- home
- Advanced Search
- Energy Research
- biological sciences
- 2. Zero hunger
- US
- GB
- AU
- CA
- Energy Research
- biological sciences
- 2. Zero hunger
- US
- GB
- AU
- CA
description Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Antonio Lupini; Maria Polsia Princi; Fabrizio Araniti; Anthony J. Miller; Francesco Sunseri; Maria Rosa Abenavoli;Urea is the most common nitrogen (N) fertilizer in agriculture, due to its cheaper price and high N content. Although the reciprocal influence between NO3- and NH4+ nutrition are well known, urea (U) interactions with these N-inorganic forms are poorly studied. Here, the responses of two tomato genotypes to ammonium nitrate (AN), U alone or in combination were investigated. Significant differences in root and shoot biomass between genotypes were observed. Under AN+U supply, Linosa showed higher biomass compared to UC82, exhibiting also higher values for many root architectural traits. Linosa showed higher Nitrogen Uptake (NUpE) and Utilization Efficiency (NUtE) compared to UC82, under AN+U nutrition. Interestingly, Linosa exhibited also a significantly higher DUR3 transcript abundance. These results underline the beneficial effect of AN+U nutrition, highlighting new molecular and physiological strategies for selecting crops that can be used for more sustainable agriculture. The data suggest that translocation and utilization (NUtE) might be a more important component of NUE than uptake (NUpE) in tomato. Genetic variation could be a source for useful NUE traits in tomato; further experiments are needed to dissect the NUtE components that confer a higher ability to utilize N in Linosa.
Journal of Plant Phy... arrow_drop_down Journal of Plant PhysiologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jplph.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Plant Phy... arrow_drop_down Journal of Plant PhysiologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jplph.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Yong Zheng; Liang Chen; Cai-Yun Luo; Zhen-Hua Zhang; Shi-Ping Wang; Liang-Dong Guo;pmid: 27423979
Arbuscular mycorrhizal (AM) fungi play key roles in plant nutrition and plant productivity. AM fungal responses to either plant identity or fertilization have been investigated. However, the interactive effects of different plant species and fertilizer types on these symbiotic fungi remain poorly understood. We evaluated the effects of the factorial combinations of plant identity (grasses Avena sativa and Elymus nutans and legume Vicia sativa) and fertilization (urea and sheep manure) on AM fungi following 2-year monocultures in a sown pasture field study. AM fungal extraradical hyphal density was significantly higher in E. nutans than that in A. sativa and V. sativa in the unfertilized control and was significantly increased by urea and manure in A. sativa and by manure only in E. nutans, but not by either fertilizers in V. sativa. AM fungal spore density was not significantly affected by plant identity or fertilization. Forty-eight operational taxonomic units (OTUs) of AM fungi were obtained through 454 pyrosequencing of 18S rDNA. The OTU richness and Shannon diversity index of AM fungi were significantly higher in E. nutans than those in V. sativa and/or A. sativa, but not significantly affected by any fertilizer in all of the three plant species. AM fungal community composition was significantly structured directly by plant identity only and indirectly by both urea addition and plant identity through soil total nitrogen content. Our findings highlight that plant identity has stronger influence than fertilization on belowground AM fungal community in this converted pastureland from an alpine meadow.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00248-016-0817-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00248-016-0817-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United StatesPublisher:Informa UK Limited Giordano, Meredith; Scheierling, Susanne M.; Treguer, David O.; Turral, Hugh; McCornick, Peter G.;handle: 10986/31605
ABSTRACTConcern over increasing water scarcity has led to the introduction of the concept of agricultural water productivity and an emphasis on interventions to achieve ‘more crop per drop’. Yet, a...
International Journa... arrow_drop_down International Journal of Water Resources DevelopmentArticle . 2019 . Peer-reviewedData sources: CrossrefOpen Knowledge RepositoryArticle . 2019License: CC BY NC NDData sources: Open Knowledge Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/07900627.2019.1576508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Water Resources DevelopmentArticle . 2019 . Peer-reviewedData sources: CrossrefOpen Knowledge RepositoryArticle . 2019License: CC BY NC NDData sources: Open Knowledge Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/07900627.2019.1576508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Wiley Authors: Norman P. A. Huner; Wankei Wan; Darcy P. Small;doi: 10.1002/bem.20706
pmid: 21953117
AbstractMicroalgal biotechnology could generate substantial amounts of biofuels with minimal environmental impact if the economics can be improved by increasing the rate of biomass production. Chlorella kessleri was grown in a small‐scale raceway pond and in flask cultures with the entire volume, 1% (v/v) at any instant, periodically exposed to static magnetic fields to demonstrate increased biomass production and investigate physiological changes, respectively. The growth rate in flasks was maximal at a field strength of 10 mT, increasing from 0.39 ± 0.06 per day for the control to 0.88 ± 0.06 per day. In the raceway pond the 10 mT field increased the growth rate from 0.24 ± 0.03 to 0.45 ± 0.05 per day, final biomass from 0.88 ± 0.11 to 1.56 ± 0.18 g/L per day, and maximum biomass production from 0.11 ± 0.02 to 0.38 ± 0.04 g/L per day. Increased pigment, protein, Ca, and Zn content made the biomass produced with magnetic stimulation nutritionally superior. An increase in oxidative stress was measured indirectly as a decrease in antioxidant capacity from 26 ± 2 to 17 ± 1 µmol antioxidant/g biomass. Net photosynthetic capacity (NPC) and respiratory rate were increased by factors of 2.1 and 3.1, respectively. Loss of NPC enhancement after the removal of magnetic field fit a first‐order model well (R2 = 0.99) with a half‐life of 3.3 days. Transmission electron microscopy showed enlarged chloroplasts and decreased thylakoid order with 10 mT treatment. By increasing daily biomass production about fourfold, 10 mT magnetic field exposure could make algal oil cost competitive with other biodiesel feedstocks. Bioelectromagnetics 33:298–308, 2012. © 2011 Wiley Periodicals, Inc.
Bioelectromagnetics arrow_drop_down BioelectromagneticsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bem.20706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 70 citations 70 popularity Top 1% influence Top 10% impulse Average Powered by BIP!
more_vert Bioelectromagnetics arrow_drop_down BioelectromagneticsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bem.20706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Abdul Rehman; Leila Romdhane; Aman Ullah; Muhammad Farooq; Muhammad Farooq; Muhammad Farooq;pmid: 31473401
Two chickpea genotypes viz. Bhakar-2011 (desi) and Noor-2013 (kabuli) were sown in soil filled pots supplied with low (0.3 mg kg-1) and high (3 mg kg-1 soil) zinc (Zn) under control (70% water holding capacity and 25/20 °C day/night temperature), drought (35% water holding capacity) and heat (35/30 °C day/night temperature) stresses. Drought and heat stresses reduced rate of photosynthesis, photosystem II efficiency, plant growth and Zn uptake in chickpea. Low Zn supply exacerbated adverse effects of drought and heat stresses in chickpea, and caused reduction in plant biomass, carbon assimilation, antioxidant activity, impeded Zn uptake and enhanced oxidative damage. However, adequate Zn supply ameliorated adverse effect of drought and heat stresses in both chickpea types. The improvements were more in desi than kabuli type. Adequate Zn nutrition is crucial to augment growth of chickpea plants under high temperature and arid climatic conditions.
Plant Physiology and... arrow_drop_down Plant Physiology and BiochemistryArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2019.08.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Plant Physiology and... arrow_drop_down Plant Physiology and BiochemistryArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2019.08.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Malu Ram Yadav; Sandeep Kumar; Milan Kumar Lal; Dinesh Kumar; Rakesh Kumar; Rajendra Kumar Yadav; Sandeep Kumar; Gangadhar Nanda; Jogendra Singh; Pushpika Udawat; Nirmal Kumar Meena; Prakash Kumar Jha; Tatiana Minkina; Alexey P. Glinushkin; Valery P. Kalinitchenko; Vishnu D. Rajput;Although nitrogen (N) is the most limiting nutrient for agricultural production, its overuse is associated with environmental pollution, increased concentration of greenhouse gases, and several human and animal health implications. These implications are greatly affected by biochemical transformations and losses of N such as volatilization, leaching, runoff, and denitrification. Half of the globally produced N fertilizers are used to grow three major cereals—rice, wheat, and maize—and their current level of N recovery is approximately 30–50%. The continuously increasing application of N fertilizers, despite lower recovery of cereals, can further intensify the environmental and health implications of leftover N. To address these implications, the improvement in N use efficiency (NUE) by adopting efficient agronomic practices and modern breeding and biotechnological tools for developing N efficient cultivars requires immediate attention. Conventional and marker-assisted selection methods can be used to map quantitative trait loci, and their introgression in elite germplasm leads to the creation of cultivars with better NUE. Moreover, gene-editing technology gives the opportunity to develop high-yielding cultivars with improved N utilization capacity. The most reliable and cheap methods include agronomic practices such as site-specific N management, enhanced use efficiency fertilizers, resource conservation practices, precision farming, and nano-fertilizers that can help farmers to reduce the environmental losses of N from the soil–plant system, thus improving NUE. Our review illuminates insights into recent advances in local and scientific soil and crop management technologies, along with conventional and modern breeding technologies on how to increase NUE that can help reduce linked N pollution and health implications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13020527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13020527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Xuying Hai; Jianping Li; Jiwei Li; Yulin Liu; Lingbo Dong; Xiaozhen Wang; Wenwen Lv; Zhenhong Hu; Zhouping Shangguan; Lei Deng; Lei Deng;Water use efficiency (WUE) plays important role in understanding the interaction between carbon and water cycles in the plant-soil-atmosphere system. However, little is known regarding the impact of altered precipitation on plant WUE in arid and semi-arid regions. The study examined the effects of altered precipitation [i.e., ambient precipitation (100% of natural precipitation), decreased precipitation (DP, −50%) and increased precipitation (IP, +50%)] on the WUE of grass species (Stipa grandis and Stipa bungeana) and forb species (Artemisia gmelinii) in a temperate grassland. The results found that WUE was significantly affected by growth stages, precipitation and plant species. DP increased the WUE of S. grandis and S. bungeana generally, but IP decreased WUE especially in A. gmelinii. And the grasses had the higher WUE than forbs. For different growth stages, the WUE in the initial growth stage was lower than that in the middle and late growth stages. Soil temperature, available nutrients (i.e., NO3–, NH4+, and AP) and microorganisms under the altered precipitations were the main factors affecting plant WUE. These findings highlighted that the grasses have higher WUE than forbs, which can be given priority to vegetation restoration in arid and semi-arid areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2022.881282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2022.881282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Royal Society of Chemistry (RSC) Authors: M. Venkateswar Reddy; M. Venkateswar Reddy; Young-Cheol Chang;doi: 10.1039/d1se00633a
Medium-chain fatty acids (MCFA) such as caproic, heptanoic, and caprylic acids are monocarboxylic acids, which can be used as precursor molecules to synthesize biodiesel, bioplastics, antimicrobials, and corrosion inhibitors.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1se00633a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1se00633a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Funded by:NSF | Dimensions: Collaborative...NSF| Dimensions: Collaborative: The climate cascade: functional and evolutionary consequences of climatic change on species, trait, and genetic diversity in a temperate ant communityAndrew Nguyen; Nicholas J. Gotelli; Joel D. Parker; Kerri DeNovellis; Skyler Resendez; Sara Helms Cahan; Jeremy D Pustilnik;pmid: 28439669
Temperature increases associated with global climate change are likely to be accompanied by additional environmental stressors such as desiccation and food limitation, which may alter how temperature impacts organismal performance. To investigate how interactions between stressors influence thermal tolerance in the common forest ant, Aphaenogaster picea, we compared the thermal resistance of workers to heat shock with and without pre-exposure to desiccation or starvation stress. Knockdown (KD) time at 40.5 °C of desiccated ants was reduced 6% compared to controls, although longer exposure to desiccation did not further reduce thermal tolerance. Starvation, in contrast, had an increasingly severe effect on thermal tolerance: at 21 days, average KD time of starved ants was reduced by 65% compared to controls. To test whether reduction in thermal tolerance results from impairment of the heat-shock response, we measured basal gene expression and transcriptional induction of two heat-shock proteins (hsp70 and hsp40) in treated and control ants. We found no evidence that either stressor impaired the Hsp response: both desiccation and starvation slightly increased basal Hsp expression under severe stress conditions and did not affect the magnitude of induction under heat shock. These results suggest that the co-occurrence of multiple environmental stressors predicted by climate change models may make populations more vulnerable to future warming than is suggested by the results of single-factor heating experiments.
Journal of Comparati... arrow_drop_down Journal of Comparative Physiology BArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00360-017-1101-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Comparati... arrow_drop_down Journal of Comparative Physiology BArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00360-017-1101-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Authors: Lynn E. Sollenberger; Joao M. B. Vendramini; Kenneth R. Woodard; Miguel S. Castillo; +4 AuthorsLynn E. Sollenberger; Joao M. B. Vendramini; Kenneth R. Woodard; Miguel S. Castillo; M. Kimberly Mullenix; Maria L. Silveira; John E. Erickson; Chae-In Na;Elephantgrass (Pennisetum purpureum Schum.) and energycane (Saccharum spp. interspecific hybrid) are perennial C4 grasses with potential for use as bioenergy feedstocks. Their biomass production has been quantified, but differences in plant morphology and the relationship of morphology with biomass harvested and plant persistence are not well understood. The objective was to quantify monthly changes in morphological characteristics of elephantgrass (cv. Merkeron and breeding line UF1) and energycane (cv. L 79-1002) and relate these changes to biomass accumulation and plant responses to defoliation. All were evaluated monthly during full-season growth or when defoliated once in mid-season. Merkeron and UF1 elephantgrass generally showed similar morphological characteristics. Relative to energycane, elephantgrass had fewer tillers early in the growing season, less seasonal variation in tiller number, greater tiller mass and maximum leaf area index (LAI), and earlier spring development of LAI. Energycane showed slower leaf area development in spring, lower maximum LAI, and shorter period of increasing tiller mass and canopy height during the growing season relative to UF1. Elephantgrass had greater incidence of lodging than energycane when exposed to high wind, likely due to greater elephantgrass tiller mass. Morphological characteristics of tall-growing bioenergy grasses help to explain differences among them in biomass production and plant persistence responses to defoliation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-014-9542-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-014-9542-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Antonio Lupini; Maria Polsia Princi; Fabrizio Araniti; Anthony J. Miller; Francesco Sunseri; Maria Rosa Abenavoli;Urea is the most common nitrogen (N) fertilizer in agriculture, due to its cheaper price and high N content. Although the reciprocal influence between NO3- and NH4+ nutrition are well known, urea (U) interactions with these N-inorganic forms are poorly studied. Here, the responses of two tomato genotypes to ammonium nitrate (AN), U alone or in combination were investigated. Significant differences in root and shoot biomass between genotypes were observed. Under AN+U supply, Linosa showed higher biomass compared to UC82, exhibiting also higher values for many root architectural traits. Linosa showed higher Nitrogen Uptake (NUpE) and Utilization Efficiency (NUtE) compared to UC82, under AN+U nutrition. Interestingly, Linosa exhibited also a significantly higher DUR3 transcript abundance. These results underline the beneficial effect of AN+U nutrition, highlighting new molecular and physiological strategies for selecting crops that can be used for more sustainable agriculture. The data suggest that translocation and utilization (NUtE) might be a more important component of NUE than uptake (NUpE) in tomato. Genetic variation could be a source for useful NUE traits in tomato; further experiments are needed to dissect the NUtE components that confer a higher ability to utilize N in Linosa.
Journal of Plant Phy... arrow_drop_down Journal of Plant PhysiologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jplph.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Plant Phy... arrow_drop_down Journal of Plant PhysiologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jplph.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Yong Zheng; Liang Chen; Cai-Yun Luo; Zhen-Hua Zhang; Shi-Ping Wang; Liang-Dong Guo;pmid: 27423979
Arbuscular mycorrhizal (AM) fungi play key roles in plant nutrition and plant productivity. AM fungal responses to either plant identity or fertilization have been investigated. However, the interactive effects of different plant species and fertilizer types on these symbiotic fungi remain poorly understood. We evaluated the effects of the factorial combinations of plant identity (grasses Avena sativa and Elymus nutans and legume Vicia sativa) and fertilization (urea and sheep manure) on AM fungi following 2-year monocultures in a sown pasture field study. AM fungal extraradical hyphal density was significantly higher in E. nutans than that in A. sativa and V. sativa in the unfertilized control and was significantly increased by urea and manure in A. sativa and by manure only in E. nutans, but not by either fertilizers in V. sativa. AM fungal spore density was not significantly affected by plant identity or fertilization. Forty-eight operational taxonomic units (OTUs) of AM fungi were obtained through 454 pyrosequencing of 18S rDNA. The OTU richness and Shannon diversity index of AM fungi were significantly higher in E. nutans than those in V. sativa and/or A. sativa, but not significantly affected by any fertilizer in all of the three plant species. AM fungal community composition was significantly structured directly by plant identity only and indirectly by both urea addition and plant identity through soil total nitrogen content. Our findings highlight that plant identity has stronger influence than fertilization on belowground AM fungal community in this converted pastureland from an alpine meadow.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00248-016-0817-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00248-016-0817-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United StatesPublisher:Informa UK Limited Giordano, Meredith; Scheierling, Susanne M.; Treguer, David O.; Turral, Hugh; McCornick, Peter G.;handle: 10986/31605
ABSTRACTConcern over increasing water scarcity has led to the introduction of the concept of agricultural water productivity and an emphasis on interventions to achieve ‘more crop per drop’. Yet, a...
International Journa... arrow_drop_down International Journal of Water Resources DevelopmentArticle . 2019 . Peer-reviewedData sources: CrossrefOpen Knowledge RepositoryArticle . 2019License: CC BY NC NDData sources: Open Knowledge Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/07900627.2019.1576508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Water Resources DevelopmentArticle . 2019 . Peer-reviewedData sources: CrossrefOpen Knowledge RepositoryArticle . 2019License: CC BY NC NDData sources: Open Knowledge Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/07900627.2019.1576508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Wiley Authors: Norman P. A. Huner; Wankei Wan; Darcy P. Small;doi: 10.1002/bem.20706
pmid: 21953117
AbstractMicroalgal biotechnology could generate substantial amounts of biofuels with minimal environmental impact if the economics can be improved by increasing the rate of biomass production. Chlorella kessleri was grown in a small‐scale raceway pond and in flask cultures with the entire volume, 1% (v/v) at any instant, periodically exposed to static magnetic fields to demonstrate increased biomass production and investigate physiological changes, respectively. The growth rate in flasks was maximal at a field strength of 10 mT, increasing from 0.39 ± 0.06 per day for the control to 0.88 ± 0.06 per day. In the raceway pond the 10 mT field increased the growth rate from 0.24 ± 0.03 to 0.45 ± 0.05 per day, final biomass from 0.88 ± 0.11 to 1.56 ± 0.18 g/L per day, and maximum biomass production from 0.11 ± 0.02 to 0.38 ± 0.04 g/L per day. Increased pigment, protein, Ca, and Zn content made the biomass produced with magnetic stimulation nutritionally superior. An increase in oxidative stress was measured indirectly as a decrease in antioxidant capacity from 26 ± 2 to 17 ± 1 µmol antioxidant/g biomass. Net photosynthetic capacity (NPC) and respiratory rate were increased by factors of 2.1 and 3.1, respectively. Loss of NPC enhancement after the removal of magnetic field fit a first‐order model well (R2 = 0.99) with a half‐life of 3.3 days. Transmission electron microscopy showed enlarged chloroplasts and decreased thylakoid order with 10 mT treatment. By increasing daily biomass production about fourfold, 10 mT magnetic field exposure could make algal oil cost competitive with other biodiesel feedstocks. Bioelectromagnetics 33:298–308, 2012. © 2011 Wiley Periodicals, Inc.
Bioelectromagnetics arrow_drop_down BioelectromagneticsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bem.20706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 70 citations 70 popularity Top 1% influence Top 10% impulse Average Powered by BIP!
more_vert Bioelectromagnetics arrow_drop_down BioelectromagneticsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bem.20706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Abdul Rehman; Leila Romdhane; Aman Ullah; Muhammad Farooq; Muhammad Farooq; Muhammad Farooq;pmid: 31473401
Two chickpea genotypes viz. Bhakar-2011 (desi) and Noor-2013 (kabuli) were sown in soil filled pots supplied with low (0.3 mg kg-1) and high (3 mg kg-1 soil) zinc (Zn) under control (70% water holding capacity and 25/20 °C day/night temperature), drought (35% water holding capacity) and heat (35/30 °C day/night temperature) stresses. Drought and heat stresses reduced rate of photosynthesis, photosystem II efficiency, plant growth and Zn uptake in chickpea. Low Zn supply exacerbated adverse effects of drought and heat stresses in chickpea, and caused reduction in plant biomass, carbon assimilation, antioxidant activity, impeded Zn uptake and enhanced oxidative damage. However, adequate Zn supply ameliorated adverse effect of drought and heat stresses in both chickpea types. The improvements were more in desi than kabuli type. Adequate Zn nutrition is crucial to augment growth of chickpea plants under high temperature and arid climatic conditions.
Plant Physiology and... arrow_drop_down Plant Physiology and BiochemistryArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2019.08.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Plant Physiology and... arrow_drop_down Plant Physiology and BiochemistryArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2019.08.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Malu Ram Yadav; Sandeep Kumar; Milan Kumar Lal; Dinesh Kumar; Rakesh Kumar; Rajendra Kumar Yadav; Sandeep Kumar; Gangadhar Nanda; Jogendra Singh; Pushpika Udawat; Nirmal Kumar Meena; Prakash Kumar Jha; Tatiana Minkina; Alexey P. Glinushkin; Valery P. Kalinitchenko; Vishnu D. Rajput;Although nitrogen (N) is the most limiting nutrient for agricultural production, its overuse is associated with environmental pollution, increased concentration of greenhouse gases, and several human and animal health implications. These implications are greatly affected by biochemical transformations and losses of N such as volatilization, leaching, runoff, and denitrification. Half of the globally produced N fertilizers are used to grow three major cereals—rice, wheat, and maize—and their current level of N recovery is approximately 30–50%. The continuously increasing application of N fertilizers, despite lower recovery of cereals, can further intensify the environmental and health implications of leftover N. To address these implications, the improvement in N use efficiency (NUE) by adopting efficient agronomic practices and modern breeding and biotechnological tools for developing N efficient cultivars requires immediate attention. Conventional and marker-assisted selection methods can be used to map quantitative trait loci, and their introgression in elite germplasm leads to the creation of cultivars with better NUE. Moreover, gene-editing technology gives the opportunity to develop high-yielding cultivars with improved N utilization capacity. The most reliable and cheap methods include agronomic practices such as site-specific N management, enhanced use efficiency fertilizers, resource conservation practices, precision farming, and nano-fertilizers that can help farmers to reduce the environmental losses of N from the soil–plant system, thus improving NUE. Our review illuminates insights into recent advances in local and scientific soil and crop management technologies, along with conventional and modern breeding technologies on how to increase NUE that can help reduce linked N pollution and health implications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13020527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13020527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Xuying Hai; Jianping Li; Jiwei Li; Yulin Liu; Lingbo Dong; Xiaozhen Wang; Wenwen Lv; Zhenhong Hu; Zhouping Shangguan; Lei Deng; Lei Deng;Water use efficiency (WUE) plays important role in understanding the interaction between carbon and water cycles in the plant-soil-atmosphere system. However, little is known regarding the impact of altered precipitation on plant WUE in arid and semi-arid regions. The study examined the effects of altered precipitation [i.e., ambient precipitation (100% of natural precipitation), decreased precipitation (DP, −50%) and increased precipitation (IP, +50%)] on the WUE of grass species (Stipa grandis and Stipa bungeana) and forb species (Artemisia gmelinii) in a temperate grassland. The results found that WUE was significantly affected by growth stages, precipitation and plant species. DP increased the WUE of S. grandis and S. bungeana generally, but IP decreased WUE especially in A. gmelinii. And the grasses had the higher WUE than forbs. For different growth stages, the WUE in the initial growth stage was lower than that in the middle and late growth stages. Soil temperature, available nutrients (i.e., NO3–, NH4+, and AP) and microorganisms under the altered precipitations were the main factors affecting plant WUE. These findings highlighted that the grasses have higher WUE than forbs, which can be given priority to vegetation restoration in arid and semi-arid areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2022.881282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2022.881282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Royal Society of Chemistry (RSC) Authors: M. Venkateswar Reddy; M. Venkateswar Reddy; Young-Cheol Chang;doi: 10.1039/d1se00633a
Medium-chain fatty acids (MCFA) such as caproic, heptanoic, and caprylic acids are monocarboxylic acids, which can be used as precursor molecules to synthesize biodiesel, bioplastics, antimicrobials, and corrosion inhibitors.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1se00633a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1se00633a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Funded by:NSF | Dimensions: Collaborative...NSF| Dimensions: Collaborative: The climate cascade: functional and evolutionary consequences of climatic change on species, trait, and genetic diversity in a temperate ant communityAndrew Nguyen; Nicholas J. Gotelli; Joel D. Parker; Kerri DeNovellis; Skyler Resendez; Sara Helms Cahan; Jeremy D Pustilnik;pmid: 28439669
Temperature increases associated with global climate change are likely to be accompanied by additional environmental stressors such as desiccation and food limitation, which may alter how temperature impacts organismal performance. To investigate how interactions between stressors influence thermal tolerance in the common forest ant, Aphaenogaster picea, we compared the thermal resistance of workers to heat shock with and without pre-exposure to desiccation or starvation stress. Knockdown (KD) time at 40.5 °C of desiccated ants was reduced 6% compared to controls, although longer exposure to desiccation did not further reduce thermal tolerance. Starvation, in contrast, had an increasingly severe effect on thermal tolerance: at 21 days, average KD time of starved ants was reduced by 65% compared to controls. To test whether reduction in thermal tolerance results from impairment of the heat-shock response, we measured basal gene expression and transcriptional induction of two heat-shock proteins (hsp70 and hsp40) in treated and control ants. We found no evidence that either stressor impaired the Hsp response: both desiccation and starvation slightly increased basal Hsp expression under severe stress conditions and did not affect the magnitude of induction under heat shock. These results suggest that the co-occurrence of multiple environmental stressors predicted by climate change models may make populations more vulnerable to future warming than is suggested by the results of single-factor heating experiments.
Journal of Comparati... arrow_drop_down Journal of Comparative Physiology BArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00360-017-1101-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Comparati... arrow_drop_down Journal of Comparative Physiology BArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00360-017-1101-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Authors: Lynn E. Sollenberger; Joao M. B. Vendramini; Kenneth R. Woodard; Miguel S. Castillo; +4 AuthorsLynn E. Sollenberger; Joao M. B. Vendramini; Kenneth R. Woodard; Miguel S. Castillo; M. Kimberly Mullenix; Maria L. Silveira; John E. Erickson; Chae-In Na;Elephantgrass (Pennisetum purpureum Schum.) and energycane (Saccharum spp. interspecific hybrid) are perennial C4 grasses with potential for use as bioenergy feedstocks. Their biomass production has been quantified, but differences in plant morphology and the relationship of morphology with biomass harvested and plant persistence are not well understood. The objective was to quantify monthly changes in morphological characteristics of elephantgrass (cv. Merkeron and breeding line UF1) and energycane (cv. L 79-1002) and relate these changes to biomass accumulation and plant responses to defoliation. All were evaluated monthly during full-season growth or when defoliated once in mid-season. Merkeron and UF1 elephantgrass generally showed similar morphological characteristics. Relative to energycane, elephantgrass had fewer tillers early in the growing season, less seasonal variation in tiller number, greater tiller mass and maximum leaf area index (LAI), and earlier spring development of LAI. Energycane showed slower leaf area development in spring, lower maximum LAI, and shorter period of increasing tiller mass and canopy height during the growing season relative to UF1. Elephantgrass had greater incidence of lodging than energycane when exposed to high wind, likely due to greater elephantgrass tiller mass. Morphological characteristics of tall-growing bioenergy grasses help to explain differences among them in biomass production and plant persistence responses to defoliation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-014-9542-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-014-9542-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu