
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Utilizing the flexibility of distributed thermal storage in solar power forecast error cost minimization

Abstract Intermittent renewable energy generation, which is determined by weather conditions, is increasing in power markets. The efficient integration of these energy sources calls for flexible participants in smart power grids. It has been acknowledged that a large, underutilized, flexible resource lies on the consumer side of electricity generation. Despite the recently increasing interest in demand flexibility, there is a gap in the literature concerning the incentives for consumers to offer their flexible energy to power markets. In this paper, we examine a virtual power plant concept, which simultaneously optimizes the response of controllable electric hot water heaters to solar power forecast error imbalances. Uncertainty is included in the optimization in terms of solar power day-ahead forecast errors and balancing power market conditions. We show that including solar power imbalance minimization in the target function changes the optimal hot water heating profile such that more electricity is used during the daytime. The virtual power plant operation decreases solar power imbalances by 5–10% and benefits the participating households by 4.0–7.5 € in extra savings annually. The results of this study indicate that with the number of participating households, while total profits increase, marginal revenues decrease.
- Finnish Meteorological Institute Finland
- University of Oulu Finland
- Oulu University Hospital Finland
- Finnish Environment Institute Finland
ta213
ta213
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
