- home
- Advanced Search
- Energy Research
- 2025-2025
- 11. Sustainability
- 2. Zero hunger
- CN
- AU
- GB
- Energy Research
- 2025-2025
- 11. Sustainability
- 2. Zero hunger
- CN
- AU
- GB
Research data keyboard_double_arrow_right Dataset 2025Publisher:Zenodo Authors: Michalis Hadjikakou;Supplemental data and extended results associated with the article entitled 'Ambitious food system interventions required to mitigate the risk of exceeding Earth’s environmental limits' (see Hadjikakou et al., 2025, One Earth). This repository contains the following files: Systematic search results and strings used to identify studies (Systematic_search_details.xlsx) A harmonised input database assembled from systematically selected studies (Harmonised_input_database.xlsx) Mapping of all on-ground actions in the literature to food system interventions (Action-intervention mapping.xlsx) Source data for key figures in the article and SI (Source data for figures.xlsx) Linear mixed model (LMM) predictions in physical units across all environmental indicators for all intervention combinations (Extended_results - LMM_indicator_predictions.zip) Risk estimates across all environmental limits for all intervention combinations (Extended_results - Risk_estimates_across_environmental_limits.zip) For all code, see the Global Food System Intervention Meta-Regression Model (GFSI-MRM).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7710559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7710559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2025Publisher:Zenodo Authors: Michalis Hadjikakou;Supplemental data and extended results associated with the article entitled 'Ambitious food system interventions required to mitigate the risk of exceeding Earth’s environmental limits' (see Hadjikakou et al., 2025, One Earth). This repository contains the following files: Systematic search results and strings used to identify studies (Systematic_search_details.xlsx) A harmonised input database assembled from systematically selected studies (Harmonised_input_database.xlsx) Mapping of all on-ground actions in the literature to food system interventions (Action-intervention mapping.xlsx) Source data for key figures in the article and SI (Source data for figures.xlsx) Linear mixed model (LMM) predictions in physical units across all environmental indicators for all intervention combinations (Extended_results - LMM_indicator_predictions.zip) Risk estimates across all environmental limits for all intervention combinations (Extended_results - Risk_estimates_across_environmental_limits.zip) For all code, see the Global Food System Intervention Meta-Regression Model (GFSI-MRM).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7710559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7710559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Elsevier BV Publicly fundedCuartas, J; Bhatia, A; Carter, D; Cluver, L; Coll, C; Donger, E; Draper, CE; Gardner, F; Herbert, B; Kelly, O; Lachman, J; M'jid, NM; Seidel, F;pmid: 37648573
The climate crisis is the biggest threat to the health, development, and wellbeing of the current and future generations. While there is extensive evidence on the direct impacts of climate change on human livelihood, there is little evidence on how children and young people are affected, and even less discussion and evidence on how the climate crisis could affect violence against children.In this commentary, we review selected research to assess the links between the climate crisis and violence against children.We employ a social-ecological perspective as an overarching framework to organize findings from the literature and call attention to increased violence against children as a specific, yet under-examined, direct and indirect consequence of the climate crisis.Using such a perspective, we examine how the climate crisis exacerbates the risk of violence against children at the continually intersecting and interacting levels of society, community, family, and the individual levels. We propose increased risk of armed conflict, forced displacement, poverty, income inequality, disruptions in critical health and social services, and mental health problems as key mechanisms linking the climate crisis and heightened risk of violence against children. Furthermore, we posit that the climate crisis serves as a threat multiplier, compounding existing vulnerabilities and inequities within populations and having harsher consequences in settings, communities, households, and for children already experiencing adversities.We conclude with a call for urgent efforts from researchers, practitioners, and policymakers to further investigate the specific empirical links between the climate crisis and violence against children and to design, test, implement, fund, and scale evidence-based, rights-based, and child friendly prevention, support, and response strategies to address violence against children.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Elsevier BV Publicly fundedCuartas, J; Bhatia, A; Carter, D; Cluver, L; Coll, C; Donger, E; Draper, CE; Gardner, F; Herbert, B; Kelly, O; Lachman, J; M'jid, NM; Seidel, F;pmid: 37648573
The climate crisis is the biggest threat to the health, development, and wellbeing of the current and future generations. While there is extensive evidence on the direct impacts of climate change on human livelihood, there is little evidence on how children and young people are affected, and even less discussion and evidence on how the climate crisis could affect violence against children.In this commentary, we review selected research to assess the links between the climate crisis and violence against children.We employ a social-ecological perspective as an overarching framework to organize findings from the literature and call attention to increased violence against children as a specific, yet under-examined, direct and indirect consequence of the climate crisis.Using such a perspective, we examine how the climate crisis exacerbates the risk of violence against children at the continually intersecting and interacting levels of society, community, family, and the individual levels. We propose increased risk of armed conflict, forced displacement, poverty, income inequality, disruptions in critical health and social services, and mental health problems as key mechanisms linking the climate crisis and heightened risk of violence against children. Furthermore, we posit that the climate crisis serves as a threat multiplier, compounding existing vulnerabilities and inequities within populations and having harsher consequences in settings, communities, households, and for children already experiencing adversities.We conclude with a call for urgent efforts from researchers, practitioners, and policymakers to further investigate the specific empirical links between the climate crisis and violence against children and to design, test, implement, fund, and scale evidence-based, rights-based, and child friendly prevention, support, and response strategies to address violence against children.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xuan He; Danny H.K. Tsang; Yize Chen;Global climate challenge is demanding urgent actions for decarbonization, while electric power systems take the major roles in clean energy transition. Due to the existence of spatially and temporally dispersed renewable energy resources and the uneven distribution of carbon emission intensity throughout the grid, it is worth investigating future load planning and demand management to offset those generations with higher carbon emission rates. Such techniques include inter-region utilization of geographically shiftable resources and stochastic renewable energy. For instance, data center is considered to be a major carbon emission producer in the future due to increasing information load, while it holds the capability of geographical load balancing. In this paper, we propose a novel planning and operation model minimizing the system-level carbon emissions via sitting and operating geographically shiftable resources. This model decides the optimal locations for shiftable resources expansion along with power dispatch schedule. To accommodate future system operation patterns and a wide range of operating conditions, we incorporate 20-year fine-grained load and renewables scenarios for grid simulations of realistic sizes (e.g., up to 1888 buses). To tackle the computational challenges coming from the combinatorial nature of such large-scale planning problem, we develop a customized Monte Carlo Tree Search (MCTS) method, which can find reasonable solutions satisfying solution time limits. Besides, MCTS enables flexible time window settings and offline solution adjustments. Extensive simulations validate that our planning model can reduce more than 10\% carbon emission across all setups. Compared to off-the-shelf optimization solvers such as Gurobi, our method achieves up to 8.1X acceleration while the solution gaps are less than 1.5\% in large-scale cases. Accepted at IEEE Transactions on Power Systems
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3424409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3424409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xuan He; Danny H.K. Tsang; Yize Chen;Global climate challenge is demanding urgent actions for decarbonization, while electric power systems take the major roles in clean energy transition. Due to the existence of spatially and temporally dispersed renewable energy resources and the uneven distribution of carbon emission intensity throughout the grid, it is worth investigating future load planning and demand management to offset those generations with higher carbon emission rates. Such techniques include inter-region utilization of geographically shiftable resources and stochastic renewable energy. For instance, data center is considered to be a major carbon emission producer in the future due to increasing information load, while it holds the capability of geographical load balancing. In this paper, we propose a novel planning and operation model minimizing the system-level carbon emissions via sitting and operating geographically shiftable resources. This model decides the optimal locations for shiftable resources expansion along with power dispatch schedule. To accommodate future system operation patterns and a wide range of operating conditions, we incorporate 20-year fine-grained load and renewables scenarios for grid simulations of realistic sizes (e.g., up to 1888 buses). To tackle the computational challenges coming from the combinatorial nature of such large-scale planning problem, we develop a customized Monte Carlo Tree Search (MCTS) method, which can find reasonable solutions satisfying solution time limits. Besides, MCTS enables flexible time window settings and offline solution adjustments. Extensive simulations validate that our planning model can reduce more than 10\% carbon emission across all setups. Compared to off-the-shelf optimization solvers such as Gurobi, our method achieves up to 8.1X acceleration while the solution gaps are less than 1.5\% in large-scale cases. Accepted at IEEE Transactions on Power Systems
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3424409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3424409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Emerald Authors: Jiming Hu; Xiaoyan Han;In order to solve the problem of excessive burden of electricity and energy consumption in urban landscape buildings clusters, the study combined data mining algorithms to establish a prediction model for energy-saving renovation of urban landscape building clusters. Firstly, the energy demand and energy consumption of theurban landscape buildings complex were analysed, a mathematical model was established to predict the energy consumption of the building complex. Then, the prediction model of energy-saving retrofitting of building clusters was constructed by combining data mining techniques. The experimental results show that the change trend of total energy consumption is different under different single influencing factors of energy consumption. Among them, the lighting power density factor has the greatest influence on energy consumption, and its annual energy consumption change rate can reach about 0.35. Applying the prediction model to the energy consumption prediction of 15 urban single buildings, it was found that the total energy consumption of the buildings before the retrofit was much higher than that after the retrofit, and the energy-saving rate of the whole observed sample building group was as high as 18.5%, meanwhile, the highest energy-saving rate of the single buildings reached 30.1%.
Proceedings of the I... arrow_drop_down Proceedings of the Institution of Civil Engineers - Smart Infrastructure and ConstructionArticle . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jsmic.22.00030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the I... arrow_drop_down Proceedings of the Institution of Civil Engineers - Smart Infrastructure and ConstructionArticle . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jsmic.22.00030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Emerald Authors: Jiming Hu; Xiaoyan Han;In order to solve the problem of excessive burden of electricity and energy consumption in urban landscape buildings clusters, the study combined data mining algorithms to establish a prediction model for energy-saving renovation of urban landscape building clusters. Firstly, the energy demand and energy consumption of theurban landscape buildings complex were analysed, a mathematical model was established to predict the energy consumption of the building complex. Then, the prediction model of energy-saving retrofitting of building clusters was constructed by combining data mining techniques. The experimental results show that the change trend of total energy consumption is different under different single influencing factors of energy consumption. Among them, the lighting power density factor has the greatest influence on energy consumption, and its annual energy consumption change rate can reach about 0.35. Applying the prediction model to the energy consumption prediction of 15 urban single buildings, it was found that the total energy consumption of the buildings before the retrofit was much higher than that after the retrofit, and the energy-saving rate of the whole observed sample building group was as high as 18.5%, meanwhile, the highest energy-saving rate of the single buildings reached 30.1%.
Proceedings of the I... arrow_drop_down Proceedings of the Institution of Civil Engineers - Smart Infrastructure and ConstructionArticle . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jsmic.22.00030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the I... arrow_drop_down Proceedings of the Institution of Civil Engineers - Smart Infrastructure and ConstructionArticle . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jsmic.22.00030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2025Publisher:Zenodo Authors: Michalis Hadjikakou;Supplemental data and extended results associated with the article entitled 'Ambitious food system interventions required to mitigate the risk of exceeding Earth’s environmental limits' (see Hadjikakou et al., 2025, One Earth). This repository contains the following files: Systematic search results and strings used to identify studies (Systematic_search_details.xlsx) A harmonised input database assembled from systematically selected studies (Harmonised_input_database.xlsx) Mapping of all on-ground actions in the literature to food system interventions (Action-intervention mapping.xlsx) Source data for key figures in the article and SI (Source data for figures.xlsx) Linear mixed model (LMM) predictions in physical units across all environmental indicators for all intervention combinations (Extended_results - LMM_indicator_predictions.zip) Risk estimates across all environmental limits for all intervention combinations (Extended_results - Risk_estimates_across_environmental_limits.zip) For all code, see the Global Food System Intervention Meta-Regression Model (GFSI-MRM).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7710559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7710559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2025Publisher:Zenodo Authors: Michalis Hadjikakou;Supplemental data and extended results associated with the article entitled 'Ambitious food system interventions required to mitigate the risk of exceeding Earth’s environmental limits' (see Hadjikakou et al., 2025, One Earth). This repository contains the following files: Systematic search results and strings used to identify studies (Systematic_search_details.xlsx) A harmonised input database assembled from systematically selected studies (Harmonised_input_database.xlsx) Mapping of all on-ground actions in the literature to food system interventions (Action-intervention mapping.xlsx) Source data for key figures in the article and SI (Source data for figures.xlsx) Linear mixed model (LMM) predictions in physical units across all environmental indicators for all intervention combinations (Extended_results - LMM_indicator_predictions.zip) Risk estimates across all environmental limits for all intervention combinations (Extended_results - Risk_estimates_across_environmental_limits.zip) For all code, see the Global Food System Intervention Meta-Regression Model (GFSI-MRM).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7710559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7710559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Elsevier BV Publicly fundedCuartas, J; Bhatia, A; Carter, D; Cluver, L; Coll, C; Donger, E; Draper, CE; Gardner, F; Herbert, B; Kelly, O; Lachman, J; M'jid, NM; Seidel, F;pmid: 37648573
The climate crisis is the biggest threat to the health, development, and wellbeing of the current and future generations. While there is extensive evidence on the direct impacts of climate change on human livelihood, there is little evidence on how children and young people are affected, and even less discussion and evidence on how the climate crisis could affect violence against children.In this commentary, we review selected research to assess the links between the climate crisis and violence against children.We employ a social-ecological perspective as an overarching framework to organize findings from the literature and call attention to increased violence against children as a specific, yet under-examined, direct and indirect consequence of the climate crisis.Using such a perspective, we examine how the climate crisis exacerbates the risk of violence against children at the continually intersecting and interacting levels of society, community, family, and the individual levels. We propose increased risk of armed conflict, forced displacement, poverty, income inequality, disruptions in critical health and social services, and mental health problems as key mechanisms linking the climate crisis and heightened risk of violence against children. Furthermore, we posit that the climate crisis serves as a threat multiplier, compounding existing vulnerabilities and inequities within populations and having harsher consequences in settings, communities, households, and for children already experiencing adversities.We conclude with a call for urgent efforts from researchers, practitioners, and policymakers to further investigate the specific empirical links between the climate crisis and violence against children and to design, test, implement, fund, and scale evidence-based, rights-based, and child friendly prevention, support, and response strategies to address violence against children.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Elsevier BV Publicly fundedCuartas, J; Bhatia, A; Carter, D; Cluver, L; Coll, C; Donger, E; Draper, CE; Gardner, F; Herbert, B; Kelly, O; Lachman, J; M'jid, NM; Seidel, F;pmid: 37648573
The climate crisis is the biggest threat to the health, development, and wellbeing of the current and future generations. While there is extensive evidence on the direct impacts of climate change on human livelihood, there is little evidence on how children and young people are affected, and even less discussion and evidence on how the climate crisis could affect violence against children.In this commentary, we review selected research to assess the links between the climate crisis and violence against children.We employ a social-ecological perspective as an overarching framework to organize findings from the literature and call attention to increased violence against children as a specific, yet under-examined, direct and indirect consequence of the climate crisis.Using such a perspective, we examine how the climate crisis exacerbates the risk of violence against children at the continually intersecting and interacting levels of society, community, family, and the individual levels. We propose increased risk of armed conflict, forced displacement, poverty, income inequality, disruptions in critical health and social services, and mental health problems as key mechanisms linking the climate crisis and heightened risk of violence against children. Furthermore, we posit that the climate crisis serves as a threat multiplier, compounding existing vulnerabilities and inequities within populations and having harsher consequences in settings, communities, households, and for children already experiencing adversities.We conclude with a call for urgent efforts from researchers, practitioners, and policymakers to further investigate the specific empirical links between the climate crisis and violence against children and to design, test, implement, fund, and scale evidence-based, rights-based, and child friendly prevention, support, and response strategies to address violence against children.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xuan He; Danny H.K. Tsang; Yize Chen;Global climate challenge is demanding urgent actions for decarbonization, while electric power systems take the major roles in clean energy transition. Due to the existence of spatially and temporally dispersed renewable energy resources and the uneven distribution of carbon emission intensity throughout the grid, it is worth investigating future load planning and demand management to offset those generations with higher carbon emission rates. Such techniques include inter-region utilization of geographically shiftable resources and stochastic renewable energy. For instance, data center is considered to be a major carbon emission producer in the future due to increasing information load, while it holds the capability of geographical load balancing. In this paper, we propose a novel planning and operation model minimizing the system-level carbon emissions via sitting and operating geographically shiftable resources. This model decides the optimal locations for shiftable resources expansion along with power dispatch schedule. To accommodate future system operation patterns and a wide range of operating conditions, we incorporate 20-year fine-grained load and renewables scenarios for grid simulations of realistic sizes (e.g., up to 1888 buses). To tackle the computational challenges coming from the combinatorial nature of such large-scale planning problem, we develop a customized Monte Carlo Tree Search (MCTS) method, which can find reasonable solutions satisfying solution time limits. Besides, MCTS enables flexible time window settings and offline solution adjustments. Extensive simulations validate that our planning model can reduce more than 10\% carbon emission across all setups. Compared to off-the-shelf optimization solvers such as Gurobi, our method achieves up to 8.1X acceleration while the solution gaps are less than 1.5\% in large-scale cases. Accepted at IEEE Transactions on Power Systems
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3424409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3424409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xuan He; Danny H.K. Tsang; Yize Chen;Global climate challenge is demanding urgent actions for decarbonization, while electric power systems take the major roles in clean energy transition. Due to the existence of spatially and temporally dispersed renewable energy resources and the uneven distribution of carbon emission intensity throughout the grid, it is worth investigating future load planning and demand management to offset those generations with higher carbon emission rates. Such techniques include inter-region utilization of geographically shiftable resources and stochastic renewable energy. For instance, data center is considered to be a major carbon emission producer in the future due to increasing information load, while it holds the capability of geographical load balancing. In this paper, we propose a novel planning and operation model minimizing the system-level carbon emissions via sitting and operating geographically shiftable resources. This model decides the optimal locations for shiftable resources expansion along with power dispatch schedule. To accommodate future system operation patterns and a wide range of operating conditions, we incorporate 20-year fine-grained load and renewables scenarios for grid simulations of realistic sizes (e.g., up to 1888 buses). To tackle the computational challenges coming from the combinatorial nature of such large-scale planning problem, we develop a customized Monte Carlo Tree Search (MCTS) method, which can find reasonable solutions satisfying solution time limits. Besides, MCTS enables flexible time window settings and offline solution adjustments. Extensive simulations validate that our planning model can reduce more than 10\% carbon emission across all setups. Compared to off-the-shelf optimization solvers such as Gurobi, our method achieves up to 8.1X acceleration while the solution gaps are less than 1.5\% in large-scale cases. Accepted at IEEE Transactions on Power Systems
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3424409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3424409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Emerald Authors: Jiming Hu; Xiaoyan Han;In order to solve the problem of excessive burden of electricity and energy consumption in urban landscape buildings clusters, the study combined data mining algorithms to establish a prediction model for energy-saving renovation of urban landscape building clusters. Firstly, the energy demand and energy consumption of theurban landscape buildings complex were analysed, a mathematical model was established to predict the energy consumption of the building complex. Then, the prediction model of energy-saving retrofitting of building clusters was constructed by combining data mining techniques. The experimental results show that the change trend of total energy consumption is different under different single influencing factors of energy consumption. Among them, the lighting power density factor has the greatest influence on energy consumption, and its annual energy consumption change rate can reach about 0.35. Applying the prediction model to the energy consumption prediction of 15 urban single buildings, it was found that the total energy consumption of the buildings before the retrofit was much higher than that after the retrofit, and the energy-saving rate of the whole observed sample building group was as high as 18.5%, meanwhile, the highest energy-saving rate of the single buildings reached 30.1%.
Proceedings of the I... arrow_drop_down Proceedings of the Institution of Civil Engineers - Smart Infrastructure and ConstructionArticle . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jsmic.22.00030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the I... arrow_drop_down Proceedings of the Institution of Civil Engineers - Smart Infrastructure and ConstructionArticle . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jsmic.22.00030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Emerald Authors: Jiming Hu; Xiaoyan Han;In order to solve the problem of excessive burden of electricity and energy consumption in urban landscape buildings clusters, the study combined data mining algorithms to establish a prediction model for energy-saving renovation of urban landscape building clusters. Firstly, the energy demand and energy consumption of theurban landscape buildings complex were analysed, a mathematical model was established to predict the energy consumption of the building complex. Then, the prediction model of energy-saving retrofitting of building clusters was constructed by combining data mining techniques. The experimental results show that the change trend of total energy consumption is different under different single influencing factors of energy consumption. Among them, the lighting power density factor has the greatest influence on energy consumption, and its annual energy consumption change rate can reach about 0.35. Applying the prediction model to the energy consumption prediction of 15 urban single buildings, it was found that the total energy consumption of the buildings before the retrofit was much higher than that after the retrofit, and the energy-saving rate of the whole observed sample building group was as high as 18.5%, meanwhile, the highest energy-saving rate of the single buildings reached 30.1%.
Proceedings of the I... arrow_drop_down Proceedings of the Institution of Civil Engineers - Smart Infrastructure and ConstructionArticle . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jsmic.22.00030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the I... arrow_drop_down Proceedings of the Institution of Civil Engineers - Smart Infrastructure and ConstructionArticle . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jsmic.22.00030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu