.ch/bfs/en/home/news/whats-new.assetdetail.7786557.html Terms of Use: https://www.bfs.admin.ch/bfs/en/home/fso/swiss-federal-statistical-office/terms-of-use.html https://www.bfs.admin.ch/bfs/de/home/bfs/oeffentliche-statistik/copyright.html nama_10r_3popgdp.tsv.gz Population by NUTS3 region Source: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_10r_3popgdp&lang=en Terms of Use: https://ec.europa.eu/eurostat/about/policies/copyright GDP_per_capita_PPP_1990_2015_v2.nc Gross Domestic Product per capita (PPP) from years 1999 to 2015 Rectangular cutout for European countries in PyPSA-Eur, including a 10 km buffer Kummu et al. "Data from: Gridded global datasets for Gross Domestic Product and Human Development Index over 1990-2015" Source: https://doi.org/10.1038/sdata.2018.4 and associated dataset https://doi.org/10.1038/sdata.2018.4 ppp_2019_1km_Aggregated.tif The spatial distribution of population in 2020: Estimated total number of people per grid-cell. The dataset is available to download in Geotiff format at a resolution of 30 arc (approximately 1km at the equator). The projection is Geographic Coordinate System, WGS84. The units are number of people per pixel. The mapping approach is Random Forest-based dasymetric redistribution. Rectangular cutout for non-NUTS3 countries in PyPSA-Eur, i.e. MD and UA, including a 10 km buffer WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00647 Source: https://data.humdata.org/dataset/worldpop-population-counts-for-world and https://hub.worldpop.org/geodata/summary?id=24777 License: Creative Commons Attribution 4.0 International Licens data/bundle/era5-HDD-per-country.csv - Link: https://gist.github.com/fneum/d99e24e19da423038fd55fe3a4ddf875- License: CC-BY 4.0- Contains country-level heating degree days in Europe for 1941-2023. Used for rescaling heat demand in weather years not covered by energy balance statistics. data/bundle/era5-runoff-per-country.csv - Link: https://gist.github.com/fneum/d99e24e19da423038fd55fe3a4ddf875- License: CC-BY 4.0- Contains country-level daily sum of runoff in Europe for 1941-2023. Used for rescaling hydro-electricity availability in weather years not covered by EIA hydro-generation statistics. shipdensity_global.zip Global Shipping Traffic Density Creative Commons Attribution 4.0 https://datacatalog.worldbank.org/search/dataset/0037580/Global-Shipping-Traffic-Density seawater_temperature.nc Global Ocean Physics Reanalysis Link: https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_PHY_001_030/services License: https://marine.copernicus.eu/user-corner/service-commitments-and-licence
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15152739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15152739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2025Publisher:Zenodo Hörsch, Jonas; Hofmann, Fabian; Schlachtberger, David; Glaum, Philipp;Neumann, Fabian;
Brown, Tom; Riepin, Iegor; Xiong, Bobby; Schledorn, Amos;Neumann, Fabian
Neumann, Fabian in OpenAIREPyPSA-Eur is an open model dataset of the European power system at the transmission network level that covers the full ENTSO-E area. It can be built using the code provided at https://github.com/PyPSA/PyPSA-eur. It contains alternating current lines at and above 220 kV voltage level and all high voltage direct current lines, substations, an open database of conventional power plants, time series for electrical demand and variable renewable generator availability, and geographic potentials for the expansion of wind and solar power. Not all data dependencies are shipped with the code repository, since git is not suited for handling large changing files. Instead we provide separate data bundles to be downloaded and extracted as noted in the documentation. This is the full data bundle to be used for rigorous research. It includes large bathymetry and natural protection area datasets. While the code in PyPSA-Eur is released as free software under the MIT, different licenses and terms of use apply to the various input data, which are summarised below: corine/* CORINE Land Cover (CLC) database Source: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012/ Terms of Use: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012?tab=metadata natura/* Natura 2000 natural protection areas Source: https://www.eea.europa.eu/data-and-maps/data/natura-10 Terms of Use: https://www.eea.europa.eu/data-and-maps/data/natura-10#tab-metadata gebco/GEBCO_2014_2D.nc GEBCO bathymetric dataset Source: https://www.gebco.net/data_and_products/gridded_bathymetry_data/version_20141103/ Terms of Use: https://www.gebco.net/data_and_products/gridded_bathymetry_data/documents/gebco_2014_historic.pdf je-e-21.03.02.xls Population and GDP data for Swiss Cantons Source: https://www.bfs.admin.ch/bfs/en/home/news/whats-new.assetdetail.7786557.html Terms of Use: https://www.bfs.admin.ch/bfs/en/home/fso/swiss-federal-statistical-office/terms-of-use.html https://www.bfs.admin.ch/bfs/de/home/bfs/oeffentliche-statistik/copyright.html nama_10r_3popgdp.tsv.gz Population by NUTS3 region Source: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_10r_3popgdp&lang=en Terms of Use: https://ec.europa.eu/eurostat/about/policies/copyright GDP_per_capita_PPP_1990_2015_v2.nc Gross Domestic Product per capita (PPP) from years 1999 to 2015 Rectangular cutout for European countries in PyPSA-Eur, including a 10 km buffer Kummu et al. "Data from: Gridded global datasets for Gross Domestic Product and Human Development Index over 1990-2015" Source: https://doi.org/10.1038/sdata.2018.4 and associated dataset https://doi.org/10.1038/sdata.2018.4 ppp_2019_1km_Aggregated.tif The spatial distribution of population in 2020: Estimated total number of people per grid-cell. The dataset is available to download in Geotiff format at a resolution of 30 arc (approximately 1km at the equator). The projection is Geographic Coordinate System, WGS84. The units are number of people per pixel. The mapping approach is Random Forest-based dasymetric redistribution. Rectangular cutout for non-NUTS3 countries in PyPSA-Eur, i.e. MD and UA, including a 10 km buffer WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00647 Source: https://data.humdata.org/dataset/worldpop-population-counts-for-world and https://hub.worldpop.org/geodata/summary?id=24777 License: Creative Commons Attribution 4.0 International Licens data/bundle/era5-HDD-per-country.csv - Link: https://gist.github.com/fneum/d99e24e19da423038fd55fe3a4ddf875- License: CC-BY 4.0- Contains country-level heating degree days in Europe for 1941-2023. Used for rescaling heat demand in weather years not covered by energy balance statistics. data/bundle/era5-runoff-per-country.csv - Link: https://gist.github.com/fneum/d99e24e19da423038fd55fe3a4ddf875- License: CC-BY 4.0- Contains country-level daily sum of runoff in Europe for 1941-2023. Used for rescaling hydro-electricity availability in weather years not covered by EIA hydro-generation statistics. shipdensity_global.zip Global Shipping Traffic Density Creative Commons Attribution 4.0 https://datacatalog.worldbank.org/search/dataset/0037580/Global-Shipping-Traffic-Density seawater_temperature.nc Global Ocean Physics Reanalysis Link: https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_PHY_001_030/services License: https://marine.copernicus.eu/user-corner/service-commitments-and-licence
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15152739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15152739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Conference object , Other literature type 2025Publisher:Copernicus GmbH The analysis of global catastrophic events often occurs in isolation, simplifying their study. In reality, risks cascade and interact. Therefore, it is essential to consider the interconnected nature of global risks. This investigation explores the interplay between nuclear winter and planetary boundaries. It may seem reasonable to assume that respecting planetary boundaries, which define a safe operating space for the planet, is preferable before a nuclear war. However, that does not always seem to be the case. For instance, increased nitrogen emissions today could serve as a nutrient buffer during nuclear winter. Contrastingly, mitigating climate change, means an even larger temperature drop in nuclear winter in comparison with pre-industrial times. This exploratory study also highlights planetary boundaries that could enhance human survival if we adhere to their limits, both presently and after a nuclear war. The best example being biosphere integrity, as conserving it has no direct downsides and would make the Earth system more resilient to resist the shock of a nuclear winter.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu24-2773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 19visibility views 19 download downloads 14 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu24-2773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Conference object , Other literature type 2025Publisher:Copernicus GmbH The analysis of global catastrophic events often occurs in isolation, simplifying their study. In reality, risks cascade and interact. Therefore, it is essential to consider the interconnected nature of global risks. This investigation explores the interplay between nuclear winter and planetary boundaries. It may seem reasonable to assume that respecting planetary boundaries, which define a safe operating space for the planet, is preferable before a nuclear war. However, that does not always seem to be the case. For instance, increased nitrogen emissions today could serve as a nutrient buffer during nuclear winter. Contrastingly, mitigating climate change, means an even larger temperature drop in nuclear winter in comparison with pre-industrial times. This exploratory study also highlights planetary boundaries that could enhance human survival if we adhere to their limits, both presently and after a nuclear war. The best example being biosphere integrity, as conserving it has no direct downsides and would make the Earth system more resilient to resist the shock of a nuclear winter.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu24-2773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 19visibility views 19 download downloads 14 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu24-2773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Elsevier BV Publicly fundedCuartas, J;
Bhatia, A; Carter, D; Cluver, L; Coll, C; Donger, E; Draper, CE; Gardner, F; Herbert, B;Cuartas, J
Cuartas, J in OpenAIREKelly, O;
Kelly, O
Kelly, O in OpenAIRELachman, J;
M'jid, NM; Seidel, F;Lachman, J
Lachman, J in OpenAIREpmid: 37648573
The climate crisis is the biggest threat to the health, development, and wellbeing of the current and future generations. While there is extensive evidence on the direct impacts of climate change on human livelihood, there is little evidence on how children and young people are affected, and even less discussion and evidence on how the climate crisis could affect violence against children.In this commentary, we review selected research to assess the links between the climate crisis and violence against children.We employ a social-ecological perspective as an overarching framework to organize findings from the literature and call attention to increased violence against children as a specific, yet under-examined, direct and indirect consequence of the climate crisis.Using such a perspective, we examine how the climate crisis exacerbates the risk of violence against children at the continually intersecting and interacting levels of society, community, family, and the individual levels. We propose increased risk of armed conflict, forced displacement, poverty, income inequality, disruptions in critical health and social services, and mental health problems as key mechanisms linking the climate crisis and heightened risk of violence against children. Furthermore, we posit that the climate crisis serves as a threat multiplier, compounding existing vulnerabilities and inequities within populations and having harsher consequences in settings, communities, households, and for children already experiencing adversities.We conclude with a call for urgent efforts from researchers, practitioners, and policymakers to further investigate the specific empirical links between the climate crisis and violence against children and to design, test, implement, fund, and scale evidence-based, rights-based, and child friendly prevention, support, and response strategies to address violence against children.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Elsevier BV Publicly fundedCuartas, J;
Bhatia, A; Carter, D; Cluver, L; Coll, C; Donger, E; Draper, CE; Gardner, F; Herbert, B;Cuartas, J
Cuartas, J in OpenAIREKelly, O;
Kelly, O
Kelly, O in OpenAIRELachman, J;
M'jid, NM; Seidel, F;Lachman, J
Lachman, J in OpenAIREpmid: 37648573
The climate crisis is the biggest threat to the health, development, and wellbeing of the current and future generations. While there is extensive evidence on the direct impacts of climate change on human livelihood, there is little evidence on how children and young people are affected, and even less discussion and evidence on how the climate crisis could affect violence against children.In this commentary, we review selected research to assess the links between the climate crisis and violence against children.We employ a social-ecological perspective as an overarching framework to organize findings from the literature and call attention to increased violence against children as a specific, yet under-examined, direct and indirect consequence of the climate crisis.Using such a perspective, we examine how the climate crisis exacerbates the risk of violence against children at the continually intersecting and interacting levels of society, community, family, and the individual levels. We propose increased risk of armed conflict, forced displacement, poverty, income inequality, disruptions in critical health and social services, and mental health problems as key mechanisms linking the climate crisis and heightened risk of violence against children. Furthermore, we posit that the climate crisis serves as a threat multiplier, compounding existing vulnerabilities and inequities within populations and having harsher consequences in settings, communities, households, and for children already experiencing adversities.We conclude with a call for urgent efforts from researchers, practitioners, and policymakers to further investigate the specific empirical links between the climate crisis and violence against children and to design, test, implement, fund, and scale evidence-based, rights-based, and child friendly prevention, support, and response strategies to address violence against children.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Yanbu Industrial College Authors: Syed Yousufuddin; Naseeb Khan; Muhammad Saleem;doi: 10.53370/001c.36132
With the advent of employing bio-fuels along with the diesel in compression ignition engines the study of performance and emission characteristics have occupied the prominence, owing to diversified multi responses. As the limited information is available about the application of Taguchi based GTMA process to maximize the overall performance and emission characteristics of diesel engine, in the present work the investigation was carried out to maximize the overall utility by employing the Taguchi based GTMA process. By following the user preference rating, weights for the response characteristics namely brake thermal efficiency, brake specific fuel consumption, carbon monoxide and oxides of nitrogen were calculated using graph theory and matrix approach (GTMA). The parameter hydrogen induction played a major role to an extent of 78.62% while Injection opening pressure playing a minor role with a contribution of 7.06%. The optimal parameters condition was at mid-level of the governing parameters namely IOP, CR and volume of hydrogen inducted. The predicted results were within 95% of confidence interval of the optimal values. Therefore, the hydrogen inductance into the cylinder not only improving the performance but also minimizing the emission characteristics.
Yanbu Journal of Eng... arrow_drop_down Yanbu Journal of Engineering and ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53370/001c.36132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Yanbu Journal of Eng... arrow_drop_down Yanbu Journal of Engineering and ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53370/001c.36132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Yanbu Industrial College Authors: Syed Yousufuddin; Naseeb Khan; Muhammad Saleem;doi: 10.53370/001c.36132
With the advent of employing bio-fuels along with the diesel in compression ignition engines the study of performance and emission characteristics have occupied the prominence, owing to diversified multi responses. As the limited information is available about the application of Taguchi based GTMA process to maximize the overall performance and emission characteristics of diesel engine, in the present work the investigation was carried out to maximize the overall utility by employing the Taguchi based GTMA process. By following the user preference rating, weights for the response characteristics namely brake thermal efficiency, brake specific fuel consumption, carbon monoxide and oxides of nitrogen were calculated using graph theory and matrix approach (GTMA). The parameter hydrogen induction played a major role to an extent of 78.62% while Injection opening pressure playing a minor role with a contribution of 7.06%. The optimal parameters condition was at mid-level of the governing parameters namely IOP, CR and volume of hydrogen inducted. The predicted results were within 95% of confidence interval of the optimal values. Therefore, the hydrogen inductance into the cylinder not only improving the performance but also minimizing the emission characteristics.
Yanbu Journal of Eng... arrow_drop_down Yanbu Journal of Engineering and ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53370/001c.36132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Yanbu Journal of Eng... arrow_drop_down Yanbu Journal of Engineering and ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53370/001c.36132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Cunzhi Zhao;
Cunzhi Zhao
Cunzhi Zhao in OpenAIREXingpeng Li;
Xingpeng Li
Xingpeng Li in OpenAIREBatteries can effectively improve the security of energy systems and mitigate climate change by facilitating wind and solar power. The installed capacity of battery energy storage system (BESS), mainly the lithium ion batteries are increasing significantly in recent years. However, the battery degradation cannot be accurately quantified and integrated into energy management system with existing heuristic battery degradation models. This paper proposed a hierarchical deep learning based battery degradation quantification (HDL-BDQ) model to quantify the battery degradation given scheduled BESS daily operations. Particularly, two sequential and cohesive deep neural networks are proposed to accurately estimate the degree of degradation using inputs of battery operational profiles and it can significantly outperform existing fixed or linear rate based degradation models as well as single-stage deep neural models. Training results show the high accuracy of the proposed system. Moreover, a learning and optimization decoupled algorithm is implemented to strategically take advantage of the proposed HDL-BDQ model in optimization-based look-ahead scheduling (LAS) problems. Case studies demonstrate the effectiveness of the proposed HDL-BDQ model in LAS of a microgrid testbed. 12 pages
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3475221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3475221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Cunzhi Zhao;
Cunzhi Zhao
Cunzhi Zhao in OpenAIREXingpeng Li;
Xingpeng Li
Xingpeng Li in OpenAIREBatteries can effectively improve the security of energy systems and mitigate climate change by facilitating wind and solar power. The installed capacity of battery energy storage system (BESS), mainly the lithium ion batteries are increasing significantly in recent years. However, the battery degradation cannot be accurately quantified and integrated into energy management system with existing heuristic battery degradation models. This paper proposed a hierarchical deep learning based battery degradation quantification (HDL-BDQ) model to quantify the battery degradation given scheduled BESS daily operations. Particularly, two sequential and cohesive deep neural networks are proposed to accurately estimate the degree of degradation using inputs of battery operational profiles and it can significantly outperform existing fixed or linear rate based degradation models as well as single-stage deep neural models. Training results show the high accuracy of the proposed system. Moreover, a learning and optimization decoupled algorithm is implemented to strategically take advantage of the proposed HDL-BDQ model in optimization-based look-ahead scheduling (LAS) problems. Case studies demonstrate the effectiveness of the proposed HDL-BDQ model in LAS of a microgrid testbed. 12 pages
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3475221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3475221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type 2025Embargo end date: 01 Jan 2023Publisher:American Physical Society (APS) Funded by:EC | ASPECTSEC| ASPECTSAuthors:Florian Meier;
Florian Meier
Florian Meier in OpenAIREHayata Yamasaki;
Hayata Yamasaki
Hayata Yamasaki in OpenAIREEnergy consumption in solving computational problems has been gaining growing attention as one of the key performance measures for computers. Quantum computation offers advantages over classical computation in terms of various computational resources; however, proving its energy-consumption advantage has been challenging due to the lack of a theoretical foundation linking the physical concept of energy with the computer-scientific notion of complexity for quantum computation. To bridge this gap, we introduce a general framework for studying the energy consumption of quantum and classical computation, based on a computational model conventionally used for studying query complexity in computational complexity theory. Within this framework, we derive an upper bound for the achievable energy consumption of quantum computation, accounting for imperfections in implementation appearing in practice. As part of this analysis, we construct a protocol for Landauer erasure with finite precision in a finite number of steps, which constitutes a contribution of independent interest. Additionally, we develop techniques for proving a nonzero lower bound of energy consumption of classical computation, based on the energy-conservation law and Landauer’s principle. Using these general bounds, we rigorously prove that quantum computation achieves an exponential energy-consumption advantage over classical computation for solving a paradigmatic computational problem—Simon’s problem. Furthermore, we propose explicit criteria for experimentally demonstrating this energy-consumption advantage of quantum computation, analogous to the experimental demonstrations of quantum computational supremacy. These results establish a foundational framework and techniques to explore the energy consumption of computation, opening an alternative way to study the advantages of quantum computation. Published by the American Physical Society 2025
PRX Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Datacitehttp://dx.doi.org/10.48550/arx...Other literature type . 2023Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/prxenergy.4.023008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PRX Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Datacitehttp://dx.doi.org/10.48550/arx...Other literature type . 2023Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/prxenergy.4.023008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type 2025Embargo end date: 01 Jan 2023Publisher:American Physical Society (APS) Funded by:EC | ASPECTSEC| ASPECTSAuthors:Florian Meier;
Florian Meier
Florian Meier in OpenAIREHayata Yamasaki;
Hayata Yamasaki
Hayata Yamasaki in OpenAIREEnergy consumption in solving computational problems has been gaining growing attention as one of the key performance measures for computers. Quantum computation offers advantages over classical computation in terms of various computational resources; however, proving its energy-consumption advantage has been challenging due to the lack of a theoretical foundation linking the physical concept of energy with the computer-scientific notion of complexity for quantum computation. To bridge this gap, we introduce a general framework for studying the energy consumption of quantum and classical computation, based on a computational model conventionally used for studying query complexity in computational complexity theory. Within this framework, we derive an upper bound for the achievable energy consumption of quantum computation, accounting for imperfections in implementation appearing in practice. As part of this analysis, we construct a protocol for Landauer erasure with finite precision in a finite number of steps, which constitutes a contribution of independent interest. Additionally, we develop techniques for proving a nonzero lower bound of energy consumption of classical computation, based on the energy-conservation law and Landauer’s principle. Using these general bounds, we rigorously prove that quantum computation achieves an exponential energy-consumption advantage over classical computation for solving a paradigmatic computational problem—Simon’s problem. Furthermore, we propose explicit criteria for experimentally demonstrating this energy-consumption advantage of quantum computation, analogous to the experimental demonstrations of quantum computational supremacy. These results establish a foundational framework and techniques to explore the energy consumption of computation, opening an alternative way to study the advantages of quantum computation. Published by the American Physical Society 2025
PRX Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Datacitehttp://dx.doi.org/10.48550/arx...Other literature type . 2023Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/prxenergy.4.023008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PRX Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Datacitehttp://dx.doi.org/10.48550/arx...Other literature type . 2023Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/prxenergy.4.023008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Christoph Bergmeir;
Frits de Nijs;Christoph Bergmeir
Christoph Bergmeir in OpenAIREEvgenii Genov;
Abishek Sriramulu; +24 AuthorsEvgenii Genov
Evgenii Genov in OpenAIREChristoph Bergmeir;
Frits de Nijs;Christoph Bergmeir
Christoph Bergmeir in OpenAIREEvgenii Genov;
Abishek Sriramulu; Mahdi Abolghasemi;Evgenii Genov
Evgenii Genov in OpenAIRERichard Bean;
Richard Bean
Richard Bean in OpenAIREJohn Betts;
Quang Bui;John Betts
John Betts in OpenAIRENam Trong Dinh;
Nam Trong Dinh
Nam Trong Dinh in OpenAIRENils Einecke;
Rasul Esmaeilbeigi; Scott Ferraro; Priya Galketiya;Nils Einecke
Nils Einecke in OpenAIRERobert Glasgow;
Robert Glasgow
Robert Glasgow in OpenAIRERakshitha Godahewa;
Yanfei Kang;Rakshitha Godahewa
Rakshitha Godahewa in OpenAIRESteffen Limmer;
Steffen Limmer
Steffen Limmer in OpenAIRELuis Magdalena;
Pablo Montero-Manso;Luis Magdalena
Luis Magdalena in OpenAIREDaniel Peralta;
Yogesh Pipada Sunil Kumar; Alejandro Rosales-Pérez;Daniel Peralta
Daniel Peralta in OpenAIREJulian Ruddick;
Julian Ruddick
Julian Ruddick in OpenAIREAkylas Stratigakos;
Akylas Stratigakos
Akylas Stratigakos in OpenAIREPeter Stuckey;
Guido Tack;Peter Stuckey
Peter Stuckey in OpenAIREIsaac Triguero;
Isaac Triguero
Isaac Triguero in OpenAIRERui Yuan;
Rui Yuan
Rui Yuan in OpenAIREPredict+Optimize frameworks integrate forecasting and optimization to address real-world challenges such as renewable energy scheduling, where variability and uncertainty are critical factors. This paper benchmarks solutions from the IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling, focusing on forecasting renewable production and demand and optimizing energy cost. The competition attracted 49 participants in total. The top-ranked method employed stochastic optimization using LightGBM ensembles, and achieved at least a 2% reduction in energy costs compared to deterministic approaches, demonstrating that the most accurate point forecast does not necessarily guarantee the best performance in downstream optimization. The published data and problem setting establish a benchmark for further research into integrated forecasting-optimization methods for energy systems, highlighting the importance of considering forecast uncertainty in optimization models to achieve cost-effective and reliable energy management. The novelty of this work lies in its comprehensive evaluation of Predict+Optimize methodologies applied to a real-world renewable energy scheduling problem, providing insights into the scalability, generalizability, and effectiveness of the proposed solutions. Potential applications extend beyond energy systems to any domain requiring integrated forecasting and optimization, such as supply chain management, transportation planning, and financial portfolio optimization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3555393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3555393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Christoph Bergmeir;
Frits de Nijs;Christoph Bergmeir
Christoph Bergmeir in OpenAIREEvgenii Genov;
Abishek Sriramulu; +24 AuthorsEvgenii Genov
Evgenii Genov in OpenAIREChristoph Bergmeir;
Frits de Nijs;Christoph Bergmeir
Christoph Bergmeir in OpenAIREEvgenii Genov;
Abishek Sriramulu; Mahdi Abolghasemi;Evgenii Genov
Evgenii Genov in OpenAIRERichard Bean;
Richard Bean
Richard Bean in OpenAIREJohn Betts;
Quang Bui;John Betts
John Betts in OpenAIRENam Trong Dinh;
Nam Trong Dinh
Nam Trong Dinh in OpenAIRENils Einecke;
Rasul Esmaeilbeigi; Scott Ferraro; Priya Galketiya;Nils Einecke
Nils Einecke in OpenAIRERobert Glasgow;
Robert Glasgow
Robert Glasgow in OpenAIRERakshitha Godahewa;
Yanfei Kang;Rakshitha Godahewa
Rakshitha Godahewa in OpenAIRESteffen Limmer;
Steffen Limmer
Steffen Limmer in OpenAIRELuis Magdalena;
Pablo Montero-Manso;Luis Magdalena
Luis Magdalena in OpenAIREDaniel Peralta;
Yogesh Pipada Sunil Kumar; Alejandro Rosales-Pérez;Daniel Peralta
Daniel Peralta in OpenAIREJulian Ruddick;
Julian Ruddick
Julian Ruddick in OpenAIREAkylas Stratigakos;
Akylas Stratigakos
Akylas Stratigakos in OpenAIREPeter Stuckey;
Guido Tack;Peter Stuckey
Peter Stuckey in OpenAIREIsaac Triguero;
Isaac Triguero
Isaac Triguero in OpenAIRERui Yuan;
Rui Yuan
Rui Yuan in OpenAIREPredict+Optimize frameworks integrate forecasting and optimization to address real-world challenges such as renewable energy scheduling, where variability and uncertainty are critical factors. This paper benchmarks solutions from the IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling, focusing on forecasting renewable production and demand and optimizing energy cost. The competition attracted 49 participants in total. The top-ranked method employed stochastic optimization using LightGBM ensembles, and achieved at least a 2% reduction in energy costs compared to deterministic approaches, demonstrating that the most accurate point forecast does not necessarily guarantee the best performance in downstream optimization. The published data and problem setting establish a benchmark for further research into integrated forecasting-optimization methods for energy systems, highlighting the importance of considering forecast uncertainty in optimization models to achieve cost-effective and reliable energy management. The novelty of this work lies in its comprehensive evaluation of Predict+Optimize methodologies applied to a real-world renewable energy scheduling problem, providing insights into the scalability, generalizability, and effectiveness of the proposed solutions. Potential applications extend beyond energy systems to any domain requiring integrated forecasting and optimization, such as supply chain management, transportation planning, and financial portfolio optimization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3555393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3555393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Elsevier BV Authors:Luis Badesa;
Luis Badesa
Luis Badesa in OpenAIRECarlos Matamala;
Goran Strbac;Carlos Matamala
Carlos Matamala in OpenAIREWhile the operating cost of electricity grids based on thermal generation was largely driven by the cost of fuel, as renewable penetration increases, ancillary services represent an increasingly large proportion of the running costs. Electric frequency is an important magnitude in highly renewable grids, as it becomes more volatile and therefore the cost related to maintaining it within safe bounds has significantly increased. So far, costs for frequency-containment ancillary services have been socialised in most countries, but it has become relevant to rethink this regulatory arrangement. In this paper, we discuss the issue of cost allocation for these services, highlighting the need to evolve towards a causation-based regulatory framework. We argue that parties responsible for creating the need for ancillary services should bear these costs. However, this would imply an important change in electricity market policy, therefore it is necessary to understand the impact on current and future investments on generation, as well as on electricity tariffs. Here we provide a mostly qualitative analysis of this issue, defining guidelines for practical implementation and further study. Published in journal Energy Policy
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2024.114379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2024.114379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Elsevier BV Authors:Luis Badesa;
Luis Badesa
Luis Badesa in OpenAIRECarlos Matamala;
Goran Strbac;Carlos Matamala
Carlos Matamala in OpenAIREWhile the operating cost of electricity grids based on thermal generation was largely driven by the cost of fuel, as renewable penetration increases, ancillary services represent an increasingly large proportion of the running costs. Electric frequency is an important magnitude in highly renewable grids, as it becomes more volatile and therefore the cost related to maintaining it within safe bounds has significantly increased. So far, costs for frequency-containment ancillary services have been socialised in most countries, but it has become relevant to rethink this regulatory arrangement. In this paper, we discuss the issue of cost allocation for these services, highlighting the need to evolve towards a causation-based regulatory framework. We argue that parties responsible for creating the need for ancillary services should bear these costs. However, this would imply an important change in electricity market policy, therefore it is necessary to understand the impact on current and future investments on generation, as well as on electricity tariffs. Here we provide a mostly qualitative analysis of this issue, defining guidelines for practical implementation and further study. Published in journal Energy Policy
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2024.114379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2024.114379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu