Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
45 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted
  • 2. Zero hunger
  • 3. Good health
  • GB
  • AU

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kintché, Kokou; Guibert, Hervé; Bonfoh, Bassirou; Tittonell, Pablo;

    Using 40-year experiment data from a mono-modal rainfall area of northern Togo, we analyzed soil fertility dynamics when 2 and 3-year fallows were alternated with 3-year rotation of groundnut, cotton and sorghum. The control treatment consisted to continuous cultivate the soil in a rotation of groundnut/cotton/sorghum without fallow periods. For each rotation, two fertilisation rates were applied: no fertilisation and mineral fertiliser application during the cropping and/or the fallow periods. Yields of unfertilised crops, which averaged 1 t ha-1 during the first years of cultivation, were often nil in the long-term. In the long-term, yields of fertilised cotton and sorghum decreased by 32 and 50 %, respectively compared to the average of 2.4 and 1.6 t ha-1 obtained during the first decade of cultivation. The long-term decline in crop productivity was mitigated when fallow periods were alternated with cropping periods, and consequently there was partial compensation in terms of production for the unproductive fallowed plots. Long-term yields of fertilised cotton and sorghum in the periodically fallowed plots were 40 and 50 % higher than those in continuously cropped plots, respectively; they were 90 and 60 % higher than those in continuously cropped plots without fertilisation. Like for crop productivity, soil C, N and exchangeable Ca and Mg decreased less in periodically fallowed plots than in continuously cropped plots. The limited soil C decline when fallows were alternated with crops appears to be the consequence of no-tillage period rather than the effect of the highest C inputs to the soil.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nutrient Cycling in ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agritrop
    Article . 2015
    Data sources: Agritrop
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nutrient Cycling in Agroecosystems
    Article . 2015 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    15
    citations15
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nutrient Cycling in ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agritrop
      Article . 2015
      Data sources: Agritrop
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nutrient Cycling in Agroecosystems
      Article . 2015 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jos G. Maessen; Patrick W. Weerwind; Koen D. Reesink; Yuri M. Ganushchak;

    The hollow-fibre oxygenator is a key component of any extracorporeal circuit used to provide cardiopulmonary bypass (CPB) during open-heart surgery. Since the oxygenator is placed downstream of the pump, the energy losses over it have a direct impact on the quality of pulsatile pressure and flow waveforms. The objective of this study was to describe the effects of hydrodynamic characteristics of the oxygenator on energy transfer during pulsatile, normothermic CPB. Twenty-three adult patients scheduled for coronary bypass surgery were divided randomly into two groups, using either an oxygenator (Group 1) with a relatively high-resistance and low-compliance (2079 ± 148 dyn.s.cm-5 and 0.00348 ± 0.00071 ml.mmHg-1, respectively) or an oxygenator (Group 2) with a relatively low-resistance and high-compliance (884 ± 464 dyn.s.cm-5 and 0.01325 ± 0.00161 ml .mmHg-1, respectively). During perfusion, pre- and post-oxygenator pressures, radial artery pressure, and blood flow were recorded simultaneously. A 32% decline of mean pressure was observed in Group 1 and a 16% decline in Group 2 (p<0.0001). Another decrease by approximately 73% in mean pressure in the rest of the perfusion system was noted in both groups. The mean radial artery pressure did not differ between the groups (74 ± 6 mmHg in Group 1 and 73 ± 6 mmHg in Group 2, p=0.608). Although lower total energy transfer indices were noticed through the low-resistance oxygenator (Group 2), both oxygenators showed a decrease of the generated pump oscillatory energy of approximately 50%. Despite the differences in resistance and compliance of the hollow-fibre oxygenators used, both oxygenators cause a comparable loss of generated oscillatory energy. Exclusion of the oxygenator downstream of the pulsatile pump would improve energy transfer during CPB.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Perfusionarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Perfusion
    Article . 2011
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Perfusionarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Perfusion
      Article . 2011
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Alvar Braathen; Alvar Braathen; Leif Larsen; Snorre Olaussen; +4 Authors

    Storage capacity is a key aspect when validating potential CO2 sequestration sites. Most CO2 storage projects, for obvious reasons, target conventional aquifers (e.g., saline aquifers, depleted hydrocarbon fields) with good reservoir properties and ample subsurface data. However, non-geological factors, such as proximity to the CO2 source, may require storing CO2 in geologically “less-than-ideal” sites. We here present a first-order CO2 storage resource estimate of such an unconventional storage unit, a naturally fractured, compartmentalized and underpressured siliciclastic aquifer located at 670–1,000 m below Longyearbyen, Arctic Norway. Water injection tests confirm the injectivity of the reservoir. Capacity calculations, based on the US DOE guidelines for CO2 storage resource estimation, were implemented in a stochastic volumetric workflow. All available data were used to specify input parameters and their probability distributions. The areal extent of the compartmentalized reservoir is poorly constrained, encouraging a scenario-based approach. Other high-impact parameters influencing storage resource estimates include CO2 saturation, CO2 density and the storage efficiency factor. The hydrodynamic effects of storing CO2 in a compartmentalized aquifer are accounted for by calculating probable storage efficiency factors (0.04–0.79 %) in a fully closed system. The results are ultimately linked to the chosen scenario, with two orders of magnitude difference between scenarios. The fracture network contributes with up to 2 % to the final volumes. The derived workflow validates CO2 storage sites based on initial feasibility assessments, and may be applied to aid decision making at other unconventional CO2 storage sites with significant data uncertainty.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Earth ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Earth Sciences
    Article . 2014 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    33
    citations33
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Earth ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Earth Sciences
      Article . 2014 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Dim Coumou; William Hare; Julia Reinhardt; Mahé Perrette; +6 Authors

    The repercussions of climate change will be felt in various ways throughout both natural and human systems in Sub-Saharan Africa. Climate change projections for this region point to a warming trend, particularly in the inland subtropics; frequent occurrence of extreme heat events; increasing aridity; and changes in rainfall—with a particularly pronounced decline in southern Africa and an increase in East Africa. The region could also experience as much as one meter of sea-level rise by the end of this century under a 4 °C warming scenario. Sub-Saharan Africa’s already high rates of undernutrition and infectious disease can be expected to increase compared to a scenario without climate change. Particularly vulnerable to these climatic changes are the rainfed agricultural systems on which the livelihoods of a large proportion of the region’s population currently depend. As agricultural livelihoods become more precarious, the rate of rural–urban migration may be expected to grow, adding to the already significant urbanization trend in the region. The movement of people into informal settlements may expose them to a variety of risks different but no less serious than those faced in their place of origin, including outbreaks of infectious disease, flash flooding and food price increases. Impacts across sectors are likely to amplify the overall effect but remain little understood.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Regional Environment...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Regional Environmental Change
    Article . 2016 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    593
    citations593
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Regional Environment...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Regional Environmental Change
      Article . 2016 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kenneth C. H. Fearon; Judith de Vos-Geelen; Annemie M. W. J. Schols;

    To review new putative mechanisms involved in the pathophysiology of a disturbed energy balance in cancer cachexia, which can lead to novel targets for clinical cachexia management. In the context of rapid developments in tumour treatment with potential systemic consequences, this article reviews recent data on energy requirements. Furthermore, we focus on new insights in brown adipose tissue (BAT) activity and reward processing in the brain in relation to the cachexia process.Nearly no new data have been published on energy requirements of cancer patients in the light of comprehensive new therapies in oncology. New developments, such as the introduction of staging with 18F-fluorodeoxyglucose PET-computed tomography scanning, led to the observation that BAT activation may contribute to impaired energy balance in cancer cachexia. Animal and human data to date provide an indication that BAT activation indeed occurs, but its quantitative impact on the degree of cachexia is controversial. The peripheral and central nervous system is known to influence satiation, with a possible role for impaired food reward processing in the brain. To date, there are limited confirmatory data, but this is an interesting new area to explore for better understanding and treating cancer-induced anorexia.The multimodal approach to counteract cancer cachexia should expand its targets to BAT and food reward processing in the brain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Opinion in C...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wei Qin; Zhaohai Bai; Rongfeng Jiang; Yong Hou; +5 Authors

    Livestock production in peri-urban areas constitutes an important sub-sector of the agricultural production system in China, and contributes to environmental degradation and local air borne pollution contributing to smog. As a result, local policies are being implemented to safeguard the environment. However, there has been little attempt to quantify the impact of environmental policies on livestock production structure, spatial distribution and their related greenhouse gases (GHGs) and ammonia (NH3) emissions. Here, we calculated the inventories of GHGs and NH3 emissions for 2010 and 2014 for peri-urban livestock production in Beijing, using reliable spatially explicit data, which was collected from 1748 industrial farms in 2010 and 2351 industrial farms in 2014, including pig, dairy, beef cattle, poultry and sheep farms. Our estimates indicated that total industrial livestock production increased by 17% between 2010 and 2014, even under the more strict environmental protection polices, with farm size decreasing by between 7% and 47%. Up to 50% of the industrial livestock farms have remained in operation, with the rest closing down or being moved to other regions. Following this trend, total GHGs emission decreased from 5.0 to 4.5 Tg CO2-eq between 2010 and 2014. Most of the GHGs emission reduction was due to the lowering of energy related carbon dioxide (CO2) emission in 2014. Total NH3 emission decreased from 102 to 96 Gg between 2010 and 2014, mainly due to more stringent environmental regulations for new and extended farms (increased in farm size), e.g. Discharge standard for pollutants for livestock and poultry breeding. Our study identified that GHGs and NH3 emission hotspots were concentrated in suburban areas (around the city centre and with less agricultural resource and population density) in 2010. However, between 2010 and 2014 these hotspots moved to the exurban plain and mountain area following the closure or sub-division of intensive farms in suburban regions and construction of new and small farms in exurban areas (around the suburban and with more agricultural resource and lower population density). Scenario analysis suggests that total GHGs emission can be reduced by up to 1.0 Tg CO2-eq (23% of total livestock sector emissions) in Beijing, using a combination of modifications of farm type, livestock diet and manure management. The integrated scenario can reduce CH4, N2O and NH3 emissions by 27%, 9% and 35%, compared to the reference scenario. Within this short period of time (5 years), policies have had direct impacts on peri-urban livestock production in Beijing, resulting in marked changes in the structure of different livestock sectors, as well as the GHGs and NH3 emission inventories and their spatial distribution. Our analysis clearly shows that the success of these (and future) polices relies on optimizing spatial management of new livestock production systems. Policy and farmer guidance should focus on optimizing livestock diet and on-farm manure management, industrial production systems and the pig and poultry sectors in peri-urban regions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    61
    citations61
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Qiu, H.; Huang, J.; Keyzer, M.; van Ween, W.; +3 Authors

    With concerns of energy shortages, China, like the United States, European Union, and other countries, is promoting the development of biofuels. However, China also faces high future demand for food and feed, and so its bioenergy program must try to strike a balance between food and fuel. The goals of this paper are to provide an overview of China's current bioethanol program, identify the potential for using marginal lands for feedstock production, and measure the likely impacts of China's bioethanol development on the nation's future food self-sufficiency. Our results indicate that the potential to use marginal land for bioethanol feedstock production is limited. Applying a modeling approach based on highly disaggregated data by region, our analysis shows that the target of 10 million t of bioethanol by 2020 seems to be a prudent target, causing no major disturbances in China's food security. But the expansion of bioethanol may increase environmental pressures due to the higher levels of fertilizer use. This study shows also that if China were able to cultivate 45% of its required bioethanol feedstock on new marginal land, it would further limit negative effects of the bioethanol program on the domestic and international economy, but at the expense of having to apply another 750 thousand t of fertilizer.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Quality
    Article . 2011 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Quality
      Article . 2011 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Elke A. Trautwein; Harry P.F. Peters; David J. Mela; Christine Edwards; +4 Authors

    Background: The gut microbiota is a putative target for dietary interventions for cardio-metabolic health (CMH), including prevention of obesity, type 2 diabetes, and cardiovascular disease. This has generated considerable interest, but the actual feasibility for diet or specific foods to induce measurable, sustained and meaningful benefits for CMH risk by this route remains uncertain. Scope and approach: This report summarises an expert workshop assessing the gut microbiota as a relevant, feasible and competitive target for CMH benefits by dietary interventions. It summarises the expert presentations and overall view of participants on the current status and outlook, considering also implications for the food industry. Key findings and conclusions: Changing the gut microbiota by diet is possible, but an assessment of the impact on CMH risk is still needed, including clarifying advantages above other known dietary routes. The individual gut microbiota composition may in part determine the impact of diet and its effects on health. Therefore, future developments may identify individuals at risk and thus possible modification of the microbiota to achieve benefits in susceptible (sub) populations depending on their initial microbiota composition. Prebiotics currently appear to be the most promising ingredients; however, required doses may be relatively high and the actual role of gut microbiota needs further assessment. Overall, causal evidence linking gut microbiota interventions with CMH benefits are developing in preclinical models but are still lacking in humans. A significant research effort is needed and ongoing to determine whether potential effects can be reliably substantiated.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Food Scien...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Trends in Food Science & Technology
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Food Scien...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Trends in Food Science & Technology
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Claudia Ringler; Richard S.J. Tol; Katrin Rehdanz; Katrin Rehdanz; +2 Authors

    South Africa is likely to experience higher temperatures and less rainfall as a result of climate change. Resulting changes in regional water endowments and soil moisture will affect the productivity of cropland, leading to changes in food production and international trade patterns. High population growth elsewhere in Africa and Asia will put further pressure on natural resources and food security in South Africa. Based on four climate change scenarios from two general circulation models (CSIRO and MIROC) and two IPCC SRES emission scenarios (A1B, B1), this study assesses the potential impacts of climate change on global agriculture and explores two alternative adaptation scenarios for South Africa. The analysis uses an updated GTAP-W model, which distinguishes between rainfed and irrigated agriculture and implements water as an explicit factor of production for irrigated agriculture. For South Africa to adapt to the adverse consequences of global climate change, it would require yield improvements of more than 20 percent over baseline investments in agricultural research and development. A doubling of irrigation development, on the other hand, will not be sufficient to reverse adverse impacts from climate change in the country.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Resources and ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Resources and Economics
    Article . 2014 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    93
    citations93
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Resources and ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Resources and Economics
      Article . 2014 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Angélick Schweizer; Thomas Heidenreich; Jane Grose; Carmen Álvarez-Nieto; +5 Authors

    Education in sustainable development is a goal recognised by a large number of countries and a vital concept in healthcare. It is therefore important that nurse education incorporates elements of sustainable development into nursing education curricula. However, there is limited research on student nurses' attitudes towards sustainability and no comparison of attitudes towards sustainability and its inclusion in the nursing curriculum across Europe.This project aims to assess student nurses' attitudes towards sustainability, its relevance to nursing and its inclusion in the nursing curricula. 1. To assess base-line attitudes at the start of nursing and midwifery training; 2. To compare sustainability awareness between students participating in training in a number of European universities.A comparative survey design using the Sustainability Attitudes in Nursing Survey (SANS_2) questionnaire.Nursing classes of Universities and Nursing Schools in four European countries were investigated using a questionnaire consisting of five sustainability-related items.916 nursing students (UK: 450, Germany: 196, Spain: 124, Switzerland: 146).Standard descriptive and inferential statistical methods were used to establish psychometric quality (Principal Components Analysis, Cronbach's alpha, Pearson correlations) and compare student nurses from the four countries.The reliability of SANS_2 was good (Cronbach's alpha=.82) and the five items loaded on a single factor which explained 58% of variance. ANOVA of the SANS_2 total score showed significant differences between countries with German nursing students showing more sustainability awareness than students from the UK and Spain.SANS_2 is a reliable instrument to assess nursing students' sustainability awareness; there are significant differences in sustainability awareness of students of different European countries. Limitations of the study include non-random sampling, possible method effects and social desirability effects.Sustainability will become increasingly important in clinical practice; greater knowledge about the attitudes of nurses towards sustainability can support the development and testing of sustainability-focused teaching and learning materials.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nurse Education Toda...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nurse Education Today
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    58
    citations58
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nurse Education Toda...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nurse Education Today
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
45 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kintché, Kokou; Guibert, Hervé; Bonfoh, Bassirou; Tittonell, Pablo;

    Using 40-year experiment data from a mono-modal rainfall area of northern Togo, we analyzed soil fertility dynamics when 2 and 3-year fallows were alternated with 3-year rotation of groundnut, cotton and sorghum. The control treatment consisted to continuous cultivate the soil in a rotation of groundnut/cotton/sorghum without fallow periods. For each rotation, two fertilisation rates were applied: no fertilisation and mineral fertiliser application during the cropping and/or the fallow periods. Yields of unfertilised crops, which averaged 1 t ha-1 during the first years of cultivation, were often nil in the long-term. In the long-term, yields of fertilised cotton and sorghum decreased by 32 and 50 %, respectively compared to the average of 2.4 and 1.6 t ha-1 obtained during the first decade of cultivation. The long-term decline in crop productivity was mitigated when fallow periods were alternated with cropping periods, and consequently there was partial compensation in terms of production for the unproductive fallowed plots. Long-term yields of fertilised cotton and sorghum in the periodically fallowed plots were 40 and 50 % higher than those in continuously cropped plots, respectively; they were 90 and 60 % higher than those in continuously cropped plots without fertilisation. Like for crop productivity, soil C, N and exchangeable Ca and Mg decreased less in periodically fallowed plots than in continuously cropped plots. The limited soil C decline when fallows were alternated with crops appears to be the consequence of no-tillage period rather than the effect of the highest C inputs to the soil.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nutrient Cycling in ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agritrop
    Article . 2015
    Data sources: Agritrop
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nutrient Cycling in Agroecosystems
    Article . 2015 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    15
    citations15
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nutrient Cycling in ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agritrop
      Article . 2015
      Data sources: Agritrop
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nutrient Cycling in Agroecosystems
      Article . 2015 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jos G. Maessen; Patrick W. Weerwind; Koen D. Reesink; Yuri M. Ganushchak;

    The hollow-fibre oxygenator is a key component of any extracorporeal circuit used to provide cardiopulmonary bypass (CPB) during open-heart surgery. Since the oxygenator is placed downstream of the pump, the energy losses over it have a direct impact on the quality of pulsatile pressure and flow waveforms. The objective of this study was to describe the effects of hydrodynamic characteristics of the oxygenator on energy transfer during pulsatile, normothermic CPB. Twenty-three adult patients scheduled for coronary bypass surgery were divided randomly into two groups, using either an oxygenator (Group 1) with a relatively high-resistance and low-compliance (2079 ± 148 dyn.s.cm-5 and 0.00348 ± 0.00071 ml.mmHg-1, respectively) or an oxygenator (Group 2) with a relatively low-resistance and high-compliance (884 ± 464 dyn.s.cm-5 and 0.01325 ± 0.00161 ml .mmHg-1, respectively). During perfusion, pre- and post-oxygenator pressures, radial artery pressure, and blood flow were recorded simultaneously. A 32% decline of mean pressure was observed in Group 1 and a 16% decline in Group 2 (p<0.0001). Another decrease by approximately 73% in mean pressure in the rest of the perfusion system was noted in both groups. The mean radial artery pressure did not differ between the groups (74 ± 6 mmHg in Group 1 and 73 ± 6 mmHg in Group 2, p=0.608). Although lower total energy transfer indices were noticed through the low-resistance oxygenator (Group 2), both oxygenators showed a decrease of the generated pump oscillatory energy of approximately 50%. Despite the differences in resistance and compliance of the hollow-fibre oxygenators used, both oxygenators cause a comparable loss of generated oscillatory energy. Exclusion of the oxygenator downstream of the pulsatile pump would improve energy transfer during CPB.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Perfusionarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Perfusion
    Article . 2011
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Perfusionarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Perfusion
      Article . 2011
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Alvar Braathen; Alvar Braathen; Leif Larsen; Snorre Olaussen; +4 Authors

    Storage capacity is a key aspect when validating potential CO2 sequestration sites. Most CO2 storage projects, for obvious reasons, target conventional aquifers (e.g., saline aquifers, depleted hydrocarbon fields) with good reservoir properties and ample subsurface data. However, non-geological factors, such as proximity to the CO2 source, may require storing CO2 in geologically “less-than-ideal” sites. We here present a first-order CO2 storage resource estimate of such an unconventional storage unit, a naturally fractured, compartmentalized and underpressured siliciclastic aquifer located at 670–1,000 m below Longyearbyen, Arctic Norway. Water injection tests confirm the injectivity of the reservoir. Capacity calculations, based on the US DOE guidelines for CO2 storage resource estimation, were implemented in a stochastic volumetric workflow. All available data were used to specify input parameters and their probability distributions. The areal extent of the compartmentalized reservoir is poorly constrained, encouraging a scenario-based approach. Other high-impact parameters influencing storage resource estimates include CO2 saturation, CO2 density and the storage efficiency factor. The hydrodynamic effects of storing CO2 in a compartmentalized aquifer are accounted for by calculating probable storage efficiency factors (0.04–0.79 %) in a fully closed system. The results are ultimately linked to the chosen scenario, with two orders of magnitude difference between scenarios. The fracture network contributes with up to 2 % to the final volumes. The derived workflow validates CO2 storage sites based on initial feasibility assessments, and may be applied to aid decision making at other unconventional CO2 storage sites with significant data uncertainty.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Earth ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Earth Sciences
    Article . 2014 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    33
    citations33
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Earth ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Earth Sciences
      Article . 2014 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Dim Coumou; William Hare; Julia Reinhardt; Mahé Perrette; +6 Authors

    The repercussions of climate change will be felt in various ways throughout both natural and human systems in Sub-Saharan Africa. Climate change projections for this region point to a warming trend, particularly in the inland subtropics; frequent occurrence of extreme heat events; increasing aridity; and changes in rainfall—with a particularly pronounced decline in southern Africa and an increase in East Africa. The region could also experience as much as one meter of sea-level rise by the end of this century under a 4 °C warming scenario. Sub-Saharan Africa’s already high rates of undernutrition and infectious disease can be expected to increase compared to a scenario without climate change. Particularly vulnerable to these climatic changes are the rainfed agricultural systems on which the livelihoods of a large proportion of the region’s population currently depend. As agricultural livelihoods become more precarious, the rate of rural–urban migration may be expected to grow, adding to the already significant urbanization trend in the region. The movement of people into informal settlements may expose them to a variety of risks different but no less serious than those faced in their place of origin, including outbreaks of infectious disease, flash flooding and food price increases. Impacts across sectors are likely to amplify the overall effect but remain little understood.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Regional Environment...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Regional Environmental Change
    Article . 2016 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    593
    citations593
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Regional Environment...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Regional Environmental Change
      Article . 2016 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kenneth C. H. Fearon; Judith de Vos-Geelen; Annemie M. W. J. Schols;

    To review new putative mechanisms involved in the pathophysiology of a disturbed energy balance in cancer cachexia, which can lead to novel targets for clinical cachexia management. In the context of rapid developments in tumour treatment with potential systemic consequences, this article reviews recent data on energy requirements. Furthermore, we focus on new insights in brown adipose tissue (BAT) activity and reward processing in the brain in relation to the cachexia process.Nearly no new data have been published on energy requirements of cancer patients in the light of comprehensive new therapies in oncology. New developments, such as the introduction of staging with 18F-fluorodeoxyglucose PET-computed tomography scanning, led to the observation that BAT activation may contribute to impaired energy balance in cancer cachexia. Animal and human data to date provide an indication that BAT activation indeed occurs, but its quantitative impact on the degree of cachexia is controversial. The peripheral and central nervous system is known to influence satiation, with a possible role for impaired food reward processing in the brain. To date, there are limited confirmatory data, but this is an interesting new area to explore for better understanding and treating cancer-induced anorexia.The multimodal approach to counteract cancer cachexia should expand its targets to BAT and food reward processing in the brain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Opinion in C...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wei Qin; Zhaohai Bai; Rongfeng Jiang; Yong Hou; +5 Authors

    Livestock production in peri-urban areas constitutes an important sub-sector of the agricultural production system in China, and contributes to environmental degradation and local air borne pollution contributing to smog. As a result, local policies are being implemented to safeguard the environment. However, there has been little attempt to quantify the impact of environmental policies on livestock production structure, spatial distribution and their related greenhouse gases (GHGs) and ammonia (NH3) emissions. Here, we calculated the inventories of GHGs and NH3 emissions for 2010 and 2014 for peri-urban livestock production in Beijing, using reliable spatially explicit data, which was collected from 1748 industrial farms in 2010 and 2351 industrial farms in 2014, including pig, dairy, beef cattle, poultry and sheep farms. Our estimates indicated that total industrial livestock production increased by 17% between 2010 and 2014, even under the more strict environmental protection polices, with farm size decreasing by between 7% and 47%. Up to 50% of the industrial livestock farms have remained in operation, with the rest closing down or being moved to other regions. Following this trend, total GHGs emission decreased from 5.0 to 4.5 Tg CO2-eq between 2010 and 2014. Most of the GHGs emission reduction was due to the lowering of energy related carbon dioxide (CO2) emission in 2014. Total NH3 emission decreased from 102 to 96 Gg between 2010 and 2014, mainly due to more stringent environmental regulations for new and extended farms (increased in farm size), e.g. Discharge standard for pollutants for livestock and poultry breeding. Our study identified that GHGs and NH3 emission hotspots were concentrated in suburban areas (around the city centre and with less agricultural resource and population density) in 2010. However, between 2010 and 2014 these hotspots moved to the exurban plain and mountain area following the closure or sub-division of intensive farms in suburban regions and construction of new and small farms in exurban areas (around the suburban and with more agricultural resource and lower population density). Scenario analysis suggests that total GHGs emission can be reduced by up to 1.0 Tg CO2-eq (23% of total livestock sector emissions) in Beijing, using a combination of modifications of farm type, livestock diet and manure management. The integrated scenario can reduce CH4, N2O and NH3 emissions by 27%, 9% and 35%, compared to the reference scenario. Within this short period of time (5 years), policies have had direct impacts on peri-urban livestock production in Beijing, resulting in marked changes in the structure of different livestock sectors, as well as the GHGs and NH3 emission inventories and their spatial distribution. Our analysis clearly shows that the success of these (and future) polices relies on optimizing spatial management of new livestock production systems. Policy and farmer guidance should focus on optimizing livestock diet and on-farm manure management, industrial production systems and the pig and poultry sectors in peri-urban regions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    61
    citations61
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Qiu, H.; Huang, J.; Keyzer, M.; van Ween, W.; +3 Authors

    With concerns of energy shortages, China, like the United States, European Union, and other countries, is promoting the development of biofuels. However, China also faces high future demand for food and feed, and so its bioenergy program must try to strike a balance between food and fuel. The goals of this paper are to provide an overview of China's current bioethanol program, identify the potential for using marginal lands for feedstock production, and measure the likely impacts of China's bioethanol development on the nation's future food self-sufficiency. Our results indicate that the potential to use marginal land for bioethanol feedstock production is limited. Applying a modeling approach based on highly disaggregated data by region, our analysis shows that the target of 10 million t of bioethanol by 2020 seems to be a prudent target, causing no major disturbances in China's food security. But the expansion of bioethanol may increase environmental pressures due to the higher levels of fertilizer use. This study shows also that if China were able to cultivate 45% of its required bioethanol feedstock on new marginal land, it would further limit negative effects of the bioethanol program on the domestic and international economy, but at the expense of having to apply another 750 thousand t of fertilizer.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Quality
    Article . 2011 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Quality
      Article . 2011 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Elke A. Trautwein; Harry P.F. Peters; David J. Mela; Christine Edwards; +4 Authors

    Background: The gut microbiota is a putative target for dietary interventions for cardio-metabolic health (CMH), including prevention of obesity, type 2 diabetes, and cardiovascular disease. This has generated considerable interest, but the actual feasibility for diet or specific foods to induce measurable, sustained and meaningful benefits for CMH risk by this route remains uncertain. Scope and approach: This report summarises an expert workshop assessing the gut microbiota as a relevant, feasible and competitive target for CMH benefits by dietary interventions. It summarises the expert presentations and overall view of participants on the current status and outlook, considering also implications for the food industry. Key findings and conclusions: Changing the gut microbiota by diet is possible, but an assessment of the impact on CMH risk is still needed, including clarifying advantages above other known dietary routes. The individual gut microbiota composition may in part determine the impact of diet and its effects on health. Therefore, future developments may identify individuals at risk and thus possible modification of the microbiota to achieve benefits in susceptible (sub) populations depending on their initial microbiota composition. Prebiotics currently appear to be the most promising ingredients; however, required doses may be relatively high and the actual role of gut microbiota needs further assessment. Overall, causal evidence linking gut microbiota interventions with CMH benefits are developing in preclinical models but are still lacking in humans. A significant research effort is needed and ongoing to determine whether potential effects can be reliably substantiated.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Food Scien...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Trends in Food Science & Technology
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Food Scien...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Trends in Food Science & Technology
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Claudia Ringler; Richard S.J. Tol; Katrin Rehdanz; Katrin Rehdanz; +2 Authors

    South Africa is likely to experience higher temperatures and less rainfall as a result of climate change. Resulting changes in regional water endowments and soil moisture will affect the productivity of cropland, leading to changes in food production and international trade patterns. High population growth elsewhere in Africa and Asia will put further pressure on natural resources and food security in South Africa. Based on four climate change scenarios from two general circulation models (CSIRO and MIROC) and two IPCC SRES emission scenarios (A1B, B1), this study assesses the potential impacts of climate change on global agriculture and explores two alternative adaptation scenarios for South Africa. The analysis uses an updated GTAP-W model, which distinguishes between rainfed and irrigated agriculture and implements water as an explicit factor of production for irrigated agriculture. For South Africa to adapt to the adverse consequences of global climate change, it would require yield improvements of more than 20 percent over baseline investments in agricultural research and development. A doubling of irrigation development, on the other hand, will not be sufficient to reverse adverse impacts from climate change in the country.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Resources and ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Resources and Economics
    Article . 2014 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    93
    citations93
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Resources and ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Resources and Economics
      Article . 2014 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Angélick Schweizer; Thomas Heidenreich; Jane Grose; Carmen Álvarez-Nieto; +5 Authors

    Education in sustainable development is a goal recognised by a large number of countries and a vital concept in healthcare. It is therefore important that nurse education incorporates elements of sustainable development into nursing education curricula. However, there is limited research on student nurses' attitudes towards sustainability and no comparison of attitudes towards sustainability and its inclusion in the nursing curriculum across Europe.This project aims to assess student nurses' attitudes towards sustainability, its relevance to nursing and its inclusion in the nursing curricula. 1. To assess base-line attitudes at the start of nursing and midwifery training; 2. To compare sustainability awareness between students participating in training in a number of European universities.A comparative survey design using the Sustainability Attitudes in Nursing Survey (SANS_2) questionnaire.Nursing classes of Universities and Nursing Schools in four European countries were investigated using a questionnaire consisting of five sustainability-related items.916 nursing students (UK: 450, Germany: 196, Spain: 124, Switzerland: 146).Standard descriptive and inferential statistical methods were used to establish psychometric quality (Principal Components Analysis, Cronbach's alpha, Pearson correlations) and compare student nurses from the four countries.The reliability of SANS_2 was good (Cronbach's alpha=.82) and the five items loaded on a single factor which explained 58% of variance. ANOVA of the SANS_2 total score showed significant differences between countries with German nursing students showing more sustainability awareness than students from the UK and Spain.SANS_2 is a reliable instrument to assess nursing students' sustainability awareness; there are significant differences in sustainability awareness of students of different European countries. Limitations of the study include non-random sampling, possible method effects and social desirability effects.Sustainability will become increasingly important in clinical practice; greater knowledge about the attitudes of nurses towards sustainability can support the development and testing of sustainability-focused teaching and learning materials.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nurse Education Toda...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nurse Education Today
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    58
    citations58
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nurse Education Toda...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nurse Education Today
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.