- home
- Advanced Search
- Energy Research
- Closed Access
- GB
- DE
- ZENODO
- Energy Research
- Closed Access
- GB
- DE
- ZENODO
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:EC | STORM, EC | PARIS REINFORCEEC| STORM ,EC| PARIS REINFORCETechnical and economic developments in battery and fast-charging technologies could soon make fuel cell electric vehicles, which run on hydrogen, superfluous in road transport
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41928-021-00706-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 23visibility views 23 download downloads 318 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41928-021-00706-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Authors:Joachim Claudet;
Joachim Claudet
Joachim Claudet in OpenAIREJessica Blythe;
David A. Gill;Jessica Blythe
Jessica Blythe in OpenAIRENathan J. Bennett;
+19 AuthorsNathan J. Bennett
Nathan J. Bennett in OpenAIREJoachim Claudet;
Joachim Claudet
Joachim Claudet in OpenAIREJessica Blythe;
David A. Gill;Jessica Blythe
Jessica Blythe in OpenAIRENathan J. Bennett;
Georgina G. Gurney; Louisa Evans; Shauna L. Mahajan;Nathan J. Bennett
Nathan J. Bennett in OpenAIRERachel A. Turner;
Gabby N. Ahmadia;Rachel A. Turner
Rachel A. Turner in OpenAIRENatalie C. Ban;
Natalie C. Ban
Natalie C. Ban in OpenAIREGraham Epstein;
Graham Epstein
Graham Epstein in OpenAIREStacy D. Jupiter;
Stacy D. Jupiter
Stacy D. Jupiter in OpenAIREJacqueline Lau;
Sangeeta Mangubhai;Jacqueline Lau
Jacqueline Lau in OpenAIRENoelia Zafra-Calvo;
Noelia Zafra-Calvo
Noelia Zafra-Calvo in OpenAIRENatali Lazzari;
Natali Lazzari
Natali Lazzari in OpenAIREJacopo A. Baggio;
Jacopo A. Baggio
Jacopo A. Baggio in OpenAIREMiranda L. Bernard;
Victor Brun;Miranda L. Bernard
Miranda L. Bernard in OpenAIREStephanie D’Agata;
Stephanie D’Agata
Stephanie D’Agata in OpenAIREAntonio Di Franco;
Rebecca Horan;Antonio Di Franco
Antonio Di Franco in OpenAIREJosheena Naggea;
Josheena Naggea
Josheena Naggea in OpenAIREpmid: 38744940
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1038/s41559-024-02417-5. Deposited by shareyourpaper.org and openaccessbutton.org. We've taken reasonable steps to ensure this content doesn't violate copyright. However, if you think it does you can request a takedown by emailing help@openaccessbutton.org.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02417-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02417-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Helga Pankoke; Ingo Höpfner;Agnieszka Matuszak;
Wolfram Beyschlag; +1 AuthorsAgnieszka Matuszak
Agnieszka Matuszak in OpenAIREHelga Pankoke; Ingo Höpfner;Agnieszka Matuszak;
Wolfram Beyschlag;Agnieszka Matuszak
Agnieszka Matuszak in OpenAIRECaroline Müller;
Caroline Müller
Caroline Müller in OpenAIREpmid: 26296746
Plants are sessile organisms that suffer from a multitude of challenges such as abiotic stress or the interactions with competitors, antagonists and symbionts, which influence their performance as well as their eco-physiological and biochemical responses in complex ways. In particular, the combination of different stressors and their impact on plant biomass production and the plant's ability to metabolically adjust to these challenges are less well understood. To study the effects of mineral nitrogen (N) availability, interspecific competition and the association with arbuscular mycorrhizal fungi (AMF) on biomass production, biomass allocation patterns (root/shoot ratio, specific leaf area) and metabolic responses, we chose the model organism Plantago lanceolata L. (Plantaginaceae). Plants were grown in a full factorial experiment. Biomass production and its allocation patterns were assessed at harvest, and the influence of the different treatments and their interactions on the plant metabolome were analysed using a metabolic fingerprinting approach with ultra-high performance liquid chromatography coupled with time-of-flight-mass spectrometry. Limited supply of mineral N caused the most pronounced changes with respect to plant biomass and biomass allocation patterns, and altered the concentrations of more than one third of the polar plant metabolome. Competition also impaired plant biomass production, yet affected the plant metabolome to a much lesser extent than limited mineral N supply. The interaction of competition and limited mineral N supply often caused additive changes on several traits. The association with AMF did not enhance biomass production, but altered biomass allocation patterns such as the root/shoot ratio and the specific leaf area. Interestingly, we did not find significant changes in the plant metabolome caused by AMF. A targeted analysis revealed that only limited mineral N supply reduced the concentrations of one of the main target defence compounds of P. lanceolata, the iridoid glycoside catalpol. In general, the interaction of competition and limited mineral N supply led to additive changes, while the association with AMF in any case alleviated the observed stress responses. Our results show that the joint analysis of biomass/allocation patterns and metabolic traits allows a more comprehensive interpretation of plant responses to different biotic and abiotic challenges; specifically, when multiple stresses interact.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.phytochem.2015.07.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.phytochem.2015.07.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors:COSIMO MAGAZZINO;
Marco Mele; Nicolas Schneider;COSIMO MAGAZZINO
COSIMO MAGAZZINO in OpenAIREThis paper critically assesses the effect of fossil fuel dependence and polluting emissions from the transport sector on the performance of logistics operations in the context of Green Supply Chain Management (GSCM). We collected macro-level time-series data for a sample of 27 European Union (EU) countries over the period 2007–2018. A new Artificial Neural Networks (ANNs) algorithm is adopted in a multivariate framework to investigate the dynamic interactions among a range of Logistics Performance Indexes (LPI), the demand for oil products, and carbon dioxide (CO2) emissions from fuel combustion in the transport sector. Empirical findings show that oil product consumption and CO2 emissions sharply influence the transport logistics indexes. However, a feedback relationship is discovered for environmental pollution, indicating that oil use is not significantly driven by supply chain performance. Based on our empirical insights, adequate policy recommendations are provided to help turning the logistics sector towards a more sustainable path in the European area.
Structural Change an... arrow_drop_down Structural Change and Economic DynamicsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.strueco.2021.11.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 15visibility views 15 download downloads 4 Powered bymore_vert Structural Change an... arrow_drop_down Structural Change and Economic DynamicsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.strueco.2021.11.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:SAGE Publications This paper tries to assess the relationship between disaggregate energy production and real aggregate income in Italy by undertaking cointegration analyses using annual data from 1883 to 2009. After a brief introduction, a survey of the economic literature on this issue is shown, before discussing the data and introducing some econometric techniques. Stationarity tests reveal that the series are non-stationary, or I(1). Cointegration analyses reveal that there is a long-run relationship between GDP and geothermoelectric production in the 1919–1939 period. Whilst, for the post-war years, we find a cointegration relationship for all sources of energy. Causality tests roughly confirm a bi-directional flow in the long-run, so that energy production and economic growth complement each other, since economic growth may demand more energy, whereas more energy consumption may also induce economic growth.
Energy & Environment arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1260/0958-305x.23.8.1191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 18visibility views 18 download downloads 1 Powered bymore_vert Energy & Environment arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1260/0958-305x.23.8.1191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2023Publisher:Copernicus GmbH Authors:Pereira Santos, Alexandre;
Pereira Santos, Alexandre
Pereira Santos, Alexandre in OpenAIRERodriguez Lopez, Miguel;
Rodriguez Lopez, Miguel
Rodriguez Lopez, Miguel in OpenAIREScheffran, Jürgen;
Scheffran, Jürgen
Scheffran, Jürgen in OpenAIREGlobal crises such as climate change and the COVID-19 pandemic do not affect cities uniformly. These crises converge in urban areas and often interact through their primary and secondary impacts with the vulnerability of urban populations. This paper investigates urban development dynamics and socio-environmental vulnerability in a megalopolis in the Global South, São Paulo (Brasil). Our goal is to assess the connections between urbanisation and risk exposure, a gap in vulnerability research when considering climate and health hazards. We implement an innovative mixed methods research design using thematic, hot spots, and survival analysis techniques. Two focus groups at the central and peripheral regions of the city provide qualitative data, while open data sets and COVID-19 case microdata (n= 1,948,601) support the quantitative methods. We find a complex system of relationships between urbanisation and risk exposure. Socioeconomic vulnerability characteristics of the population do not explain exposure entirely but significantly contribute to risk-prone location choices. Additionally, social vulnerability factors such as low income and social segregation are highly concentrated in São Paulo, coinciding with substantial COVID-19 fatality rates during 25 months of the pandemic. Finally, qualitative analysis helps us overcome the limitations of quantitative methods on the intraurban scale, indicating contrasting experiences of resilience and resistance during the health crisis. While the low-income group faced mental health and food security issues, the upper-middle-income sample took advantage of opportunities arising during the pandemic to improve work and well-being. We argue that these results demonstrate potential synergies for climate adaptation and health policies in combating socio-environmental vulnerability at the community scale. Environmental justice is thus paramount for global development agendas such as the Sustainable Development Goals, Sendai Framework, and the Paris Agreement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-17315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-17315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Royal Society of Chemistry (RSC) Authors:Hujun Cao;
Hujun Cao
Hujun Cao in OpenAIREClaudio Pistidda;
Maria Victoria Castro Riglos; Anna-Lisa Chaudhary; +8 AuthorsClaudio Pistidda
Claudio Pistidda in OpenAIREHujun Cao;
Hujun Cao
Hujun Cao in OpenAIREClaudio Pistidda;
Maria Victoria Castro Riglos; Anna-Lisa Chaudhary;Claudio Pistidda
Claudio Pistidda in OpenAIREGiovanni Capurso;
Giovanni Capurso
Giovanni Capurso in OpenAIREJo-Chi Tseng;
Jo-Chi Tseng
Jo-Chi Tseng in OpenAIREJulián Puszkiel;
Julián Puszkiel
Julián Puszkiel in OpenAIREMichael T. Wharmby;
Michael T. Wharmby
Michael T. Wharmby in OpenAIREThomas Gemming;
Thomas Gemming
Thomas Gemming in OpenAIREPing Chen;
Ping Chen
Ping Chen in OpenAIREThomas Klassen;
Thomas Klassen
Thomas Klassen in OpenAIREMartin Dornheim;
Martin Dornheim
Martin Dornheim in OpenAIREdoi: 10.1039/c9se01284b
A new route to synthesize the Mg(NH2)2–2LiH composite is proposed starting from magnesium waste alloy and LiH, after a multi-step treatment. This is an effective way to convert magnesium waste into light weight hydrogen storage materials.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se01284b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se01284b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:[no funder available]Authors:Sharon M. Swartz;
Sharon M. Swartz
Sharon M. Swartz in OpenAIREPedro Beja;
Pedro Beja;Pedro Beja
Pedro Beja in OpenAIREMartina Scacco;
+16 AuthorsMartina Scacco
Martina Scacco in OpenAIRESharon M. Swartz;
Sharon M. Swartz
Sharon M. Swartz in OpenAIREPedro Beja;
Pedro Beja;Pedro Beja
Pedro Beja in OpenAIREMartina Scacco;
Martina Scacco; Hugo Rebelo; Hugo Rebelo;Martina Scacco
Martina Scacco in OpenAIREKamran Safi;
Kamran Safi;Kamran Safi
Kamran Safi in OpenAIRERicardo Tomé;
Gary F. McCracken; Martin Wikelski; Martin Wikelski;Ricardo Tomé
Ricardo Tomé in OpenAIREDina K. N. Dechmann;
Dina K. N. Dechmann;Dina K. N. Dechmann
Dina K. N. Dechmann in OpenAIREFrancisco Amorim;
Francisco Amorim
Francisco Amorim in OpenAIREVanessa A. Mata;
Vanessa A. Mata
Vanessa A. Mata in OpenAIREM. Teague O'Mara;
M. Teague O'Mara; M. Teague O'Mara;M. Teague O'Mara
M. Teague O'Mara in OpenAIRE(Uploaded by Plazi for the Bat Literature Project) During the day, flying animals exploit the environmental energy landscape by seeking out thermal or orographic uplift, or extracting energy from wind gradients.1, 2, 3, 4, 5, 6 However, most of these energy sources are not thought to be available at night because of the lower thermal potential in the nocturnal atmosphere, as well as the difficulty of locating features that generate uplift. Despite this, several bat species have been observed hundreds to thousands of meters above the ground.7, 8, 9 Individuals make repeated, energetically costly high-altitude ascents,10, 11, 12, 13 and others fly at some of the fastest speeds observed for powered vertebrate flight.14 We hypothesized that bats use orographic uplift to reach high altitudes,9,15, 16, 17 and that both this uplift and bat high-altitude ascents would be highly predictable.18 By superimposing detailed three-dimensional GPS tracking of European free-tailed bats (Tadarida teniotis) on high-resolution regional wind data, we show that bats do indeed use the energy of orographic uplift to climb to over 1,600 m, and also that they reach maximum sustained self-powered airspeeds of 135 km h−1. We show that wind and topography can predict areas of the landscape able to support high-altitude ascents, and that bats use these locations to reach high altitudes while reducing airspeeds. Bats then integrate wind conditions to guide high-altitude ascents, deftly exploiting vertical wind energy in the nocturnal landscape.
Current Biology arrow_drop_down Current BiologyArticle . 2021 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2020.12.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 94visibility views 94 download downloads 47 Powered bymore_vert Current Biology arrow_drop_down Current BiologyArticle . 2021 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2020.12.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Dragosavac, Jasna;
Dragosavac, Jasna
Dragosavac, Jasna in OpenAIREJanda, Žarko;
Janda, Žarko
Janda, Žarko in OpenAIREMilanović, Jovica V.;
Milanović, Jovica V.
Milanović, Jovica V. in OpenAIREThe paper presents the digital realization of a model of reactive power flow (QFM) in a steam power plant using a programmable logic controller (PLC). The steam power plant (SPP) model is developed for pre-commissioning validation testing of the coordinated reactive power-terminal voltage (Q-V) control system. The SPP QFM includes a model for a synchronous generator, an excitation system, a step-up transformer, and the generator's droop characteristic modeled through the automatic voltage regulator (AVR). A QFM synthesis is based on a series of experiments performed on site. The parameters of the generator and AVR are estimated from recorded generator voltage and current time responses to a step change in voltage reference of the AVR. To get a complete QFM, transformers and network reactances are also included. In order to calculate reactive power (Q) flows more accurately, the generator Q output is adjusted by taking into account its real power output. Standard PLC hardware, as industrial grade equipment appropriate for on site testing, is used for practical QFM implementation after discretization of the continuous mathematical model. The developed QFM response is verified through a series of experiments performed in the laboratory.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2011 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2011.2127498&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 1 Powered bymore_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2011 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2011.2127498&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Zenodo Authors: Pétursdóttir, Ásta H.; Gunnlaugsdóttir, Helga; Desnica, Natasa; Ólafsdóttir, Aðalheiður; +5 AuthorsPétursdóttir, Ásta H.; Gunnlaugsdóttir, Helga; Desnica, Natasa; Ólafsdóttir, Aðalheiður; Kuenzel, Susanne; Rodehutscord, Markus; Reynolds, Chris; Humphries, David; Draper, James;The results of SeaCH4NGE include a detailed analysis of the chemical composition of seaweeds, including heavy metals and nutritional composition. This elucidated that iodine was the main concern prior to feeding trials. Chemical analysis of the compounds that may be responsible for methane reduction showed that for the seaweeds investigated the reduction seen in-vitro was likely due to compounds called phlorotannins rather than bromoform. The in-vitro screening of the seaweeds showed a some reduction of methane, but the reduction was seaweed species dependent. The reduction was dose dependent, i.e. higher amount of seaweed inclusion resulted in larger methane reduction in-vitro. The same two seaweed species were used for a Rusitec experiment (in-vitro) which is a very comprehensive analysis which provides additional information. The in-vivo trial carried out showed that feeding A. nodosum and Fucus vesiculosus to cattle has a relatively small effect on methane emission or yield. However, phlorotannins are known to have other beneficial effects when consumed by ruminants. The report further contains responses from a questionnaire to UK cattle farmers regarding their stance on seaweed supplementation and environmental matters. This report is closed until 31.12.2023. ____ Niðurstöður SeaCH4NGE fela í sér ítarlega greiningu á efnasamsetningu þangs, þ.m.t þungmálma og næringarsamsetningu. Joð styrkur reyndist helsti takmarkandi þáttur varðandi þang sem fóðurbæti. Líklegt er að sú metan minnkun sem sást með tilraunum á metanframleiðslu á rannsóknarstofu (in vitro) væri vegna efnasambanda sem kallast flórótannín frekar en brómóforms sem er þekkt efni sem getur minnkað metanframleiðslu jórturdýra. In vitro skimun þangsins sýndi hóflega minnkun metans, en lægri metanframleiðsla var háð þangtegundum. Lækkunin var skammtaháð, þ.e.a.s. með því að nota meira magn af þangi mátti sjá meiri metan minnkun in vitro. Sömu tvær þangtegundirnar voru notaðar við Rusitec tilraun (in vitro) sem er mjög yfirgripsmikil greining sem veitir frekari upplýsingar. In-vivo rannsókn á kúm sýndi að fóðrun nautgripa með A. nodosum og Fucus vesiculosus hefur tiltölulega lítil áhrif á losun metans. Hins vegar er vitað að flórótannín hafa önnur jákvæð áhrif þegar þau eru neytt af jórturdýrum. Skýrslan inniheldur einnig könnun sem var gerð á viðhorfi breskra kúabænda til þörungagjafar og loftslagsmála. Þessari skýrsla er lokað til 31.12.2023. Funding: EIT Food
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5521531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 114visibility views 114 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5521531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu