- home
- Advanced Search
- Energy Research
- 2. Zero hunger
- GB
- AU
- PK
- Energy Research
- 2. Zero hunger
- GB
- AU
- PK
description Publicationkeyboard_double_arrow_right Article , Journal 2002 AustraliaPublisher:Elsevier BV Authors: Kokavec, A.; Crowe, S. F.;pmid: 12056879
The consumption of alcohol prior to food intake results in alcohol metabolism occurring in the liver, and the liver is often damaged in chronic alcoholics. This paper highlights the possibility that alcohol consumption in the absence of adequate nutrition after an extended period of time may lead to activation of the glyoxylate cycle, an energy pathway associated with the conversion of fat into carbohydrate which until recently was thought to only exist in plants and bacteria.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1054/mehy.2001.1524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1054/mehy.2001.1524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002 AustraliaPublisher:Elsevier BV Authors: Kokavec, A.; Crowe, S. F.;pmid: 12056879
The consumption of alcohol prior to food intake results in alcohol metabolism occurring in the liver, and the liver is often damaged in chronic alcoholics. This paper highlights the possibility that alcohol consumption in the absence of adequate nutrition after an extended period of time may lead to activation of the glyoxylate cycle, an energy pathway associated with the conversion of fat into carbohydrate which until recently was thought to only exist in plants and bacteria.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1054/mehy.2001.1524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1054/mehy.2001.1524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 United Kingdom, Netherlands, United States, Argentina, United States, ArgentinaPublisher:Wiley Funded by:NSERCNSERCOliver Carroll; Evan Batzer; Siddharth Bharath; Elizabeth T. Borer; Sofía Campana; Ellen Esch; Yann Hautier; Timothy Ohlert; Eric W. Seabloom; Peter B. Adler; Jonathan D. Bakker; Lori Biederman; Miguel N. Bugalho; Maria Caldeira; Qingqing Chen; Kendi F. Davies; Philip A. Fay; Johannes M. H. Knops; Kimberly Komatsu; Jason P. Martina; Kevin S. McCann; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Brooke Osborne; Anita C. Risch; Carly Stevens; Peter A. Wilfahrt; Laura Yahdjian; Andrew S. MacDougall;AbstractNutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 United Kingdom, Netherlands, United States, Argentina, United States, ArgentinaPublisher:Wiley Funded by:NSERCNSERCOliver Carroll; Evan Batzer; Siddharth Bharath; Elizabeth T. Borer; Sofía Campana; Ellen Esch; Yann Hautier; Timothy Ohlert; Eric W. Seabloom; Peter B. Adler; Jonathan D. Bakker; Lori Biederman; Miguel N. Bugalho; Maria Caldeira; Qingqing Chen; Kendi F. Davies; Philip A. Fay; Johannes M. H. Knops; Kimberly Komatsu; Jason P. Martina; Kevin S. McCann; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Brooke Osborne; Anita C. Risch; Carly Stevens; Peter A. Wilfahrt; Laura Yahdjian; Andrew S. MacDougall;AbstractNutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Authors: Snovia Naseem; Tong Guang Ji; Umair Kashif; Muhammad Zulqarnain Arshad;The rapid growth of agriculture has led to a significant increase in energy utilization and CO2 emissions. Agriculture performs a pivotal role in improving every country’s economy. The current study has the main objective to analyses the long-run impact of agricultural CO2 discharge on economic growth, energy consumption (electricity utilization in the agriculture sector), financial development, foreign direct investment (FDI), and population for India. For the period 1978–2018, we applied ADF, PP, ERS, and KPSS unit root and Z&A and CMR structural interval tests to evaluate the stability and breaks in the data set. We check the cointegration of study variables through ARDL, Engle–Granger, and Johansen’s cointegration approaches. The findings of the long-run analysis showed a cointegration among the variables, which reveals that an escalation in economic growth and financial development refine the natural environment, while the upsurge in FDI and population further deteriorate the climate in India. However, agricultural sector electricity use shows an insignificant association with CO2 emissions for both periods. On the basis of results, we recommend that legislators should offer an environment that provides opportunities for financial development and economic growth.
Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-020-00953-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-020-00953-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Authors: Snovia Naseem; Tong Guang Ji; Umair Kashif; Muhammad Zulqarnain Arshad;The rapid growth of agriculture has led to a significant increase in energy utilization and CO2 emissions. Agriculture performs a pivotal role in improving every country’s economy. The current study has the main objective to analyses the long-run impact of agricultural CO2 discharge on economic growth, energy consumption (electricity utilization in the agriculture sector), financial development, foreign direct investment (FDI), and population for India. For the period 1978–2018, we applied ADF, PP, ERS, and KPSS unit root and Z&A and CMR structural interval tests to evaluate the stability and breaks in the data set. We check the cointegration of study variables through ARDL, Engle–Granger, and Johansen’s cointegration approaches. The findings of the long-run analysis showed a cointegration among the variables, which reveals that an escalation in economic growth and financial development refine the natural environment, while the upsurge in FDI and population further deteriorate the climate in India. However, agricultural sector electricity use shows an insignificant association with CO2 emissions for both periods. On the basis of results, we recommend that legislators should offer an environment that provides opportunities for financial development and economic growth.
Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-020-00953-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-020-00953-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, France, SpainPublisher:Wiley Funded by:EC | FRAGCLIMEC| FRAGCLIMArturo Gálvez-Cerón; Arturo Gálvez-Cerón; Juan Antonio Calleja; Josep Peñuelas; Bernat Claramunt-López; Ulf Büntgen; Johan Espunyes; Miguel Lurgi; Emmanuel Serrano; Jordi Bartolomé;AbstractChanges in land‐use and climate affect the distribution and diversity of plant and animal species at different spatiotemporal scales. The extent to which species‐specific phenotypic plasticity and biotic interactions mediate organismal adaptation to changing environments, however, remains poorly understood. Woody plant expansion is threatening the extent of alpine grasslands worldwide, and evaluating and predicting its effects on herbivores is of crucial importance. Here, we explore the impact of shrubification on the feeding efficiency of Pyrenean chamois (Rupicapra p. pyrenaica), as well as on the three most abundant coexisting domestic ungulate species: cattle, sheep and horses. We use observational diet composition from May to October and model different scenarios of vegetation availability where shrubland and woodland proliferate at the expense of grassland. We then predicted if the four ungulate species could efficiently utilize their food landscapes with their current dietary specificities measuring their niche breath in each scenario. We observed that the wild counterpart, due to a higher trophic plasticity, is less disturbed by shrubification compared to livestock, which rely primarily on herbaceous plants and will be affected 3.6 times more. Our results suggest that mixed feeders, such as chamois, could benefit from fallow landscapes, and that mountain farmers are at a growing economic risk worldwide due to changing land‐use practices and climate conditions.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019Data sources: Diposit Digital de Documents de la UABGlobal Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019Data sources: Diposit Digital de Documents de la UABGlobal Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, France, SpainPublisher:Wiley Funded by:EC | FRAGCLIMEC| FRAGCLIMArturo Gálvez-Cerón; Arturo Gálvez-Cerón; Juan Antonio Calleja; Josep Peñuelas; Bernat Claramunt-López; Ulf Büntgen; Johan Espunyes; Miguel Lurgi; Emmanuel Serrano; Jordi Bartolomé;AbstractChanges in land‐use and climate affect the distribution and diversity of plant and animal species at different spatiotemporal scales. The extent to which species‐specific phenotypic plasticity and biotic interactions mediate organismal adaptation to changing environments, however, remains poorly understood. Woody plant expansion is threatening the extent of alpine grasslands worldwide, and evaluating and predicting its effects on herbivores is of crucial importance. Here, we explore the impact of shrubification on the feeding efficiency of Pyrenean chamois (Rupicapra p. pyrenaica), as well as on the three most abundant coexisting domestic ungulate species: cattle, sheep and horses. We use observational diet composition from May to October and model different scenarios of vegetation availability where shrubland and woodland proliferate at the expense of grassland. We then predicted if the four ungulate species could efficiently utilize their food landscapes with their current dietary specificities measuring their niche breath in each scenario. We observed that the wild counterpart, due to a higher trophic plasticity, is less disturbed by shrubification compared to livestock, which rely primarily on herbaceous plants and will be affected 3.6 times more. Our results suggest that mixed feeders, such as chamois, could benefit from fallow landscapes, and that mountain farmers are at a growing economic risk worldwide due to changing land‐use practices and climate conditions.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019Data sources: Diposit Digital de Documents de la UABGlobal Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019Data sources: Diposit Digital de Documents de la UABGlobal Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Royal Society Funded by:UKRI | Defining Aqueous Habitabl...UKRI| Defining Aqueous Habitable Conditions in the UniverseAuthors: P. M. Higgins; C. S. Cockell;In order to grow, reproduce and evolve life requires a supply of energy and nutrients. Astrobiology has the challenge of studying life on Earth in environments which are poorly characterized or extreme, usually both, and predicting the habitability of extraterrestrial environments. We have developed a general astrobiological model for assessing the energetic and nutrient availability of poorly characterized environments to predict their potential biological productivity. NutMEG (nutrients, maintenance, energy and growth) can be used to estimate how much biomass an environment could host, and how that life might affect the local chemistry. It requires only an overall catabolic reaction and some knowledge of the local environment to begin making estimations, with many more customizable parameters, such as microbial adaptation. In this study, the model was configured to replicate laboratory data on the growth of methanogens. It was used to predict the effect of temperature and energy/nutrient limitation on their microbial growth rates, total biomass levels, and total biosignature production in laboratory-like conditions to explore how it could be applied to astrobiological problems. As temperature rises from 280 to 330 K, NutMEG predicts exponential drops in final biomass ( 10 9 − 10 6 cells l − 1 ) and total methane production ( 62 − 3 μ M ) despite an increase in peak growth rates ( 0.007 − 0.14 h − 1 ) for a typical methanogen in ideal conditions. This is caused by the increasing cost of microbial maintenance diverting energy away from growth processes. Restricting energy and nutrients exacerbates this trend. With minimal assumptions NutMEG can reliably replicate microbial growth behaviour, but better understanding of the synthesis and maintenance costs life must overcome in different extremes is required to improve its results further. NutMEG can help us assess the theoretical habitability of extraterrestrial environments and predict potential biomass and biosignature production, for example on exoplanets using minimum input parameters to guide observations.
Journal of The Royal... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsif.2020.0588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Royal... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsif.2020.0588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Royal Society Funded by:UKRI | Defining Aqueous Habitabl...UKRI| Defining Aqueous Habitable Conditions in the UniverseAuthors: P. M. Higgins; C. S. Cockell;In order to grow, reproduce and evolve life requires a supply of energy and nutrients. Astrobiology has the challenge of studying life on Earth in environments which are poorly characterized or extreme, usually both, and predicting the habitability of extraterrestrial environments. We have developed a general astrobiological model for assessing the energetic and nutrient availability of poorly characterized environments to predict their potential biological productivity. NutMEG (nutrients, maintenance, energy and growth) can be used to estimate how much biomass an environment could host, and how that life might affect the local chemistry. It requires only an overall catabolic reaction and some knowledge of the local environment to begin making estimations, with many more customizable parameters, such as microbial adaptation. In this study, the model was configured to replicate laboratory data on the growth of methanogens. It was used to predict the effect of temperature and energy/nutrient limitation on their microbial growth rates, total biomass levels, and total biosignature production in laboratory-like conditions to explore how it could be applied to astrobiological problems. As temperature rises from 280 to 330 K, NutMEG predicts exponential drops in final biomass ( 10 9 − 10 6 cells l − 1 ) and total methane production ( 62 − 3 μ M ) despite an increase in peak growth rates ( 0.007 − 0.14 h − 1 ) for a typical methanogen in ideal conditions. This is caused by the increasing cost of microbial maintenance diverting energy away from growth processes. Restricting energy and nutrients exacerbates this trend. With minimal assumptions NutMEG can reliably replicate microbial growth behaviour, but better understanding of the synthesis and maintenance costs life must overcome in different extremes is required to improve its results further. NutMEG can help us assess the theoretical habitability of extraterrestrial environments and predict potential biomass and biosignature production, for example on exoplanets using minimum input parameters to guide observations.
Journal of The Royal... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsif.2020.0588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Royal... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsif.2020.0588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 CroatiaPublisher:National and University Library of the Republic of Srpska Stoja Jotanović; Danijela Kondić; Duška Saša; Borut Bosančić; Gordana Đurić; Veljko Vorkapić; Ana Kojaković;This paper presents the results of the project titled "Agricultural Biomass Cross-border Development of Energy in Posavina” - ABCDE Posavina implemented within the IPA Cross- border Programme between Croatia and Bosnia and Herzegovina. Its main objective is to promote agro-bioenergy in rural economies by including utilisation of agricultural biomass for energy purposes in the Posavina region. The region includes Vukovar-Srijem County (VSC) in Croatia and four municipalities (Odžak, Domaljevac- Šamac, Orašje, Šamac) and Brčko District in Bosnia and Herzegovina (BiH). These areas represent valuable agricultural land with a good potential for economic utilisation. The analysis of agricultural biomass potential includes production of biogas in co-digestion of manure (cattle, pigs and poultry manure) and maize silage (input of maize silage is limited at 30% of feedstock mass) as well as biodiesel from oilseed rape and bioethanol from maize. Potential GHG savings are estimated for the biogas and biofuels use. Theoretical biogas energy potential is estimated at 1, 386 TJ/yr for VSC and 574 TJ/yr for BiH. Based on the theoretical potential for generation of electricity and heat from biogas, total installed capacity in VSC would be 19.8 MWe while 8.2 MWe in BiH. The corresponding theoretical potentials for biodiesel production are 4, 258 TJ/yr (VSC) and 1, 415 (BiH) while for bioethanol these are 6, 140 TJ/yr and 1, 689 TJ/yr, respectively. It is assumed that 50% of total theoretical biogas potential and 30% of total theoretical biofuel potential are achievable. Annual GHG savings for biogas use are estimated at 31.30 ktCO2-eq (VSC) and 26.84 ktCO2-eq (BiH). Annual GHG savings due to biodiesel use are estimated at 37.46-64.22 ktCO2-eq (VSC) and 12.45-21.34 ktCO2-eq (BiH) and for bioethanol use at 54.02-92.61 ktCO2-eq (VSC) and 14.86-25.48 ktCO2-eq (BiH).
Агрознање arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2012Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7251/agren1204653v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Агрознање arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2012Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7251/agren1204653v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 CroatiaPublisher:National and University Library of the Republic of Srpska Stoja Jotanović; Danijela Kondić; Duška Saša; Borut Bosančić; Gordana Đurić; Veljko Vorkapić; Ana Kojaković;This paper presents the results of the project titled "Agricultural Biomass Cross-border Development of Energy in Posavina” - ABCDE Posavina implemented within the IPA Cross- border Programme between Croatia and Bosnia and Herzegovina. Its main objective is to promote agro-bioenergy in rural economies by including utilisation of agricultural biomass for energy purposes in the Posavina region. The region includes Vukovar-Srijem County (VSC) in Croatia and four municipalities (Odžak, Domaljevac- Šamac, Orašje, Šamac) and Brčko District in Bosnia and Herzegovina (BiH). These areas represent valuable agricultural land with a good potential for economic utilisation. The analysis of agricultural biomass potential includes production of biogas in co-digestion of manure (cattle, pigs and poultry manure) and maize silage (input of maize silage is limited at 30% of feedstock mass) as well as biodiesel from oilseed rape and bioethanol from maize. Potential GHG savings are estimated for the biogas and biofuels use. Theoretical biogas energy potential is estimated at 1, 386 TJ/yr for VSC and 574 TJ/yr for BiH. Based on the theoretical potential for generation of electricity and heat from biogas, total installed capacity in VSC would be 19.8 MWe while 8.2 MWe in BiH. The corresponding theoretical potentials for biodiesel production are 4, 258 TJ/yr (VSC) and 1, 415 (BiH) while for bioethanol these are 6, 140 TJ/yr and 1, 689 TJ/yr, respectively. It is assumed that 50% of total theoretical biogas potential and 30% of total theoretical biofuel potential are achievable. Annual GHG savings for biogas use are estimated at 31.30 ktCO2-eq (VSC) and 26.84 ktCO2-eq (BiH). Annual GHG savings due to biodiesel use are estimated at 37.46-64.22 ktCO2-eq (VSC) and 12.45-21.34 ktCO2-eq (BiH) and for bioethanol use at 54.02-92.61 ktCO2-eq (VSC) and 14.86-25.48 ktCO2-eq (BiH).
Агрознање arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2012Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7251/agren1204653v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Агрознање arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2012Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7251/agren1204653v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ArgentinaPublisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP130100016Benjamin L. Turner; Paul Kardol; David A. Wardle; David A. Wardle; Raphael K. Didham; Raphael K. Didham; Etienne Laliberté; Etienne Laliberté; François P. Teste; François P. Teste;AbstractChanges in soil fertility during pedogenesis affect the quantity and quality of resources entering the belowground subsystem. Climate governs pedogenesis, yet how climate modulates responses of soil food webs to soil ageing remains unexplored because of the paucity of appropriate model systems. We characterised soil food webs along each of four retrogressive soil chronosequences situated across a strong regional climate gradient to show that belowground communities are predominantly shaped by changes in fertility rather than climate. Basal consumers showed hump‐shaped responses to soil ageing, which were propagated to higher‐order consumers. There was a shift in dominance from bacterial to fungal energy channels with increasing soil age, while the root energy channel was most important in intermediate‐aged soils. Our study highlights the overarching importance of soil fertility in regulating soil food webs, and indicates that belowground food webs will respond more strongly to shifts in soil resources than climate change.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ArgentinaPublisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP130100016Benjamin L. Turner; Paul Kardol; David A. Wardle; David A. Wardle; Raphael K. Didham; Raphael K. Didham; Etienne Laliberté; Etienne Laliberté; François P. Teste; François P. Teste;AbstractChanges in soil fertility during pedogenesis affect the quantity and quality of resources entering the belowground subsystem. Climate governs pedogenesis, yet how climate modulates responses of soil food webs to soil ageing remains unexplored because of the paucity of appropriate model systems. We characterised soil food webs along each of four retrogressive soil chronosequences situated across a strong regional climate gradient to show that belowground communities are predominantly shaped by changes in fertility rather than climate. Basal consumers showed hump‐shaped responses to soil ageing, which were propagated to higher‐order consumers. There was a shift in dominance from bacterial to fungal energy channels with increasing soil age, while the root energy channel was most important in intermediate‐aged soils. Our study highlights the overarching importance of soil fertility in regulating soil food webs, and indicates that belowground food webs will respond more strongly to shifts in soil resources than climate change.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Netherlands, United KingdomPublisher:Elsevier BV Gössling, S.; Garrod, B.; Aall, C.; Hille, J.; Peeters, P.M.;Food production and consumption have a range of sustainability implications, including their contribution to global emissions of greenhouse gases (GHGs). As some foodstuffs entail higher GHG emissions than others, managing their use in tourism-related contexts could make a significant contribution to climate change mitigation. This article reviews the carbon intensity of selected foods and discusses how foodservice providers could adapt their practices. It shows that even though food management could substantially reduce the GHG emissions of foodservice providers, its application is currently hampered by the complexity of food production chains and a lack of dependable data on the GHG intensity of foodstuffs. Nevertheless, it is possible to make a number of recommendations in respect of how foodservice providers can better purchase, prepare and present foods. Further research is now needed to refine and extend our understanding of the contribution that food management can make to reducing tourism’s carbon ‘foodprint’.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tourman.2010.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 233 citations 233 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tourman.2010.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Netherlands, United KingdomPublisher:Elsevier BV Gössling, S.; Garrod, B.; Aall, C.; Hille, J.; Peeters, P.M.;Food production and consumption have a range of sustainability implications, including their contribution to global emissions of greenhouse gases (GHGs). As some foodstuffs entail higher GHG emissions than others, managing their use in tourism-related contexts could make a significant contribution to climate change mitigation. This article reviews the carbon intensity of selected foods and discusses how foodservice providers could adapt their practices. It shows that even though food management could substantially reduce the GHG emissions of foodservice providers, its application is currently hampered by the complexity of food production chains and a lack of dependable data on the GHG intensity of foodstuffs. Nevertheless, it is possible to make a number of recommendations in respect of how foodservice providers can better purchase, prepare and present foods. Further research is now needed to refine and extend our understanding of the contribution that food management can make to reducing tourism’s carbon ‘foodprint’.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tourman.2010.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 233 citations 233 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tourman.2010.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Authors: Muhammad Akhlaq Mudassir; Fahd Rasul; Tasneem Khaliq; Muhammad Yaseen;pmid: 34536224
Pakistan is placed among the most vulnerable countries with relation to climate change and its impacts on agricultural productivity. Cotton is staged as the cash crop of the country and the main source of raw material for textile, oil, and feed industry. Varying environmental attributes have significant effects on the duration of vegetative and reproductive stages of cotton crop. To evaluate the potential impacts of varied temperatures regimes in different sowing times, field experiments were carried out throughout the cotton growing areas of Pakistan from Faisalabad in Central Punjab to RYK in Southern Punjab and Sakrand in Sindh to Dera Ismail Khan in Khyber Pakhtunkhwa (KPK) Province. Crop was sown on six different sowing dates starting from 1st March towards 15th May with 2-week intervals for two crop seasons (2016 and 2017). The timing of phenological events like emergence, squaring, flowering, and boll opening was recorded on calendar days and cumulative heat units (GDDs) were calculated for flowering and boll opening stages. Heat use efficiency for these sowing times was estimated. Data regarding yield-related parameters like opened bolls per plant, average boll weight, and seed cotton yield were also recorded during the study. Results revealed that duration of the growth stages was significantly affected by variation in mean thermal kinetics in varied sowing times in all four different environments. Seed cotton yield and heat use efficiency were also varied among the locations and sowing dates. The maximum seed cotton yield was recorded in Sakrand location at 15th April sowing date. The dependence of the phenological advancement on temperature and negative impacts of higher thermal stress on cotton productivity were also confirmed throughout the cotton growing zone of Pakistan.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-16067-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-16067-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Authors: Muhammad Akhlaq Mudassir; Fahd Rasul; Tasneem Khaliq; Muhammad Yaseen;pmid: 34536224
Pakistan is placed among the most vulnerable countries with relation to climate change and its impacts on agricultural productivity. Cotton is staged as the cash crop of the country and the main source of raw material for textile, oil, and feed industry. Varying environmental attributes have significant effects on the duration of vegetative and reproductive stages of cotton crop. To evaluate the potential impacts of varied temperatures regimes in different sowing times, field experiments were carried out throughout the cotton growing areas of Pakistan from Faisalabad in Central Punjab to RYK in Southern Punjab and Sakrand in Sindh to Dera Ismail Khan in Khyber Pakhtunkhwa (KPK) Province. Crop was sown on six different sowing dates starting from 1st March towards 15th May with 2-week intervals for two crop seasons (2016 and 2017). The timing of phenological events like emergence, squaring, flowering, and boll opening was recorded on calendar days and cumulative heat units (GDDs) were calculated for flowering and boll opening stages. Heat use efficiency for these sowing times was estimated. Data regarding yield-related parameters like opened bolls per plant, average boll weight, and seed cotton yield were also recorded during the study. Results revealed that duration of the growth stages was significantly affected by variation in mean thermal kinetics in varied sowing times in all four different environments. Seed cotton yield and heat use efficiency were also varied among the locations and sowing dates. The maximum seed cotton yield was recorded in Sakrand location at 15th April sowing date. The dependence of the phenological advancement on temperature and negative impacts of higher thermal stress on cotton productivity were also confirmed throughout the cotton growing zone of Pakistan.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-16067-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-16067-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, NetherlandsPublisher:Elsevier BV Authors: Marc van den Homberg; Aklilu Teklesadik; Dennis L.J. van den Berg; Gabriela Guimarães Nobre; +3 AuthorsMarc van den Homberg; Aklilu Teklesadik; Dennis L.J. van den Berg; Gabriela Guimarães Nobre; Gabriela Guimarães Nobre; Joris J.L. Westerveld; Sjoerd Stuit;Food insecurity is a growing concern due to man-made conflicts, climate change, and economic downturns. Forecasting the state of food insecurity is essential to be able to trigger early actions, for example, by humanitarian actors. To measure the actual state of food insecurity, expert and consensus-based approaches and surveys are currently used. Both require substantial manpower, time, and budget. This paper introduces an extreme gradient-boosting machine learning model to forecast monthly transitions in the state of food security in Ethiopia, at a spatial granularity of livelihood zones, and for lead times of one to 12 months, using open-source data. The transition in the state of food security, hereafter referred to as predictand, is represented by the Integrated Food Security Phase Classification Data. From 19 categories of datasets, 130 variables were derived and used as predictors of the transition in the state of food security. The predictors represent changes in climate and land, market, conflict, infrastructure, demographics and livelihood zone characteristics. The most relevant predictors are found to be food security history and surface soil moisture. Overall, the model performs best for forecasting Deteriorations and Improvements in the state of food security compared to the baselines. The proposed method performs (F1 macro score) at least twice as well as the best baseline (a dummy classifier) for a Deterioration. The model performs better when forecasting long-term (7 months; F1 macro average = 0.61) compared to short-term (3 months; F1 macro average = 0.51). Combining machine learning, Integrated Phase Classification (IPC) ratings from monitoring systems, and open data can add value to existing consensus-based forecasting approaches as this combination provides longer lead times and more regular updates. Our approach can also be transferred to other countries as most of the data on the predictors are openly available from global data repositories.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021License: CC BY NC NDData sources: Pure Utrecht UniversityThe Science of The Total EnvironmentArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.147366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021License: CC BY NC NDData sources: Pure Utrecht UniversityThe Science of The Total EnvironmentArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.147366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, NetherlandsPublisher:Elsevier BV Authors: Marc van den Homberg; Aklilu Teklesadik; Dennis L.J. van den Berg; Gabriela Guimarães Nobre; +3 AuthorsMarc van den Homberg; Aklilu Teklesadik; Dennis L.J. van den Berg; Gabriela Guimarães Nobre; Gabriela Guimarães Nobre; Joris J.L. Westerveld; Sjoerd Stuit;Food insecurity is a growing concern due to man-made conflicts, climate change, and economic downturns. Forecasting the state of food insecurity is essential to be able to trigger early actions, for example, by humanitarian actors. To measure the actual state of food insecurity, expert and consensus-based approaches and surveys are currently used. Both require substantial manpower, time, and budget. This paper introduces an extreme gradient-boosting machine learning model to forecast monthly transitions in the state of food security in Ethiopia, at a spatial granularity of livelihood zones, and for lead times of one to 12 months, using open-source data. The transition in the state of food security, hereafter referred to as predictand, is represented by the Integrated Food Security Phase Classification Data. From 19 categories of datasets, 130 variables were derived and used as predictors of the transition in the state of food security. The predictors represent changes in climate and land, market, conflict, infrastructure, demographics and livelihood zone characteristics. The most relevant predictors are found to be food security history and surface soil moisture. Overall, the model performs best for forecasting Deteriorations and Improvements in the state of food security compared to the baselines. The proposed method performs (F1 macro score) at least twice as well as the best baseline (a dummy classifier) for a Deterioration. The model performs better when forecasting long-term (7 months; F1 macro average = 0.61) compared to short-term (3 months; F1 macro average = 0.51). Combining machine learning, Integrated Phase Classification (IPC) ratings from monitoring systems, and open data can add value to existing consensus-based forecasting approaches as this combination provides longer lead times and more regular updates. Our approach can also be transferred to other countries as most of the data on the predictors are openly available from global data repositories.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021License: CC BY NC NDData sources: Pure Utrecht UniversityThe Science of The Total EnvironmentArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.147366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021License: CC BY NC NDData sources: Pure Utrecht UniversityThe Science of The Total EnvironmentArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.147366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2002 AustraliaPublisher:Elsevier BV Authors: Kokavec, A.; Crowe, S. F.;pmid: 12056879
The consumption of alcohol prior to food intake results in alcohol metabolism occurring in the liver, and the liver is often damaged in chronic alcoholics. This paper highlights the possibility that alcohol consumption in the absence of adequate nutrition after an extended period of time may lead to activation of the glyoxylate cycle, an energy pathway associated with the conversion of fat into carbohydrate which until recently was thought to only exist in plants and bacteria.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1054/mehy.2001.1524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1054/mehy.2001.1524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002 AustraliaPublisher:Elsevier BV Authors: Kokavec, A.; Crowe, S. F.;pmid: 12056879
The consumption of alcohol prior to food intake results in alcohol metabolism occurring in the liver, and the liver is often damaged in chronic alcoholics. This paper highlights the possibility that alcohol consumption in the absence of adequate nutrition after an extended period of time may lead to activation of the glyoxylate cycle, an energy pathway associated with the conversion of fat into carbohydrate which until recently was thought to only exist in plants and bacteria.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1054/mehy.2001.1524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1054/mehy.2001.1524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 United Kingdom, Netherlands, United States, Argentina, United States, ArgentinaPublisher:Wiley Funded by:NSERCNSERCOliver Carroll; Evan Batzer; Siddharth Bharath; Elizabeth T. Borer; Sofía Campana; Ellen Esch; Yann Hautier; Timothy Ohlert; Eric W. Seabloom; Peter B. Adler; Jonathan D. Bakker; Lori Biederman; Miguel N. Bugalho; Maria Caldeira; Qingqing Chen; Kendi F. Davies; Philip A. Fay; Johannes M. H. Knops; Kimberly Komatsu; Jason P. Martina; Kevin S. McCann; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Brooke Osborne; Anita C. Risch; Carly Stevens; Peter A. Wilfahrt; Laura Yahdjian; Andrew S. MacDougall;AbstractNutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 United Kingdom, Netherlands, United States, Argentina, United States, ArgentinaPublisher:Wiley Funded by:NSERCNSERCOliver Carroll; Evan Batzer; Siddharth Bharath; Elizabeth T. Borer; Sofía Campana; Ellen Esch; Yann Hautier; Timothy Ohlert; Eric W. Seabloom; Peter B. Adler; Jonathan D. Bakker; Lori Biederman; Miguel N. Bugalho; Maria Caldeira; Qingqing Chen; Kendi F. Davies; Philip A. Fay; Johannes M. H. Knops; Kimberly Komatsu; Jason P. Martina; Kevin S. McCann; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Brooke Osborne; Anita C. Risch; Carly Stevens; Peter A. Wilfahrt; Laura Yahdjian; Andrew S. MacDougall;AbstractNutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Authors: Snovia Naseem; Tong Guang Ji; Umair Kashif; Muhammad Zulqarnain Arshad;The rapid growth of agriculture has led to a significant increase in energy utilization and CO2 emissions. Agriculture performs a pivotal role in improving every country’s economy. The current study has the main objective to analyses the long-run impact of agricultural CO2 discharge on economic growth, energy consumption (electricity utilization in the agriculture sector), financial development, foreign direct investment (FDI), and population for India. For the period 1978–2018, we applied ADF, PP, ERS, and KPSS unit root and Z&A and CMR structural interval tests to evaluate the stability and breaks in the data set. We check the cointegration of study variables through ARDL, Engle–Granger, and Johansen’s cointegration approaches. The findings of the long-run analysis showed a cointegration among the variables, which reveals that an escalation in economic growth and financial development refine the natural environment, while the upsurge in FDI and population further deteriorate the climate in India. However, agricultural sector electricity use shows an insignificant association with CO2 emissions for both periods. On the basis of results, we recommend that legislators should offer an environment that provides opportunities for financial development and economic growth.
Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-020-00953-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-020-00953-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Authors: Snovia Naseem; Tong Guang Ji; Umair Kashif; Muhammad Zulqarnain Arshad;The rapid growth of agriculture has led to a significant increase in energy utilization and CO2 emissions. Agriculture performs a pivotal role in improving every country’s economy. The current study has the main objective to analyses the long-run impact of agricultural CO2 discharge on economic growth, energy consumption (electricity utilization in the agriculture sector), financial development, foreign direct investment (FDI), and population for India. For the period 1978–2018, we applied ADF, PP, ERS, and KPSS unit root and Z&A and CMR structural interval tests to evaluate the stability and breaks in the data set. We check the cointegration of study variables through ARDL, Engle–Granger, and Johansen’s cointegration approaches. The findings of the long-run analysis showed a cointegration among the variables, which reveals that an escalation in economic growth and financial development refine the natural environment, while the upsurge in FDI and population further deteriorate the climate in India. However, agricultural sector electricity use shows an insignificant association with CO2 emissions for both periods. On the basis of results, we recommend that legislators should offer an environment that provides opportunities for financial development and economic growth.
Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-020-00953-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-020-00953-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, France, SpainPublisher:Wiley Funded by:EC | FRAGCLIMEC| FRAGCLIMArturo Gálvez-Cerón; Arturo Gálvez-Cerón; Juan Antonio Calleja; Josep Peñuelas; Bernat Claramunt-López; Ulf Büntgen; Johan Espunyes; Miguel Lurgi; Emmanuel Serrano; Jordi Bartolomé;AbstractChanges in land‐use and climate affect the distribution and diversity of plant and animal species at different spatiotemporal scales. The extent to which species‐specific phenotypic plasticity and biotic interactions mediate organismal adaptation to changing environments, however, remains poorly understood. Woody plant expansion is threatening the extent of alpine grasslands worldwide, and evaluating and predicting its effects on herbivores is of crucial importance. Here, we explore the impact of shrubification on the feeding efficiency of Pyrenean chamois (Rupicapra p. pyrenaica), as well as on the three most abundant coexisting domestic ungulate species: cattle, sheep and horses. We use observational diet composition from May to October and model different scenarios of vegetation availability where shrubland and woodland proliferate at the expense of grassland. We then predicted if the four ungulate species could efficiently utilize their food landscapes with their current dietary specificities measuring their niche breath in each scenario. We observed that the wild counterpart, due to a higher trophic plasticity, is less disturbed by shrubification compared to livestock, which rely primarily on herbaceous plants and will be affected 3.6 times more. Our results suggest that mixed feeders, such as chamois, could benefit from fallow landscapes, and that mountain farmers are at a growing economic risk worldwide due to changing land‐use practices and climate conditions.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019Data sources: Diposit Digital de Documents de la UABGlobal Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019Data sources: Diposit Digital de Documents de la UABGlobal Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, France, SpainPublisher:Wiley Funded by:EC | FRAGCLIMEC| FRAGCLIMArturo Gálvez-Cerón; Arturo Gálvez-Cerón; Juan Antonio Calleja; Josep Peñuelas; Bernat Claramunt-López; Ulf Büntgen; Johan Espunyes; Miguel Lurgi; Emmanuel Serrano; Jordi Bartolomé;AbstractChanges in land‐use and climate affect the distribution and diversity of plant and animal species at different spatiotemporal scales. The extent to which species‐specific phenotypic plasticity and biotic interactions mediate organismal adaptation to changing environments, however, remains poorly understood. Woody plant expansion is threatening the extent of alpine grasslands worldwide, and evaluating and predicting its effects on herbivores is of crucial importance. Here, we explore the impact of shrubification on the feeding efficiency of Pyrenean chamois (Rupicapra p. pyrenaica), as well as on the three most abundant coexisting domestic ungulate species: cattle, sheep and horses. We use observational diet composition from May to October and model different scenarios of vegetation availability where shrubland and woodland proliferate at the expense of grassland. We then predicted if the four ungulate species could efficiently utilize their food landscapes with their current dietary specificities measuring their niche breath in each scenario. We observed that the wild counterpart, due to a higher trophic plasticity, is less disturbed by shrubification compared to livestock, which rely primarily on herbaceous plants and will be affected 3.6 times more. Our results suggest that mixed feeders, such as chamois, could benefit from fallow landscapes, and that mountain farmers are at a growing economic risk worldwide due to changing land‐use practices and climate conditions.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019Data sources: Diposit Digital de Documents de la UABGlobal Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019Data sources: Diposit Digital de Documents de la UABGlobal Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Royal Society Funded by:UKRI | Defining Aqueous Habitabl...UKRI| Defining Aqueous Habitable Conditions in the UniverseAuthors: P. M. Higgins; C. S. Cockell;In order to grow, reproduce and evolve life requires a supply of energy and nutrients. Astrobiology has the challenge of studying life on Earth in environments which are poorly characterized or extreme, usually both, and predicting the habitability of extraterrestrial environments. We have developed a general astrobiological model for assessing the energetic and nutrient availability of poorly characterized environments to predict their potential biological productivity. NutMEG (nutrients, maintenance, energy and growth) can be used to estimate how much biomass an environment could host, and how that life might affect the local chemistry. It requires only an overall catabolic reaction and some knowledge of the local environment to begin making estimations, with many more customizable parameters, such as microbial adaptation. In this study, the model was configured to replicate laboratory data on the growth of methanogens. It was used to predict the effect of temperature and energy/nutrient limitation on their microbial growth rates, total biomass levels, and total biosignature production in laboratory-like conditions to explore how it could be applied to astrobiological problems. As temperature rises from 280 to 330 K, NutMEG predicts exponential drops in final biomass ( 10 9 − 10 6 cells l − 1 ) and total methane production ( 62 − 3 μ M ) despite an increase in peak growth rates ( 0.007 − 0.14 h − 1 ) for a typical methanogen in ideal conditions. This is caused by the increasing cost of microbial maintenance diverting energy away from growth processes. Restricting energy and nutrients exacerbates this trend. With minimal assumptions NutMEG can reliably replicate microbial growth behaviour, but better understanding of the synthesis and maintenance costs life must overcome in different extremes is required to improve its results further. NutMEG can help us assess the theoretical habitability of extraterrestrial environments and predict potential biomass and biosignature production, for example on exoplanets using minimum input parameters to guide observations.
Journal of The Royal... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsif.2020.0588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Royal... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsif.2020.0588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Royal Society Funded by:UKRI | Defining Aqueous Habitabl...UKRI| Defining Aqueous Habitable Conditions in the UniverseAuthors: P. M. Higgins; C. S. Cockell;In order to grow, reproduce and evolve life requires a supply of energy and nutrients. Astrobiology has the challenge of studying life on Earth in environments which are poorly characterized or extreme, usually both, and predicting the habitability of extraterrestrial environments. We have developed a general astrobiological model for assessing the energetic and nutrient availability of poorly characterized environments to predict their potential biological productivity. NutMEG (nutrients, maintenance, energy and growth) can be used to estimate how much biomass an environment could host, and how that life might affect the local chemistry. It requires only an overall catabolic reaction and some knowledge of the local environment to begin making estimations, with many more customizable parameters, such as microbial adaptation. In this study, the model was configured to replicate laboratory data on the growth of methanogens. It was used to predict the effect of temperature and energy/nutrient limitation on their microbial growth rates, total biomass levels, and total biosignature production in laboratory-like conditions to explore how it could be applied to astrobiological problems. As temperature rises from 280 to 330 K, NutMEG predicts exponential drops in final biomass ( 10 9 − 10 6 cells l − 1 ) and total methane production ( 62 − 3 μ M ) despite an increase in peak growth rates ( 0.007 − 0.14 h − 1 ) for a typical methanogen in ideal conditions. This is caused by the increasing cost of microbial maintenance diverting energy away from growth processes. Restricting energy and nutrients exacerbates this trend. With minimal assumptions NutMEG can reliably replicate microbial growth behaviour, but better understanding of the synthesis and maintenance costs life must overcome in different extremes is required to improve its results further. NutMEG can help us assess the theoretical habitability of extraterrestrial environments and predict potential biomass and biosignature production, for example on exoplanets using minimum input parameters to guide observations.
Journal of The Royal... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsif.2020.0588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Royal... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsif.2020.0588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 CroatiaPublisher:National and University Library of the Republic of Srpska Stoja Jotanović; Danijela Kondić; Duška Saša; Borut Bosančić; Gordana Đurić; Veljko Vorkapić; Ana Kojaković;This paper presents the results of the project titled "Agricultural Biomass Cross-border Development of Energy in Posavina” - ABCDE Posavina implemented within the IPA Cross- border Programme between Croatia and Bosnia and Herzegovina. Its main objective is to promote agro-bioenergy in rural economies by including utilisation of agricultural biomass for energy purposes in the Posavina region. The region includes Vukovar-Srijem County (VSC) in Croatia and four municipalities (Odžak, Domaljevac- Šamac, Orašje, Šamac) and Brčko District in Bosnia and Herzegovina (BiH). These areas represent valuable agricultural land with a good potential for economic utilisation. The analysis of agricultural biomass potential includes production of biogas in co-digestion of manure (cattle, pigs and poultry manure) and maize silage (input of maize silage is limited at 30% of feedstock mass) as well as biodiesel from oilseed rape and bioethanol from maize. Potential GHG savings are estimated for the biogas and biofuels use. Theoretical biogas energy potential is estimated at 1, 386 TJ/yr for VSC and 574 TJ/yr for BiH. Based on the theoretical potential for generation of electricity and heat from biogas, total installed capacity in VSC would be 19.8 MWe while 8.2 MWe in BiH. The corresponding theoretical potentials for biodiesel production are 4, 258 TJ/yr (VSC) and 1, 415 (BiH) while for bioethanol these are 6, 140 TJ/yr and 1, 689 TJ/yr, respectively. It is assumed that 50% of total theoretical biogas potential and 30% of total theoretical biofuel potential are achievable. Annual GHG savings for biogas use are estimated at 31.30 ktCO2-eq (VSC) and 26.84 ktCO2-eq (BiH). Annual GHG savings due to biodiesel use are estimated at 37.46-64.22 ktCO2-eq (VSC) and 12.45-21.34 ktCO2-eq (BiH) and for bioethanol use at 54.02-92.61 ktCO2-eq (VSC) and 14.86-25.48 ktCO2-eq (BiH).
Агрознање arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2012Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7251/agren1204653v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Агрознање arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2012Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7251/agren1204653v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 CroatiaPublisher:National and University Library of the Republic of Srpska Stoja Jotanović; Danijela Kondić; Duška Saša; Borut Bosančić; Gordana Đurić; Veljko Vorkapić; Ana Kojaković;This paper presents the results of the project titled "Agricultural Biomass Cross-border Development of Energy in Posavina” - ABCDE Posavina implemented within the IPA Cross- border Programme between Croatia and Bosnia and Herzegovina. Its main objective is to promote agro-bioenergy in rural economies by including utilisation of agricultural biomass for energy purposes in the Posavina region. The region includes Vukovar-Srijem County (VSC) in Croatia and four municipalities (Odžak, Domaljevac- Šamac, Orašje, Šamac) and Brčko District in Bosnia and Herzegovina (BiH). These areas represent valuable agricultural land with a good potential for economic utilisation. The analysis of agricultural biomass potential includes production of biogas in co-digestion of manure (cattle, pigs and poultry manure) and maize silage (input of maize silage is limited at 30% of feedstock mass) as well as biodiesel from oilseed rape and bioethanol from maize. Potential GHG savings are estimated for the biogas and biofuels use. Theoretical biogas energy potential is estimated at 1, 386 TJ/yr for VSC and 574 TJ/yr for BiH. Based on the theoretical potential for generation of electricity and heat from biogas, total installed capacity in VSC would be 19.8 MWe while 8.2 MWe in BiH. The corresponding theoretical potentials for biodiesel production are 4, 258 TJ/yr (VSC) and 1, 415 (BiH) while for bioethanol these are 6, 140 TJ/yr and 1, 689 TJ/yr, respectively. It is assumed that 50% of total theoretical biogas potential and 30% of total theoretical biofuel potential are achievable. Annual GHG savings for biogas use are estimated at 31.30 ktCO2-eq (VSC) and 26.84 ktCO2-eq (BiH). Annual GHG savings due to biodiesel use are estimated at 37.46-64.22 ktCO2-eq (VSC) and 12.45-21.34 ktCO2-eq (BiH) and for bioethanol use at 54.02-92.61 ktCO2-eq (VSC) and 14.86-25.48 ktCO2-eq (BiH).
Агрознање arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2012Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7251/agren1204653v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Агрознање arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2012Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7251/agren1204653v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ArgentinaPublisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP130100016Benjamin L. Turner; Paul Kardol; David A. Wardle; David A. Wardle; Raphael K. Didham; Raphael K. Didham; Etienne Laliberté; Etienne Laliberté; François P. Teste; François P. Teste;AbstractChanges in soil fertility during pedogenesis affect the quantity and quality of resources entering the belowground subsystem. Climate governs pedogenesis, yet how climate modulates responses of soil food webs to soil ageing remains unexplored because of the paucity of appropriate model systems. We characterised soil food webs along each of four retrogressive soil chronosequences situated across a strong regional climate gradient to show that belowground communities are predominantly shaped by changes in fertility rather than climate. Basal consumers showed hump‐shaped responses to soil ageing, which were propagated to higher‐order consumers. There was a shift in dominance from bacterial to fungal energy channels with increasing soil age, while the root energy channel was most important in intermediate‐aged soils. Our study highlights the overarching importance of soil fertility in regulating soil food webs, and indicates that belowground food webs will respond more strongly to shifts in soil resources than climate change.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ArgentinaPublisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP130100016Benjamin L. Turner; Paul Kardol; David A. Wardle; David A. Wardle; Raphael K. Didham; Raphael K. Didham; Etienne Laliberté; Etienne Laliberté; François P. Teste; François P. Teste;AbstractChanges in soil fertility during pedogenesis affect the quantity and quality of resources entering the belowground subsystem. Climate governs pedogenesis, yet how climate modulates responses of soil food webs to soil ageing remains unexplored because of the paucity of appropriate model systems. We characterised soil food webs along each of four retrogressive soil chronosequences situated across a strong regional climate gradient to show that belowground communities are predominantly shaped by changes in fertility rather than climate. Basal consumers showed hump‐shaped responses to soil ageing, which were propagated to higher‐order consumers. There was a shift in dominance from bacterial to fungal energy channels with increasing soil age, while the root energy channel was most important in intermediate‐aged soils. Our study highlights the overarching importance of soil fertility in regulating soil food webs, and indicates that belowground food webs will respond more strongly to shifts in soil resources than climate change.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Netherlands, United KingdomPublisher:Elsevier BV Gössling, S.; Garrod, B.; Aall, C.; Hille, J.; Peeters, P.M.;Food production and consumption have a range of sustainability implications, including their contribution to global emissions of greenhouse gases (GHGs). As some foodstuffs entail higher GHG emissions than others, managing their use in tourism-related contexts could make a significant contribution to climate change mitigation. This article reviews the carbon intensity of selected foods and discusses how foodservice providers could adapt their practices. It shows that even though food management could substantially reduce the GHG emissions of foodservice providers, its application is currently hampered by the complexity of food production chains and a lack of dependable data on the GHG intensity of foodstuffs. Nevertheless, it is possible to make a number of recommendations in respect of how foodservice providers can better purchase, prepare and present foods. Further research is now needed to refine and extend our understanding of the contribution that food management can make to reducing tourism’s carbon ‘foodprint’.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tourman.2010.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 233 citations 233 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tourman.2010.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Netherlands, United KingdomPublisher:Elsevier BV Gössling, S.; Garrod, B.; Aall, C.; Hille, J.; Peeters, P.M.;Food production and consumption have a range of sustainability implications, including their contribution to global emissions of greenhouse gases (GHGs). As some foodstuffs entail higher GHG emissions than others, managing their use in tourism-related contexts could make a significant contribution to climate change mitigation. This article reviews the carbon intensity of selected foods and discusses how foodservice providers could adapt their practices. It shows that even though food management could substantially reduce the GHG emissions of foodservice providers, its application is currently hampered by the complexity of food production chains and a lack of dependable data on the GHG intensity of foodstuffs. Nevertheless, it is possible to make a number of recommendations in respect of how foodservice providers can better purchase, prepare and present foods. Further research is now needed to refine and extend our understanding of the contribution that food management can make to reducing tourism’s carbon ‘foodprint’.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tourman.2010.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 233 citations 233 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tourman.2010.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Authors: Muhammad Akhlaq Mudassir; Fahd Rasul; Tasneem Khaliq; Muhammad Yaseen;pmid: 34536224
Pakistan is placed among the most vulnerable countries with relation to climate change and its impacts on agricultural productivity. Cotton is staged as the cash crop of the country and the main source of raw material for textile, oil, and feed industry. Varying environmental attributes have significant effects on the duration of vegetative and reproductive stages of cotton crop. To evaluate the potential impacts of varied temperatures regimes in different sowing times, field experiments were carried out throughout the cotton growing areas of Pakistan from Faisalabad in Central Punjab to RYK in Southern Punjab and Sakrand in Sindh to Dera Ismail Khan in Khyber Pakhtunkhwa (KPK) Province. Crop was sown on six different sowing dates starting from 1st March towards 15th May with 2-week intervals for two crop seasons (2016 and 2017). The timing of phenological events like emergence, squaring, flowering, and boll opening was recorded on calendar days and cumulative heat units (GDDs) were calculated for flowering and boll opening stages. Heat use efficiency for these sowing times was estimated. Data regarding yield-related parameters like opened bolls per plant, average boll weight, and seed cotton yield were also recorded during the study. Results revealed that duration of the growth stages was significantly affected by variation in mean thermal kinetics in varied sowing times in all four different environments. Seed cotton yield and heat use efficiency were also varied among the locations and sowing dates. The maximum seed cotton yield was recorded in Sakrand location at 15th April sowing date. The dependence of the phenological advancement on temperature and negative impacts of higher thermal stress on cotton productivity were also confirmed throughout the cotton growing zone of Pakistan.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-16067-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-16067-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Authors: Muhammad Akhlaq Mudassir; Fahd Rasul; Tasneem Khaliq; Muhammad Yaseen;pmid: 34536224
Pakistan is placed among the most vulnerable countries with relation to climate change and its impacts on agricultural productivity. Cotton is staged as the cash crop of the country and the main source of raw material for textile, oil, and feed industry. Varying environmental attributes have significant effects on the duration of vegetative and reproductive stages of cotton crop. To evaluate the potential impacts of varied temperatures regimes in different sowing times, field experiments were carried out throughout the cotton growing areas of Pakistan from Faisalabad in Central Punjab to RYK in Southern Punjab and Sakrand in Sindh to Dera Ismail Khan in Khyber Pakhtunkhwa (KPK) Province. Crop was sown on six different sowing dates starting from 1st March towards 15th May with 2-week intervals for two crop seasons (2016 and 2017). The timing of phenological events like emergence, squaring, flowering, and boll opening was recorded on calendar days and cumulative heat units (GDDs) were calculated for flowering and boll opening stages. Heat use efficiency for these sowing times was estimated. Data regarding yield-related parameters like opened bolls per plant, average boll weight, and seed cotton yield were also recorded during the study. Results revealed that duration of the growth stages was significantly affected by variation in mean thermal kinetics in varied sowing times in all four different environments. Seed cotton yield and heat use efficiency were also varied among the locations and sowing dates. The maximum seed cotton yield was recorded in Sakrand location at 15th April sowing date. The dependence of the phenological advancement on temperature and negative impacts of higher thermal stress on cotton productivity were also confirmed throughout the cotton growing zone of Pakistan.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-16067-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-16067-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, NetherlandsPublisher:Elsevier BV Authors: Marc van den Homberg; Aklilu Teklesadik; Dennis L.J. van den Berg; Gabriela Guimarães Nobre; +3 AuthorsMarc van den Homberg; Aklilu Teklesadik; Dennis L.J. van den Berg; Gabriela Guimarães Nobre; Gabriela Guimarães Nobre; Joris J.L. Westerveld; Sjoerd Stuit;Food insecurity is a growing concern due to man-made conflicts, climate change, and economic downturns. Forecasting the state of food insecurity is essential to be able to trigger early actions, for example, by humanitarian actors. To measure the actual state of food insecurity, expert and consensus-based approaches and surveys are currently used. Both require substantial manpower, time, and budget. This paper introduces an extreme gradient-boosting machine learning model to forecast monthly transitions in the state of food security in Ethiopia, at a spatial granularity of livelihood zones, and for lead times of one to 12 months, using open-source data. The transition in the state of food security, hereafter referred to as predictand, is represented by the Integrated Food Security Phase Classification Data. From 19 categories of datasets, 130 variables were derived and used as predictors of the transition in the state of food security. The predictors represent changes in climate and land, market, conflict, infrastructure, demographics and livelihood zone characteristics. The most relevant predictors are found to be food security history and surface soil moisture. Overall, the model performs best for forecasting Deteriorations and Improvements in the state of food security compared to the baselines. The proposed method performs (F1 macro score) at least twice as well as the best baseline (a dummy classifier) for a Deterioration. The model performs better when forecasting long-term (7 months; F1 macro average = 0.61) compared to short-term (3 months; F1 macro average = 0.51). Combining machine learning, Integrated Phase Classification (IPC) ratings from monitoring systems, and open data can add value to existing consensus-based forecasting approaches as this combination provides longer lead times and more regular updates. Our approach can also be transferred to other countries as most of the data on the predictors are openly available from global data repositories.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021License: CC BY NC NDData sources: Pure Utrecht UniversityThe Science of The Total EnvironmentArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.147366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021License: CC BY NC NDData sources: Pure Utrecht UniversityThe Science of The Total EnvironmentArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.147366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, NetherlandsPublisher:Elsevier BV Authors: Marc van den Homberg; Aklilu Teklesadik; Dennis L.J. van den Berg; Gabriela Guimarães Nobre; +3 AuthorsMarc van den Homberg; Aklilu Teklesadik; Dennis L.J. van den Berg; Gabriela Guimarães Nobre; Gabriela Guimarães Nobre; Joris J.L. Westerveld; Sjoerd Stuit;Food insecurity is a growing concern due to man-made conflicts, climate change, and economic downturns. Forecasting the state of food insecurity is essential to be able to trigger early actions, for example, by humanitarian actors. To measure the actual state of food insecurity, expert and consensus-based approaches and surveys are currently used. Both require substantial manpower, time, and budget. This paper introduces an extreme gradient-boosting machine learning model to forecast monthly transitions in the state of food security in Ethiopia, at a spatial granularity of livelihood zones, and for lead times of one to 12 months, using open-source data. The transition in the state of food security, hereafter referred to as predictand, is represented by the Integrated Food Security Phase Classification Data. From 19 categories of datasets, 130 variables were derived and used as predictors of the transition in the state of food security. The predictors represent changes in climate and land, market, conflict, infrastructure, demographics and livelihood zone characteristics. The most relevant predictors are found to be food security history and surface soil moisture. Overall, the model performs best for forecasting Deteriorations and Improvements in the state of food security compared to the baselines. The proposed method performs (F1 macro score) at least twice as well as the best baseline (a dummy classifier) for a Deterioration. The model performs better when forecasting long-term (7 months; F1 macro average = 0.61) compared to short-term (3 months; F1 macro average = 0.51). Combining machine learning, Integrated Phase Classification (IPC) ratings from monitoring systems, and open data can add value to existing consensus-based forecasting approaches as this combination provides longer lead times and more regular updates. Our approach can also be transferred to other countries as most of the data on the predictors are openly available from global data repositories.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021License: CC BY NC NDData sources: Pure Utrecht UniversityThe Science of The Total EnvironmentArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.147366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021License: CC BY NC NDData sources: Pure Utrecht UniversityThe Science of The Total EnvironmentArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.147366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu