- home
- Advanced Search
- Energy Research
- 2016-2025
- GB
- MY
- Applied Energy
- Energy Research
- 2016-2025
- GB
- MY
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | Heat supply through Solar..., EC | H-DisNetUKRI| Heat supply through Solar Thermochemical Residential Seasonal Storage (Heat-STRESS) ,EC| H-DisNetAuthors:Giampieri, Alessandro;
Giampieri, Alessandro
Giampieri, Alessandro in OpenAIREMa, Zhiwei;
Ma, Zhiwei
Ma, Zhiwei in OpenAIRESmallbone, Andrew;
Smallbone, Andrew
Smallbone, Andrew in OpenAIRERoskilly, Anthony Paul;
Roskilly, Anthony Paul
Roskilly, Anthony Paul in OpenAIREAbstract In an effort to minimise electricity consumption and greenhouse gases emissions, the heating, ventilation and air-conditioning sector has focused its attention on developing alternative solutions to electrically-driven vapour-compression cooling. Liquid desiccant air-conditioning systems represent an energy-efficient and more environmentally friendly alternative technology for dehumidification and cooling, particularly in those cases with high latent loads to maintain indoor air quality and comfort conditions. This technology is considered particularly efficient in hot and humid climates. As a matter of fact, the choice of the desiccant solution influences the overall performance of the system. The current paper reviews the working principle of liquid desiccant systems, focusing on the thermodynamic properties of the desiccant solutions and describes an evaluation of the reference thermodynamic properties of different desiccant solutions to identify which thermodynamic, physical, transport property influences the liquid desiccant process and to what extent. The comparison of these thermodynamic properties for the commonly used desiccants is conducted to estimate which fluid could perform most favourably in the system. The economic factors and the effect of different applications and climatic conditions on the system performance are also described. The paper is intended to be the first step in the evaluation of alternative desiccant fluids able to overcome the problems related to the use of the common desiccant solutions, such as crystallization and corrosion to metals. Ionic liquids seem a promising alternative working fluid in liquid desiccant air-conditioning systems and their characteristics and cost are discussed.
Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/29398/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/29398/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 IrelandPublisher:Elsevier BV Publicly fundedFunded by:University College DublinUniversity College DublinAuthors:Usman Ali;
Usman Ali
Usman Ali in OpenAIREMohammad Haris Shamsi;
Mark Bohacek; Karl Purcell; +3 AuthorsMohammad Haris Shamsi
Mohammad Haris Shamsi in OpenAIREUsman Ali;
Usman Ali
Usman Ali in OpenAIREMohammad Haris Shamsi;
Mark Bohacek; Karl Purcell; Cathal Hoare; Eleni Mangina; James O’Donnell;Mohammad Haris Shamsi
Mohammad Haris Shamsi in OpenAIREhandle: 10197/12265
Abstract Urban planners, local authorities, and energy policymakers often develop strategic sustainable energy plans for the urban building stock in order to minimize overall energy consumption and emissions. Planning at such scales could be informed by building stock modeling using existing building data and Geographic Information System-based mapping. However, implementing these processes involves several issues, namely, data availability, data inconsistency, data scalability, data integration, geocoding, and data privacy. This research addresses the aforementioned information challenges by proposing a generalized integrated methodology that implements bottom-up, data-driven, and spatial modeling approaches for multi-scale Geographic Information System mapping of building energy modeling. This study uses the Irish building stock to map building energy performance at multiple scales. The generalized data-driven methodology uses approximately 650,000 Irish Energy Performance Certificates buildings data to predict more than 2 million buildings’ energy performance. In this case, the approach delivers a prediction accuracy of 88% using deep learning algorithms. These prediction results are then used for spatial modeling at multiple scales from the individual building level to a national level. Furthermore, these maps are coupled with available spatial resources (social, economic, or environmental data) for energy planning, analysis, and support decision-making. The modeling results identify clusters of buildings that have a significant potential for energy savings within any specific region. Geographic Information System-based modeling aids stakeholders in identifying priority areas for implementing energy efficiency measures. Furthermore, the stakeholders could target local communities for retrofit campaigns, which would enhance the implementation of sustainable energy policy decisions.
University College D... arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12265Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University College D... arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12265Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021Publisher:Elsevier BV Funded by:UKRI | DTP 2018-19 University of...UKRI| DTP 2018-19 University of CambridgeAuthors:Quentin Paletta;
Anthony Hu; Guillaume Arbod; Joan Lasenby;Quentin Paletta
Quentin Paletta in OpenAIREEfficient integration of solar energy into the electricity mix depends on a reliable anticipation of its intermittency. A promising approach to forecast the temporal variability of solar irradiance resulting from the cloud cover dynamics is based on the analysis of sequences of ground-taken sky images or satellite observations. Despite encouraging results, a recurrent limitation of existing deep learning approaches lies in the ubiquitous tendency of reacting to past observations rather than actively anticipating future events. This leads to a frequent temporal lag and limited ability to predict sudden events. To address this challenge, we introduce ECLIPSE, a spatio-temporal neural network architecture that models cloud motion from sky images to not only predict future irradiance levels and associated uncertainties, but also segmented images, which provide richer information on the local irradiance map. We show that ECLIPSE anticipates critical events and reduces temporal delay while generating visually realistic futures. The model characteristics and properties are investigated with an ablation study and a comparative study on the benefits and different ways to integrate auxiliary data into the modelling. The model predictions are also interpreted through an analysis of the principal spatio-temporal components learned during network training. Manuscript accepted for publication in Applied Energy
Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 BelgiumPublisher:Elsevier BV Funded by:EC | VADEMECOM, EC | CLEAN-GasEC| VADEMECOM ,EC| CLEAN-GasAuthors:Alberto Cuoci;
Alberto Cuoci
Alberto Cuoci in OpenAIREZhiyi Li;
Zhiyi Li
Zhiyi Li in OpenAIREMarco Ferrarotti;
Marco Ferrarotti; +1 AuthorsMarco Ferrarotti
Marco Ferrarotti in OpenAIREAlberto Cuoci;
Alberto Cuoci
Alberto Cuoci in OpenAIREZhiyi Li;
Zhiyi Li
Zhiyi Li in OpenAIREMarco Ferrarotti;
Marco Ferrarotti;Marco Ferrarotti
Marco Ferrarotti in OpenAIREAlessandro Parente;
Alessandro Parente
Alessandro Parente in OpenAIREAbstract The present work focuses on the numerical simulation of Moderate or Intense Low oxygen Dilution combustion condition, using the Partially-Stirred Reactor model for turbulence-chemistry interactions. The Partially-Stirred Reactor model assumes that reactions are confined in a specific region of the computational cell, whose mass fraction depends both on the mixing and the chemical time scales. Therefore, the appropriate choice of mixing and chemical time scales becomes crucial to ensure the accuracy of the numerical simulation prediction. Results show that the most appropriate choice for mixing time scale in Moderate or Intense Low oxygen Dilution combustion regime is to use a dynamic evaluation, in which the ratio between the variance of mixture fraction and its dissipation rate is adopted, rather than global estimations based on Kolmogorov or integral mixing scales. This is supported by the validation of the numerical results against experimental profiles of temperature and species mass fractions, available from measurements on the Adelaide Jet in Hot Co-flow burner. Different approaches for chemical time scale evaluation are also compared, using the species formation rates, the reaction rates and the eigenvalues of the formation rate Jacobian matrix. Different co-flow oxygen dilution levels and Reynolds numbers are considered in the validation work, to evaluate the applicability of Partially-Stirred Reactor approach over a wide range of operating conditions. Moreover, the influence of specifying uniform and non-uniform boundary conditions for the chemical scalars is assessed. The present work sheds light on the key mechanisms of turbulence-chemistry interactions in advanced combustion regimes. At the same time, it provides essential information to advance the predictive nature of computational tools used by scientists and engineers, to support the development of new technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.04.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.04.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Cetengfei Zhang;Quan Zhou;
Min Hua; Hongming Xu; +2 AuthorsQuan Zhou
Quan Zhou in OpenAIRECetengfei Zhang;Quan Zhou;
Min Hua; Hongming Xu;Quan Zhou
Quan Zhou in OpenAIREMike Bassett;
Fanggang Zhang;Mike Bassett
Mike Bassett in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Lip Huat Saw; Yonghuang Ye; Ming Kun Yew;Tan Ching Ng;
+2 AuthorsTan Ching Ng
Tan Ching Ng in OpenAIRELip Huat Saw; Yonghuang Ye; Ming Kun Yew;Tan Ching Ng;
Tan Ching Ng
Tan Ching Ng in OpenAIREMing Chian Yew;
Ming Chian Yew
Ming Chian Yew in OpenAIREWen Tong Chong;
Wen Tong Chong
Wen Tong Chong in OpenAIREAbstract Temperature is one of the factors which affect the power availability, driveability and durability of the battery pack. Folded fin and serpentine channel are commonly used to provide cooling for the battery pack. During the cooling process, fluid absorbed the heat generated along the flow direction and caused the reduction of the cooling capacity. Hence, downstream temperature is always higher than the upstream temperature. Inconsistent cooling effect will lead to high variation of temperature distribution and shorten the life expectancy of the battery pack. In this study, a battery module consists of three pieces of LiFePO4 pouch cell arranged side by side, and aluminium foam is sandwiched between two heat spreaders to form a cooling plate. Aluminium foams with different porosity and pores density were modelled to investigate the thermal performance and flow field numerically. Correlation of Nusselt number, permeability and resistance loss coefficient from the literature was extracted and used in the CFD simulation. From the simulation results, it is shown that 10 PPI aluminium foam with 0.918 porosity offered the highest thermal performance and lowest flow resistance. Hence, the optimized aluminium foam cooling plate can be used as a new type of cooling system for the battery pack.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.04.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.04.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | Biomethanisation of CO2 i...UKRI| Biomethanisation of CO2 in anaerobic digestion plantsAuthors:Bing Tao;
Bing Tao
Bing Tao in OpenAIREAnna M. Alessi;
Anna M. Alessi
Anna M. Alessi in OpenAIREYue Zhang;
Yue Zhang
Yue Zhang in OpenAIREJames P.J. Chong;
+2 AuthorsJames P.J. Chong
James P.J. Chong in OpenAIREBing Tao;
Bing Tao
Bing Tao in OpenAIREAnna M. Alessi;
Anna M. Alessi
Anna M. Alessi in OpenAIREYue Zhang;
Yue Zhang
Yue Zhang in OpenAIREJames P.J. Chong;
James P.J. Chong
James P.J. Chong in OpenAIRESonia Heaven;
Charles J. Banks;Sonia Heaven
Sonia Heaven in OpenAIREIn-situ biomethanisation reduces the CO2 in biogas to CH4 via direct H2 injection into an anaerobic digester, but volumetric methane production (VMP) is limited by organic loading. Ex-situ biomethanisation, where gaseous substrates are fed to pure or mixed cultures of hydrogenotrophic methanogens, offers higher VMP but requires an additional reactor and supply of essential nutrients. This work combined the two approaches in a novel hybrid application achieving simultaneous in-situ and ex-situ biomethanisation within an organically-loaded anaerobic digester receiving supplementary biogas. Conventional stirred-tank digesters were first acclimated to H2 addition, increasing biogas methane content from 50% to 95% and VMP from 0.86 to 1.51 L L-1 day-1 at a moderate loading rate of 3 g organic chemical oxygen demand per L per day (g CODorg L-1 day-1). Externally-produced biogas was then added to demonstrate simultaneous biomethanisation of endogenous and imported CO2. This further increased VMP to 2.76 L L-1 day-1 without affecting organic substrate degradation. In-situ CO2 reduction can alter digester pH by reducing bicarbonate buffering: the combined process operated stably at around pH 8.0 with 3-5% CO2 in the headspace. Microbial community analysis indicated the process was mediated by bacterial syntrophic acetate oxidation and highly enriched hydrogenotrophic methanogenic archaea (up to 97% of the archaeal population). This approach presents the opportunity to retrofit a single digester for H2 injection to convert and upgrade biogas from several others, minimising capital and operating costs by utilising both existing infrastructure and waste-derived feedstock nutrients for simultaneous biogas upgrading and power-to-methane.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)White Rose Research OnlineArticle . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.04.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 22visibility views 22 download downloads 103 Powered bymore_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)White Rose Research OnlineArticle . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.04.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Muhammet Deveci;Dragan Pamucar;
Dragan Pamucar
Dragan Pamucar in OpenAIREElif Oguz;
Elif Oguz
Elif Oguz in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Yongji Zhang; Minghui Lan; Yapu Zhao; Zhi Su; Yu Hao; Heran Du;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:UKRI | En-ComE: Energy Harvestin..., UKRI | SMARTER: Smart Multifunct...UKRI| En-ComE: Energy Harvesting Powered Wireless Monitoring Systems Based on Integrated Smart Composite Structures and Energy-Aware Architecture ,UKRI| SMARTER: Smart Multifunctional ARchitecture & Technology for Energy aware wireless sensoRsAbstract Nonlinear systems may exhibit secondary resonances, which can provide an additional and thus broadened bandwidth for energy harvesting. However, the secondary resonances of nonlinear energy harvesters reported in the literature suffer from low-power output and limited bandwidth. This work proposes a novel magnetic rolling pendulum (MRP) with a large bandwidth and high power output in both primary and secondary resonances for energy harvesting. The MRP employs the rolling motion of a magnetically levitated permanent magnet with minimal mechanical damping. A prototype was fabricated and characterised. An analytical model combined with finite element analysis was developed and validated by experiment. Both experiment and simulation show that the MRP has a linear resonance frequency of 4.6 Hz and peak power of 3.7 mW. It exhibits strong nonlinear behaviours and broadband characteristics with excitation amplitude as low as 2 m/s2 in the primary resonance. As the excitation amplitude is larger than 5 m/s2, the secondary resonance (1/2 order subharmonics) is excited. The responses of the MRP at the subharmonic resonance take the same form as the primary resonance in terms of displacement and power outputs. This helps the subharmonic resonance to produce the same power level as the primary resonance but with a larger bandwidth. When excited at 14 m/s2, the MRP shows 1-mW-bandwidth of 9.7 Hz, 2/3 of which is attributed to the subharmonic resonance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu