- home
- Advanced Search
- Energy Research
- 11. Sustainability
- 12. Responsible consumption
- GB
- DE
- Imperial College London
- Energy Research
- 11. Sustainability
- 12. Responsible consumption
- GB
- DE
- Imperial College London
Research data keyboard_double_arrow_right Dataset 2023Publisher:NSF Arctic Data Center Atwood, Trisha; Beard, Karen; Waring, Bonnie; Adkins, Jaron; Saunders, Taylor;doi: 10.18739/a2cc0tv7w
Global change drivers that modify the quality and quantity of litter inputs to soil affect greenhouse gas fluxes, and thereby constitute a feedback to climate change. Carbon cycling in the Yukon-Kuskokwim (Y-K) River Delta, a subarctic wetland system, is influenced by landscape variations in litter quality and quantity generated by herbivores (migratory birds) that create ‘grazing lawns’ of short stature, nitrogen-rich vegetation. To identify the mechanisms by which these changes in litter inputs affect soil carbon balance, we independently manipulated qualities and quantities of litter representative of levels found in the Y-K Delta in a fully factorial microcosm experiment. We measured carbon dioxide (CO2) fluxes from these microcosms weekly. To help us identify how litter inputs influenced greenhouse gas fluxes, we sequenced soil fungal and bacterial communities, and measured soil microbial biomass carbon, dissolved carbon, inorganic nitrogen, and enzyme activity. We found that positive correlations between litter input quantity and CO2 flux were dependent upon litter type, due to differences in litter stoichiometry and changes to the structure of decomposer communities, especially the soil fungi. These community shifts were particularly pronounced when litter was added in the form of herbivore feces, and in litter input treatments that induced nitrogen limitation (i.e., senesced litter). The sensitivity of carbon cycling to litter quality and quantity in this system demonstrates that herbivores can strongly impact greenhouse gas fluxes through their influence on plant growth and tissue chemistry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2cc0tv7w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2cc0tv7w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Pappis, Ioannis; Sridharan, Vignesh; Howells, Mark; Medarac, Hrvoje; Kougias, Ioannis; Sánchez, G. Rocío; Shivakumar, Abhishek; Usher, Will;This dataset underpins the study "Synergies and conflicts of energy development and water security in Africa". The study provides insights into energy supply and demand, power generation, investments and total system costs, water consumption and withdrawal as well as carbon dioxide emissions for the African continent. We developed a model to evaluate energy supply and water requirements to cover the energy needs of the African continent during the period 2015-2065. The model was developed using the open-source modeling system for long-term energy planning OSeMOSYS. The objective function is to minimise total energy system costs, rather than, for example, co-optimise the energy and water sectors. Other energy resources were also included in the model except for adding the water analysis, and the dataset was updated based on the latest available information. The OSeMOSYS model developed to conduct the study “Energy projections for African countries”, itself extended from the Electricity Model Base for Africa (TEMBA), was further extended, included exports for all fuels, water loss due to evaporation in hydropower plants and more scenarios examined. Furthermore, the latest available data on the energy system of Africa was also updated. The TEMBA model produces aggregate energy, and detailed power system results in each country in the African continent. The power sector results are also reported with power pool aggregation. The OSeMOSYS model and input data used to produce these results can be found at KTH-dESA/jrc_temba: TEMBA 2.1 (Version v2.1) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4889373 (Authors: Ioannis Pappis, Vignesh Sridharan, Will Usher, & Mark Howells. (2021). The initial study was funded by the Joint Research Centre of the European Commission (contract number C936531 - JRC/PTT/2018/C.7/0038/NC).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3882052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 80visibility views 80 download downloads 10 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3882052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Chander Prakash; Grzegorz Królczyk; Sunpreet Singh; Rajeev Rathi; Catalin I. Pruncu; Catalin I. Pruncu;handle: 10044/1/76599
Nowadays in India the renewable energy sources are continuum growing to accommodate the current demands of energy. Therefore, for an effective use of this energy, a careful and critical analysis is required. As per literature review, India was reported having a massive potential as superpower source in terms of wind energy In the present research, an effort has been carried out to explore various decision making approaches such as TOPSIS, VIKOR, and Fuzzy analysis, to subsequently rank various Indian states with respect to their wind energy potential. In this perspective, potentiality indices have been found on the justification of five significant factors that influence the effective use of wind energy and then a classification has been proposed. It was found that the wind power density is the most significant parameter while the technical expertise has been found as the least significant among identified parameters. The results presented here indicates that among all alternative states of India, Tamilnadu and Maharashtra have the maximum potential to tap the wind energy potential. This study will act as a guide for various government agencies to re-evaluate and re-formulate their energy policies as well as will help various investors (under the ‘Make in India’ campaign) orientated to do business here, to take a well informed decision. The present study also provides a way to make strong policies, in the area of high wind energy potential, in order to maximize the use of renewable source of energy which allows to tackle the societal need and poverty.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/76599Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2019.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 25 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/76599Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2019.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Informa UK Limited Authors: Richard Syms; Simon D Taylor-Robinson; Guglielmo Trovato;In the light of the COP27 Climate Change Conference, the concept of the circular economy has come to the fore with promotion of reuse and recycling of appliances and materials from electronics to clothes. This concept has not been widely taken up by healthcare systems. In this perspective article, we discuss the idea of the circular economy and how, by extension, the concept of "circular medicine" with optimised hospital and medical clinic waste recycling might be promoted in the context of better stewardship of resources in healthcare management.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/102987Data sources: Bielefeld Academic Search Engine (BASE)Risk Management and Healthcare PolicyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2147/rmhp.s396667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 download downloads 2 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/102987Data sources: Bielefeld Academic Search Engine (BASE)Risk Management and Healthcare PolicyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2147/rmhp.s396667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Australia, Australia, United KingdomPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP140100733Carissa J. Klein; Nicholas H. Wolff; Alan T. White; Eric A. Treml; Alison Green; Maria Beger; Jennifer McGowan; Hugh P. Possingham; Hugh P. Possingham; Peter J. Mumby;AbstractMultinational conservation initiatives that prioritize investment across a region invariably navigate trade-offs among multiple objectives. It seems logical to focus where several objectives can be achieved efficiently, but such multi-objective hotspots may be ecologically inappropriate, or politically inequitable. Here we devise a framework to facilitate a regionally cohesive set of marine-protected areas driven by national preferences and supported by quantitative conservation prioritization analyses, and illustrate it using the Coral Triangle Initiative. We identify areas important for achieving six objectives to address ecosystem representation, threatened fauna, connectivity and climate change. We expose trade-offs between areas that contribute substantially to several objectives and those meeting one or two objectives extremely well. Hence there are two strategies to guide countries choosing to implement regional goals nationally: multi-objective hotspots and complementary sets of single-objective priorities. This novel framework is applicable to any multilateral or global initiative seeking to apply quantitative information in decision making.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/40993Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/11343/115945Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms9208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 116 citations 116 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 13download downloads 13 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/40993Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/11343/115945Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms9208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Germany, United KingdomPublisher:Copernicus GmbH Matthew Gidden; Malte Meinshausen; Malte Meinshausen; Keywan Riahi; Keywan Riahi; Daniel Huppmann; Leon Clarke; Joeri Rogelj; Joeri Rogelj; Joeri Rogelj; Zebedee Nicholls; Volker Krey; Volker Krey;pmid: 31534246
handle: 10044/1/73971
<p>To understand how global warming can be kept well-below 2&#176;C and even 1.5&#176;C, climate policy uses scenarios that describe how society could transform in order to reduce its greenhouse gas emissions. Such scenario are typically created with integrated assessment models that include a representation of the economy, and the energy, land-use, and industrial system. However, current climate change scenarios have a key weakness in that they typically focus on reaching specific climate goals in 2100 only. <br><br>This choice results in risky pathways that delay action and seemingly inevitably rely on large quantities of carbon-dioxide removal after mid-century. Here we propose a framework that more closely reflects the intentions of the UN Paris Agreement. It focusses on reaching a peak in global warming with either stabilisation or reversal thereafter. This approach provides a critical extension of the widely used Shared Socioecononomic Pathways (SSP) framework and reveals a more diverse picture: an inevitable transition period of aggressive near-term climate action to reach carbon neutrality can be followed by a variety of long-term states. It allows policymakers to explicitly consider near-term climate strategies in the context of intergenerational equity and long-term sustainability.</p>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-10262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 347 citations 347 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 108visibility views 108 download downloads 133 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-10262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Kochkin, B; Malkovsky, V; Yudintsev, S; Petrov, V; Ojovan, M;handle: 10044/1/91615
Abstract An overview is given of status of projects for the disposal of radioactive waste in very deep boreholes in crystalline rocks which demonstrates all main pros and cons of this technology. New opportunities offered by drilling long horizontal drillholes in ductile formations can provide the basis for projects that have the potential to overcome many of the disadvantages of deep boreholes. The concept of disposal in horizontal drillholes brings together the technologies of borehole and mined repositories using the advantages of both, and therefore deserves an expert discussion at international level.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/91615Data sources: Bielefeld Academic Search Engine (BASE)Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 31visibility views 31 download downloads 11 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/91615Data sources: Bielefeld Academic Search Engine (BASE)Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:SAGE Publications Authors: Ozaki, Ritsuko; Shaw, Isabel; Dodgson, Mark;Much of the debate on sustainability is predicated on the belief that environmental demands lead to the production of sustainable technologies that induce environmental benefits. This fails to account for the influential ways technologies are used in practice, and the interactions between users and technologies that shape their environmental effects. This article uses the example of how cars and their drivers together accomplish the practice of driving through their interactions with each other, and explores the implications this has for generating environmental outcomes. We draw on a body of literature that argues how together, users and technologies participate in carrying out practices that actively shape outcomes, and we show how and why this applies to sustainability. The article presents the case of the Toyota Prius, analyzing Toyota’s intent in designing a sustainable car and contrasting it with the perspectives of thirty-eight of its drivers. We find that the possibility for fuel and carbon reduction is coproduced and is a result of complex interactions between technology, drivers, and driving practice.
Science Technology &... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0162243912441029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Average influence Average impulse Average Powered by BIP!
more_vert Science Technology &... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0162243912441029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Shikun Cheng; Shikun Cheng; Zifu Li; Xuemei Wang; Heinz-Peter Mang; Di Cai; Di Cai; Shuo Yang; Yanzhao Han; Rui Yan; Yuying Zhao;Abstract Standardization of biogas technology is immensely important for the promotion of the biogas industry worldwide. China has built a complete biogas standard system, which is divided into common, household biogas, biogas engineering, biogas digester for domestic sewage treatment, output utilization, and service system standards. The problems and potential barriers for biogas standardization in China are analyzed and come down to sluggish standard, overlapped standard, government-dominated standard, and lagging international standard. Accordingly, all potential biogas standards should be evaluated and placed under the same department. China Biogas Society and China Association of Rural Energy Industry play leading roles in developing enterprise or group/association biogas standards and ISO biogas standards. The bio-natural gas standard system and experimental standardization should be developed as well to replenish biogas standard system. A paradigm shift in biogas standardization should be from government-dominated to market-oriented model. The lessons learned for other developing countries includes expanding standardization to multi-aspects to realize full lifecycle control and management, building rapid responding mechanism of standardization to adopt industry transformation, integrating outdated standards into new versions, and establishing market-based standard system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.05.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.05.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, South AfricaPublisher:Elsevier BV Omid Mahian; Omid Mahian; Ailbakhsh Kasaeian; Fatemeh Rajaee; Gholamhassan Najafi; Willem Gabriel Le Roux; Reyhaneh Loni; Evangelos Bellos; Christos N. Markides;handle: 10044/1/90413
Abstract The organic Rankine cycle (ORC) is an effective technology for power generation from temperatures of up to 400 °C and for capacities of up to 10 MWel. The use of solar irradiation for driving an ORC is a promising renewable energy-based technology due to the high compatibility between the operating temperatures of solar thermal collector technologies and the temperature needs of the cycle. The objective of this review paper is to present and discuss the operation principles of solar-ORC technology and the wide range of solar-ORC systems that have been studied in the literature. Various solar thermal technologies that can drive the ORC are investigated, such as the flat plate collector, evacuated tube collector, compound parabolic collector, parabolic trough collector, linear Fresnel reflectors, dish concentrators and solar towers. Both simulation studies and experimental investigations are included in the study. Hybrid systems and different thermal storage techniques are also examined in detail. Moreover, systems with ORC which produce many useful outputs such as cooling, heating and fresh water are studied because they present high sustainability indexes. The limitations of the technology are also highlighted, along with critical suggestions aimed at steering future research in this field. The final conclusions indicate that the development of trigeneration and polygeneration systems with ORC sub-systems is a promising avenue, not only for the future development of solar-ORC technology but also for the development of renewable and sustainable energy systems in a broader context.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/90413Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111410&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 8visibility views 8 download downloads 128 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/90413Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111410&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Publisher:NSF Arctic Data Center Atwood, Trisha; Beard, Karen; Waring, Bonnie; Adkins, Jaron; Saunders, Taylor;doi: 10.18739/a2cc0tv7w
Global change drivers that modify the quality and quantity of litter inputs to soil affect greenhouse gas fluxes, and thereby constitute a feedback to climate change. Carbon cycling in the Yukon-Kuskokwim (Y-K) River Delta, a subarctic wetland system, is influenced by landscape variations in litter quality and quantity generated by herbivores (migratory birds) that create ‘grazing lawns’ of short stature, nitrogen-rich vegetation. To identify the mechanisms by which these changes in litter inputs affect soil carbon balance, we independently manipulated qualities and quantities of litter representative of levels found in the Y-K Delta in a fully factorial microcosm experiment. We measured carbon dioxide (CO2) fluxes from these microcosms weekly. To help us identify how litter inputs influenced greenhouse gas fluxes, we sequenced soil fungal and bacterial communities, and measured soil microbial biomass carbon, dissolved carbon, inorganic nitrogen, and enzyme activity. We found that positive correlations between litter input quantity and CO2 flux were dependent upon litter type, due to differences in litter stoichiometry and changes to the structure of decomposer communities, especially the soil fungi. These community shifts were particularly pronounced when litter was added in the form of herbivore feces, and in litter input treatments that induced nitrogen limitation (i.e., senesced litter). The sensitivity of carbon cycling to litter quality and quantity in this system demonstrates that herbivores can strongly impact greenhouse gas fluxes through their influence on plant growth and tissue chemistry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2cc0tv7w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2cc0tv7w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Pappis, Ioannis; Sridharan, Vignesh; Howells, Mark; Medarac, Hrvoje; Kougias, Ioannis; Sánchez, G. Rocío; Shivakumar, Abhishek; Usher, Will;This dataset underpins the study "Synergies and conflicts of energy development and water security in Africa". The study provides insights into energy supply and demand, power generation, investments and total system costs, water consumption and withdrawal as well as carbon dioxide emissions for the African continent. We developed a model to evaluate energy supply and water requirements to cover the energy needs of the African continent during the period 2015-2065. The model was developed using the open-source modeling system for long-term energy planning OSeMOSYS. The objective function is to minimise total energy system costs, rather than, for example, co-optimise the energy and water sectors. Other energy resources were also included in the model except for adding the water analysis, and the dataset was updated based on the latest available information. The OSeMOSYS model developed to conduct the study “Energy projections for African countries”, itself extended from the Electricity Model Base for Africa (TEMBA), was further extended, included exports for all fuels, water loss due to evaporation in hydropower plants and more scenarios examined. Furthermore, the latest available data on the energy system of Africa was also updated. The TEMBA model produces aggregate energy, and detailed power system results in each country in the African continent. The power sector results are also reported with power pool aggregation. The OSeMOSYS model and input data used to produce these results can be found at KTH-dESA/jrc_temba: TEMBA 2.1 (Version v2.1) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4889373 (Authors: Ioannis Pappis, Vignesh Sridharan, Will Usher, & Mark Howells. (2021). The initial study was funded by the Joint Research Centre of the European Commission (contract number C936531 - JRC/PTT/2018/C.7/0038/NC).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3882052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 80visibility views 80 download downloads 10 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3882052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Chander Prakash; Grzegorz Królczyk; Sunpreet Singh; Rajeev Rathi; Catalin I. Pruncu; Catalin I. Pruncu;handle: 10044/1/76599
Nowadays in India the renewable energy sources are continuum growing to accommodate the current demands of energy. Therefore, for an effective use of this energy, a careful and critical analysis is required. As per literature review, India was reported having a massive potential as superpower source in terms of wind energy In the present research, an effort has been carried out to explore various decision making approaches such as TOPSIS, VIKOR, and Fuzzy analysis, to subsequently rank various Indian states with respect to their wind energy potential. In this perspective, potentiality indices have been found on the justification of five significant factors that influence the effective use of wind energy and then a classification has been proposed. It was found that the wind power density is the most significant parameter while the technical expertise has been found as the least significant among identified parameters. The results presented here indicates that among all alternative states of India, Tamilnadu and Maharashtra have the maximum potential to tap the wind energy potential. This study will act as a guide for various government agencies to re-evaluate and re-formulate their energy policies as well as will help various investors (under the ‘Make in India’ campaign) orientated to do business here, to take a well informed decision. The present study also provides a way to make strong policies, in the area of high wind energy potential, in order to maximize the use of renewable source of energy which allows to tackle the societal need and poverty.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/76599Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2019.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 25 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/76599Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2019.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Informa UK Limited Authors: Richard Syms; Simon D Taylor-Robinson; Guglielmo Trovato;In the light of the COP27 Climate Change Conference, the concept of the circular economy has come to the fore with promotion of reuse and recycling of appliances and materials from electronics to clothes. This concept has not been widely taken up by healthcare systems. In this perspective article, we discuss the idea of the circular economy and how, by extension, the concept of "circular medicine" with optimised hospital and medical clinic waste recycling might be promoted in the context of better stewardship of resources in healthcare management.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/102987Data sources: Bielefeld Academic Search Engine (BASE)Risk Management and Healthcare PolicyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2147/rmhp.s396667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 download downloads 2 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/102987Data sources: Bielefeld Academic Search Engine (BASE)Risk Management and Healthcare PolicyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2147/rmhp.s396667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Australia, Australia, United KingdomPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP140100733Carissa J. Klein; Nicholas H. Wolff; Alan T. White; Eric A. Treml; Alison Green; Maria Beger; Jennifer McGowan; Hugh P. Possingham; Hugh P. Possingham; Peter J. Mumby;AbstractMultinational conservation initiatives that prioritize investment across a region invariably navigate trade-offs among multiple objectives. It seems logical to focus where several objectives can be achieved efficiently, but such multi-objective hotspots may be ecologically inappropriate, or politically inequitable. Here we devise a framework to facilitate a regionally cohesive set of marine-protected areas driven by national preferences and supported by quantitative conservation prioritization analyses, and illustrate it using the Coral Triangle Initiative. We identify areas important for achieving six objectives to address ecosystem representation, threatened fauna, connectivity and climate change. We expose trade-offs between areas that contribute substantially to several objectives and those meeting one or two objectives extremely well. Hence there are two strategies to guide countries choosing to implement regional goals nationally: multi-objective hotspots and complementary sets of single-objective priorities. This novel framework is applicable to any multilateral or global initiative seeking to apply quantitative information in decision making.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/40993Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/11343/115945Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms9208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 116 citations 116 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 13download downloads 13 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/40993Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/11343/115945Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms9208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Germany, United KingdomPublisher:Copernicus GmbH Matthew Gidden; Malte Meinshausen; Malte Meinshausen; Keywan Riahi; Keywan Riahi; Daniel Huppmann; Leon Clarke; Joeri Rogelj; Joeri Rogelj; Joeri Rogelj; Zebedee Nicholls; Volker Krey; Volker Krey;pmid: 31534246
handle: 10044/1/73971
<p>To understand how global warming can be kept well-below 2&#176;C and even 1.5&#176;C, climate policy uses scenarios that describe how society could transform in order to reduce its greenhouse gas emissions. Such scenario are typically created with integrated assessment models that include a representation of the economy, and the energy, land-use, and industrial system. However, current climate change scenarios have a key weakness in that they typically focus on reaching specific climate goals in 2100 only. <br><br>This choice results in risky pathways that delay action and seemingly inevitably rely on large quantities of carbon-dioxide removal after mid-century. Here we propose a framework that more closely reflects the intentions of the UN Paris Agreement. It focusses on reaching a peak in global warming with either stabilisation or reversal thereafter. This approach provides a critical extension of the widely used Shared Socioecononomic Pathways (SSP) framework and reveals a more diverse picture: an inevitable transition period of aggressive near-term climate action to reach carbon neutrality can be followed by a variety of long-term states. It allows policymakers to explicitly consider near-term climate strategies in the context of intergenerational equity and long-term sustainability.</p>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-10262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 347 citations 347 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 108visibility views 108 download downloads 133 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-10262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Kochkin, B; Malkovsky, V; Yudintsev, S; Petrov, V; Ojovan, M;handle: 10044/1/91615
Abstract An overview is given of status of projects for the disposal of radioactive waste in very deep boreholes in crystalline rocks which demonstrates all main pros and cons of this technology. New opportunities offered by drilling long horizontal drillholes in ductile formations can provide the basis for projects that have the potential to overcome many of the disadvantages of deep boreholes. The concept of disposal in horizontal drillholes brings together the technologies of borehole and mined repositories using the advantages of both, and therefore deserves an expert discussion at international level.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/91615Data sources: Bielefeld Academic Search Engine (BASE)Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 31visibility views 31 download downloads 11 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/91615Data sources: Bielefeld Academic Search Engine (BASE)Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:SAGE Publications Authors: Ozaki, Ritsuko; Shaw, Isabel; Dodgson, Mark;Much of the debate on sustainability is predicated on the belief that environmental demands lead to the production of sustainable technologies that induce environmental benefits. This fails to account for the influential ways technologies are used in practice, and the interactions between users and technologies that shape their environmental effects. This article uses the example of how cars and their drivers together accomplish the practice of driving through their interactions with each other, and explores the implications this has for generating environmental outcomes. We draw on a body of literature that argues how together, users and technologies participate in carrying out practices that actively shape outcomes, and we show how and why this applies to sustainability. The article presents the case of the Toyota Prius, analyzing Toyota’s intent in designing a sustainable car and contrasting it with the perspectives of thirty-eight of its drivers. We find that the possibility for fuel and carbon reduction is coproduced and is a result of complex interactions between technology, drivers, and driving practice.
Science Technology &... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0162243912441029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Average influence Average impulse Average Powered by BIP!
more_vert Science Technology &... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0162243912441029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Shikun Cheng; Shikun Cheng; Zifu Li; Xuemei Wang; Heinz-Peter Mang; Di Cai; Di Cai; Shuo Yang; Yanzhao Han; Rui Yan; Yuying Zhao;Abstract Standardization of biogas technology is immensely important for the promotion of the biogas industry worldwide. China has built a complete biogas standard system, which is divided into common, household biogas, biogas engineering, biogas digester for domestic sewage treatment, output utilization, and service system standards. The problems and potential barriers for biogas standardization in China are analyzed and come down to sluggish standard, overlapped standard, government-dominated standard, and lagging international standard. Accordingly, all potential biogas standards should be evaluated and placed under the same department. China Biogas Society and China Association of Rural Energy Industry play leading roles in developing enterprise or group/association biogas standards and ISO biogas standards. The bio-natural gas standard system and experimental standardization should be developed as well to replenish biogas standard system. A paradigm shift in biogas standardization should be from government-dominated to market-oriented model. The lessons learned for other developing countries includes expanding standardization to multi-aspects to realize full lifecycle control and management, building rapid responding mechanism of standardization to adopt industry transformation, integrating outdated standards into new versions, and establishing market-based standard system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.05.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.05.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, South AfricaPublisher:Elsevier BV Omid Mahian; Omid Mahian; Ailbakhsh Kasaeian; Fatemeh Rajaee; Gholamhassan Najafi; Willem Gabriel Le Roux; Reyhaneh Loni; Evangelos Bellos; Christos N. Markides;handle: 10044/1/90413
Abstract The organic Rankine cycle (ORC) is an effective technology for power generation from temperatures of up to 400 °C and for capacities of up to 10 MWel. The use of solar irradiation for driving an ORC is a promising renewable energy-based technology due to the high compatibility between the operating temperatures of solar thermal collector technologies and the temperature needs of the cycle. The objective of this review paper is to present and discuss the operation principles of solar-ORC technology and the wide range of solar-ORC systems that have been studied in the literature. Various solar thermal technologies that can drive the ORC are investigated, such as the flat plate collector, evacuated tube collector, compound parabolic collector, parabolic trough collector, linear Fresnel reflectors, dish concentrators and solar towers. Both simulation studies and experimental investigations are included in the study. Hybrid systems and different thermal storage techniques are also examined in detail. Moreover, systems with ORC which produce many useful outputs such as cooling, heating and fresh water are studied because they present high sustainability indexes. The limitations of the technology are also highlighted, along with critical suggestions aimed at steering future research in this field. The final conclusions indicate that the development of trigeneration and polygeneration systems with ORC sub-systems is a promising avenue, not only for the future development of solar-ORC technology but also for the development of renewable and sustainable energy systems in a broader context.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/90413Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111410&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 8visibility views 8 download downloads 128 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/90413Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111410&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu