- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- Open Source
- 7. Clean energy
- 11. Sustainability
- 8. Economic growth
- GB
- FI
- Energy Research
- Open Access
- Closed Access
- Open Source
- 7. Clean energy
- 11. Sustainability
- 8. Economic growth
- GB
- FI
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Siddig Omer; Elamin Mohamed; Rami Zeinelabdein; Rami Zeinelabdein;© 2020 Elsevier Ltd Free cooling of buildings uses the nocturnal outdoor air as a heat sink via a ventilation process. This could be performed by storing the night coolness for use during the daytime as appropriate. Due to the latent heat capacity, phase change material (PCM) could play anessential role in the effective operation of the free cooling systems by shifting the daytime peak load to the night. However, there is a scarceness on the technology application in hot climates. This paper presents results of a parametric investigation into the application of PCMs as thermal energy storage (TES) to provide sustainable cooling to buildings in hot arid climate by making use of the night-time free cooling. The proposed TES medium comprises an arrangement of metallic modules filled with RT28HC PCM. Numerous geometrical configurations and operational parameters have been assessed. A transient CFD simulation has been employed using ANSYS Fluent software. Validation of the numerical results with experimental data has shown a good agreement. The results have demonstrated that the temperature difference between the PCM and the air, at appropriate air flow rate would have a significant impact on the performance of the system. A free cooling system based on the proposed arrangement has the potential to meet around 42% of a typical building cooling load and has the ability to save up to 67% of building cooling energy load in summer season compared to conventional air-conditioning systems in hot arid climates.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2020.101972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2020.101972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors:Ahmed, Asam;
Ge, Tianshu;Ahmed, Asam
Ahmed, Asam in OpenAIREPeng, Jinqing;
Yan, Wei-Cheng; +2 AuthorsPeng, Jinqing
Peng, Jinqing in OpenAIREAhmed, Asam;
Ge, Tianshu;Ahmed, Asam
Ahmed, Asam in OpenAIREPeng, Jinqing;
Yan, Wei-Cheng; Tee, Boon Tuan;Peng, Jinqing
Peng, Jinqing in OpenAIREYou, Siming;
You, Siming
You, Siming in OpenAIREDecarbonizing the building sector is extremely important to mitigating climate change as the sector contributes 40% of the overall energy consumption and 36% of the total greenhouse gas emissions in the world. Net-zero energy buildings are one of the promising decarbonization attempts due to their potential of decreasing the use of energy and increasing the total share of renewable energy. To achieve a net-zero energy building, it is necessary to decrease the energy demand by applying efficiency enhancement measures and using renewable energy sources. Net-zero energy buildings can be classified into four models (Net-Zero Site Energy buildings, Net-Zero Emissions buildings, Net-Zero Source Energy buildings, and Net-Zero Cost Energy buildings). A variety of technical, financial, and environmental factors should be considered during the decision-making process of net-zero energy building development, justifying the use of multi-criteria decision analysis methods for the design of net-zero energy buildings. This paper also discussed the contributions of renewable energy generation (hydropower, wind energy, solar, heat pumps, and bioenergy) to the development of net-zero energy buildings and reviewed its role in tackling the decarbonization challenge. Cost-benefit analysis and life cycle assessment of building designs were reviewed to shape the priorities of future development. It is important to develop a universal decision instrument for optimum design and operation of net-zero energy buildings.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2022License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 263 citations 263 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2022License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Valerii Abramenko;
Valerii Abramenko
Valerii Abramenko in OpenAIREIlya Petrov;
Ilya Petrov
Ilya Petrov in OpenAIREJanne Nerg;
Juha Pyrhonen;Janne Nerg
Janne Nerg in OpenAIREThe performance capabilities of an axially laminated anisotropic rotor (ALA) in a high-speed synchronous reluctance motor (SynRM) were studied. A 12 kW ALASynRM was designed as an alternative to a high-speed induction motor (IM) with a solid rotor. The electromagnetic design was implemented taking into account possible issues related to the new manufacturing methods, which require thicker rotor layers than in a typical ALA. The ALASynRM shows a higher efficiency than the corresponding IM with a smooth or slitted solid rotor equipped with copper end rings. To verify the design method, a prototype IM with a smooth solid rotor was built and tested. In the analysis, it was found that, similar to IMs, in an ALASynRM a considerable part of losses takes place in the rotor despite the absence of slip-related losses in the SynRM. The distribution of eddy current losses in the ALA rotor is significantly uneven. The torque ripple in the ALASynRM is considerably larger than the corresponding ripple in IMs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.2971685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.2971685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 ItalyPublisher:MDPI AG Funded by:EC | NoAWEC| NoAWAuthors:Vannini M.;
Vannini M.
Vannini M. in OpenAIREMarchese P.;
Marchese P.
Marchese P. in OpenAIRESisti L.;
Sisti L.
Sisti L. in OpenAIRESaccani A.;
+3 AuthorsSaccani A.
Saccani A. in OpenAIREVannini M.;
Vannini M.
Vannini M. in OpenAIREMarchese P.;
Marchese P.
Marchese P. in OpenAIRESisti L.;
Sisti L.
Sisti L. in OpenAIRESaccani A.;
Mu T.;Saccani A.
Saccani A. in OpenAIRESun H.;
Celli A.;
Celli A.
Celli A. in OpenAIREWith the aim to fully exploit the by-products obtained after the industrial extraction of starch from sweet potatoes, a cascading approach was developed to extract high-value molecules, such as proteins and pectins, and to valorize the solid fraction, rich in starch and fibrous components. This fraction was used to prepare new biocomposites designed for food packaging applications. The sweet potato residue was added to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in various amounts up to 40 wt % by melt mixing, without any previous treatment. The composites are semicrystalline materials, characterized by thermal stability up to 260 °C. For the composites containing up to 10 wt % of residue, the tensile strength remains over 30 MPa and the strain stays over 3.2%. A homogeneous dispersion of the sweet potato waste into the bio-polymeric matrix was achieved but, despite the presence of hydrogen bond interactions between the components, a poor interfacial adhesion was detected. Considering the significant percentage of sweet potato waste used, the biocomposites obtained show a low economic and environmental impact, resulting in an interesting bio-alternative to the materials commonly used in the packaging industry. Thus, according to the principles of a circular economy, the preparation of the biocomposites closes the loop of the complete valorization of sweet potato products and by-products.
Polymers arrow_drop_down PolymersOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4360/13/7/1048/pdfData sources: Multidisciplinary Digital Publishing InstitutePolymersArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4360/13/7/1048/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym13071048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Polymers arrow_drop_down PolymersOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4360/13/7/1048/pdfData sources: Multidisciplinary Digital Publishing InstitutePolymersArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4360/13/7/1048/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym13071048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2005Publisher:Elsevier BV Authors:Jenny M. Jones;
R.I. Backreedy;Jenny M. Jones
Jenny M. Jones in OpenAIRELin Ma;
Alan Williams; +2 AuthorsJenny M. Jones;
R.I. Backreedy;Jenny M. Jones
Jenny M. Jones in OpenAIRELin Ma;
Alan Williams;Mohamed Pourkashanian;
L. M. Fletcher;Mohamed Pourkashanian
Mohamed Pourkashanian in OpenAIREAbstract A CFD modelling study has been undertaken to examine the co-firing of pulverised coal and biomass with particular regard to the burnout of the larger diameter biomass particles. Computations were based on a research combustion facility that replicates an industrial coal-fired power station. Three percent, by mass, of pinewood was blended with a bituminous UK coal, and the effects of the wood particle size and shape on the burnout of the combined wood and coal char were investigated. The effect of varying the devolatilisation and char combustion rate constants for the biomass component in the blend was also investigated. It was concluded that the combustion of small (200 μm) wood particles was rapid but the rate of combustion of larger particles was dependent on their composition, size, and shape.
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2004.08.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu131 citations 131 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2004.08.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Juntao Zhou;Shunqi Pan;
Shunqi Pan
Shunqi Pan in OpenAIRERoger Alexander Falconer;
Roger Alexander Falconer
Roger Alexander Falconer in OpenAIREThe Severn Estuary has the world's second largest tide range and a barrage across the estuary, located just seawards of Cardiff in Wales and Weston in the South West England, has been proposed for over half a century, with the objective of extracting large amounts of tidal energy. A Severn Barrage, as previously proposed by the Severn Tidal Power Group (STPG), would be the largest renewable energy project for tidal power generation in the world, if built as proposed, and would generate approximately 5% of the UK's electricity needs. However, concerns have been raised over the environmental impacts of such a barrage, including potential increase in flood risk, loss of intertidal habitats etc. In addressing the challenges of maximizing the energy output and minimizing the environmental impacts of such a barrage, this research study has focused on using a Continental Shelf model, based on the modified Environmental Fluid Dynamics Code (EFDC) with a barrage operation module (EFDC_B), to investigate both the far and near field hydrodynamic impacts of a barrage for different operating scenarios. Three scenarios have been considered to simulate the Severn Barrage, operating via two-way generation and using different combinations of turbines and sluices. The first scenario consisted of 216 turbines and 166 sluices installed along the barrage; the second consisted of 382 turbines with no sluices; and the third consisted of 764 turbines and no sluices. The specification of the sluice gates and turbines are the same for all scenarios. The model results indicate that the third scenario has the best mitigating effects for the far-field and near-field flood risks caused by a barrage and produces the most similar results of minimum water depth and maximum velocity distributions to those obtained from simulating the natural conditions of the estuary, i.e. the current conditions. The results also show that the flow patterns around the barrage are closest to those for the existing natural conditions with minimal slight changes in the estuary. Thus, the results clearly indicate that the environmental impacts of a Severn Barrage can be minimized if the barrage is operated for two-way generation and under the third scenario. Although it appears that the energy output for the third scenario is less than that obtained for the other two scenarios, if very low head (VLH) turbines are used, then the third scenario could generate more energy as more turbines could be cited along the barrage structure. Therefore, the study shows that a Severn Barrage, operating in two-way generation and with 764 turbines (ideally VLH turbines), would be the best option to meet the needs of maximizing the energy output, but having a minimal impact on environmental changes in the estuary and far-field.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.07.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.07.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Oxford University Press (OUP) doi: 10.1093/ijlct/ctq006
Biomass plays an important role in the world primary energy supplies, currently providing ∼14% of the world's primary energy needs and being the fourth largest contributor following coal, oil and natural gas. Over the past decade, domestic biomass heating has received more governmental and public supports than ever before in many developed countries, such as the UK. Although biomass combustion releases some combustion pollutants, biomass is renewable and produces little net CO 2 emissions to the atmosphere. Owing to the low sulphur and low nitrogen contents of many biomass materials, substituting biomass for fossil fuels, particularly coal, can reduce SO x and NO x emissions. This study investigated flue gas emissions, particularly carbon monoxide and nitrogen oxides, of a domestic biomass boiler under various operating conditions. The biomass boiler used in this study satisfies the current EU regulation (EN 303-05) on emissions of domestic biomass boilers. Emissions of the boiler had been measured not only under normal combustion conditions, but also under 'idle' combustion conditions when the boiler was not in but was ready for full operation. The experimental results are analysed and presented in this paper. Copyright The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org, Oxford University Press.
International Journa... arrow_drop_down International Journal of Low-Carbon TechnologiesArticle . 2010 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ijlct/ctq006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Low-Carbon TechnologiesArticle . 2010 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ijlct/ctq006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Funded by:AKA | Regulation and dynamic pr...AKA| Regulation and dynamic pricing for energy systems / Consortium: REDYFLEXAuthors: Rauli Svento; Santtu Karhinen; Santtu Karhinen;Maria Kopsakangas-Savolainen;
+5 AuthorsMaria Kopsakangas-Savolainen
Maria Kopsakangas-Savolainen in OpenAIRERauli Svento; Santtu Karhinen; Santtu Karhinen;Maria Kopsakangas-Savolainen;
Maria Kopsakangas-Savolainen; Hannu Huuki; Hannu Huuki; Anders V. Lindfors; Herman Böök;Maria Kopsakangas-Savolainen
Maria Kopsakangas-Savolainen in OpenAIREAbstract Intermittent renewable energy generation, which is determined by weather conditions, is increasing in power markets. The efficient integration of these energy sources calls for flexible participants in smart power grids. It has been acknowledged that a large, underutilized, flexible resource lies on the consumer side of electricity generation. Despite the recently increasing interest in demand flexibility, there is a gap in the literature concerning the incentives for consumers to offer their flexible energy to power markets. In this paper, we examine a virtual power plant concept, which simultaneously optimizes the response of controllable electric hot water heaters to solar power forecast error imbalances. Uncertainty is included in the optimization in terms of solar power day-ahead forecast errors and balancing power market conditions. We show that including solar power imbalance minimization in the target function changes the optimal hot water heating profile such that more electricity is used during the daytime. The virtual power plant operation decreases solar power imbalances by 5–10% and benefits the participating households by 4.0–7.5 € in extra savings annually. The results of this study indicate that with the number of participating households, while total profits increase, marginal revenues decrease.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2020.101202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2020.101202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research , Preprint 2004Publisher:Elsevier BV Authors: Snorre Kverndokk; Knut Einar Rosendahl; Knut Einar Rosendahl; Thomas F. Rutherford;doi: 10.2139/ssrn.519344
We study the role of technology subsidies in climate policies, using a simple dynamic equilibrium model with learning-by-doing. The optimal subsidy rate of a carbon-free technology is high when the technology is first adopted, but falls significantly over the next decades. However, the efficiency costs of uniform instead of optimal subsidies, may be low if there are introduction or expansion constraints for a new technology. Finally, supporting existing energy technologies only, may lead to technology lock-in, and the impacts of lock-in increase with the learning potential of new technologies as well as the possibilities for early entry and thight carbon constraints.
Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.519344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.519344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:EC | ICOMFLUID, UKRI | Development of fast pyrol...EC| ICOMFLUID ,UKRI| Development of fast pyrolysis based advanced biofuel technologies for biofuelsAuthors:Beatriz Fidalgo;
Sai Gu; Mobolaji Shemfe; Mobolaji Shemfe;Beatriz Fidalgo
Beatriz Fidalgo in OpenAIREBiofuels have been identified as a mid-term GHG emission abatement solution for decarbonising the transport sector. This study examines the techno-economic analysis of biofuel production via biomass fast pyrolysis and subsequent bio-oil upgrading via zeolite cracking. The aim of this study is to compare the techno-economic feasibility of two conceptual catalyst regeneration configurations for the zeolite cracking process: (i) a two-stage regenerator operating sequentially in partial and complete combustion modes (P-2RG) and (ii) a single stage regenerator operating in complete combustion mode coupled with a catalyst cooler (P-1RGC). The designs were implemented in Aspen Plus® based on a hypothetical 72 t/day pine wood fast pyrolysis and zeolite cracking plant and compared in terms of energy efficiency and profitability. The energy efficiencies of P-2RG and P-1RGC were estimated at 54% and 52%, respectively with corresponding minimum fuel selling prices (MFSPs) of £7.48/GGE and £7.20/GGE. Sensitivity analysis revealed that the MFSPs of both designs are mainly sensitive to variations in fuel yield, operating cost and income tax. Furthermore, uncertainty analysis indicated that the likely range of the MFSPs of P-1RGC (£5.81/GGE £11.63/GGE) at 95% probability was more economically favourable compared with P-2RG, along with a penalty of 2% reduction in energy efficiency. The results provide evidence to support the economic viability of biofuel production via zeolite cracking of pyrolysis-derived bio-oil.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2017License: CC BYFull-Text: http://epubs.surrey.ac.uk/813454/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2017License: CC BYFull-Text: http://epubs.surrey.ac.uk/813454/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu