- home
- Advanced Search
Filters
Clear All- Energy Research
- 7. Clean energy
- DE
- GB
- Russian
- Energy Research
- 7. Clean energy
- DE
- GB
- Russian
description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Zenodo Authors: O.O. Duniev; M. Stamann; A.M. Masliennikov; A.V. Yehorov;The article reviews the transverse magnetic flux machine designs. The work aim was the analysis of the transverse magnetic flux generator with a disk rotor, the stator poles optimal number selection and the resistance torque reducing. This resistance torque was created by one-sided magnetic attraction force from the permanent magnets on the rotor and it hasn’t been considered previously, which is a novelty of this work. The ways to increase the electromotive force in the generator are also considered. The main work goal was obtained by magnetic system analysis of generator using Ansys Maxwell software and disk rotor strength analysis using ASCON Компас-3D software. It is concluded that the magnetic reversal frequency of the stator cores depends on the number of permanent magnets on the rotor. The dependence of the magnetic induction average value in the U-shaped stator core on their number was obtained during the magnetic analysis. The disk rotor strength simulation allowed getting the maximum possible bend of the disk rotor under the influence of the one-sided magnetic attraction force. The neodymium permanent magnets help to improve generator efficiency and to decrease its mass-dimensional indicators. It was proposed to use an uneven permanent magnets distribution on the rotor in the transverse magnetic flux generator to reduce the resistance torque of the disk rotor. The permanent magnets attraction force that interacts with stator steel poles was considered. The dependence of magnetic attraction force of the permanent magnets on the air gap size of the generator has been obtained.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3239163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3239163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019Publisher:Zenodo Authors: Volkov K.N.; Levihin A.A.; Volobuev I.A.; Melnikova A.I.;The work is d to improving methods for calculating the cooling system of a microturbine with a rotor on air bearings. When designing gas turbines, it is important to integrate gas-dynamic calculations with thermal finite-element calculations. In practice, the conjugation of temperature fields in solids and liquids, as well as the transfer of thermal loads between the media are carried out using several approaches: direct, non-conjugate and sequential coupled. Numerical simulation of the coupled heat transfer in a cavity formed by the gap between the rotor and stator is carried out. To calculate the flow characteristics of a viscous compressible fluid and heat transfer. The degree of influence on the results of the type of turbulence model used, the influence of taking into account the conjugate heat transfer, is studied. The effect of the mass flow rate of the cooler on the flow structure and the cooling efficiency of the walls of the rotor and stator is investigated. A comparison is made with experimental data. Numerical experiments have shown that in typical cases the flow in the cavity is turbulent. The cooling efficiency has a limit on the flow rate of the cooler. The temperature distribution along the length of the rotor has a noticeable minimum in the region of the middle of the length of the rotor. The significance of the obtained results lies in the fact that the choice of the turbulence model weakly affects the calculation results and taking into account the conjugate nature of heat transfer is necessary.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3562184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3562184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Zenodo Authors: O.O. Duniev; M. Stamann; A.M. Masliennikov; A.V. Yehorov;The article reviews the transverse magnetic flux machine designs. The work aim was the analysis of the transverse magnetic flux generator with a disk rotor, the stator poles optimal number selection and the resistance torque reducing. This resistance torque was created by one-sided magnetic attraction force from the permanent magnets on the rotor and it hasn’t been considered previously, which is a novelty of this work. The ways to increase the electromotive force in the generator are also considered. The main work goal was obtained by magnetic system analysis of generator using Ansys Maxwell software and disk rotor strength analysis using ASCON Компас-3D software. It is concluded that the magnetic reversal frequency of the stator cores depends on the number of permanent magnets on the rotor. The dependence of the magnetic induction average value in the U-shaped stator core on their number was obtained during the magnetic analysis. The disk rotor strength simulation allowed getting the maximum possible bend of the disk rotor under the influence of the one-sided magnetic attraction force. The neodymium permanent magnets help to improve generator efficiency and to decrease its mass-dimensional indicators. It was proposed to use an uneven permanent magnets distribution on the rotor in the transverse magnetic flux generator to reduce the resistance torque of the disk rotor. The permanent magnets attraction force that interacts with stator steel poles was considered. The dependence of magnetic attraction force of the permanent magnets on the air gap size of the generator has been obtained.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3239163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3239163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019Publisher:Zenodo Authors: Volkov K.N.; Levihin A.A.; Volobuev I.A.; Melnikova A.I.;The work is d to improving methods for calculating the cooling system of a microturbine with a rotor on air bearings. When designing gas turbines, it is important to integrate gas-dynamic calculations with thermal finite-element calculations. In practice, the conjugation of temperature fields in solids and liquids, as well as the transfer of thermal loads between the media are carried out using several approaches: direct, non-conjugate and sequential coupled. Numerical simulation of the coupled heat transfer in a cavity formed by the gap between the rotor and stator is carried out. To calculate the flow characteristics of a viscous compressible fluid and heat transfer. The degree of influence on the results of the type of turbulence model used, the influence of taking into account the conjugate heat transfer, is studied. The effect of the mass flow rate of the cooler on the flow structure and the cooling efficiency of the walls of the rotor and stator is investigated. A comparison is made with experimental data. Numerical experiments have shown that in typical cases the flow in the cavity is turbulent. The cooling efficiency has a limit on the flow rate of the cooler. The temperature distribution along the length of the rotor has a noticeable minimum in the region of the middle of the length of the rotor. The significance of the obtained results lies in the fact that the choice of the turbulence model weakly affects the calculation results and taking into account the conjugate nature of heat transfer is necessary.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3562184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3562184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu