- home
- Advanced Search
- Energy Research
- 13. Climate action
- 11. Sustainability
- 12. Responsible consumption
- GB
- RU
- Energies
- Energy Research
- 13. Climate action
- 11. Sustainability
- 12. Responsible consumption
- GB
- RU
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors:Susann Stritzke;
Susann Stritzke
Susann Stritzke in OpenAIRECarlos Sakyi-Nyarko;
Carlos Sakyi-Nyarko
Carlos Sakyi-Nyarko in OpenAIREIwona Bisaga;
Malcolm Bricknell; +2 AuthorsIwona Bisaga
Iwona Bisaga in OpenAIRESusann Stritzke;
Susann Stritzke
Susann Stritzke in OpenAIRECarlos Sakyi-Nyarko;
Carlos Sakyi-Nyarko
Carlos Sakyi-Nyarko in OpenAIREIwona Bisaga;
Malcolm Bricknell; Jon Leary;Iwona Bisaga
Iwona Bisaga in OpenAIREEdward Brown;
Edward Brown
Edward Brown in OpenAIREdoi: 10.3390/en14154559
Results-based financing (RBF) programmes in the clean cooking sector have gained increasing donor interest over the last decade. Although the risks and advantages of RBF have been discussed quite extensively for other sectors, especially health services, there is limited research-documented experience of its application to clean cooking. Due to the sheer scale of the important transition from ‘dirty’ to clean cooking for the 4 billion people who lack access, especially in the Global South, efficient and performance-proven solutions are urgently required. This paper, undertaken as part of the work of the UKAid-funded Modern Energy Cooking Services (MECS) programme, aims to close an important research gap by reviewing evidence-based support mechanisms and documenting essential experiences from previous and ongoing RBF programmes in the clean cooking and other sectors. On this basis, the paper derives key strategic implications and learning lessons for the global scaling of RBF programmes and finds that qualitative key performance indicators such as consumer acceptance as well as longer-term monitoring are critical long-term success factors for RBF to ensure the continued uptake and use of clean cooking solutions (CCS), however securing the inclusion of these indicators within programmes remains challenging. Finally, by discussing the opportunities for the evolution of RBF into broader impact funding programmes and the integration of energy access and clean cooking strategies through multi-sector approaches, the paper illustrates potential steps to enhance the impact of RBF in this sector in the future.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4559/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4559/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors:Muhammad Haroon;
Muhammad Haroon
Muhammad Haroon in OpenAIRENadeem Ahmed Sheikh;
Nadeem Ahmed Sheikh
Nadeem Ahmed Sheikh in OpenAIREAbubakr Ayub;
Abubakr Ayub
Abubakr Ayub in OpenAIRERasikh Tariq;
+3 AuthorsRasikh Tariq
Rasikh Tariq in OpenAIREMuhammad Haroon;
Muhammad Haroon
Muhammad Haroon in OpenAIRENadeem Ahmed Sheikh;
Nadeem Ahmed Sheikh
Nadeem Ahmed Sheikh in OpenAIREAbubakr Ayub;
Abubakr Ayub
Abubakr Ayub in OpenAIRERasikh Tariq;
Rasikh Tariq
Rasikh Tariq in OpenAIREFarooq Sher;
Farooq Sher
Farooq Sher in OpenAIREAklilu Tesfamichael Baheta;
Aklilu Tesfamichael Baheta
Aklilu Tesfamichael Baheta in OpenAIREMuhammad Imran;
Muhammad Imran
Muhammad Imran in OpenAIREdoi: 10.3390/en13195080
This study focused on investigating the bottoming power cycles operating with CO2-based binary mixture, taking into account exergetic, economic and exergo-environmental impact indices. The main intent is to assess the benefits of employing a CO2-based mixture working fluid in closed Brayton bottoming power cycles in comparison with pure CO2 working fluid. Firstly, selection criteria for the choice of suitable additive compound for CO2-based binary mixture is delineated and the composition of the binary mixture is decided based on required cycle minimum temperature. The decided CO2-C7H8 binary mixture with a 0.9 mole fraction of CO2 is analyzed in two cycle configurations: Simple regenerative cycle (SRC) and Partial heating cycle (PHC). Comparative analysis among two configurations with selected working fluid are carried out. Thermodynamic analyses at varying cycle pressure ratio shows that cycle with CO2-C7H8 mixture shows maximum power output and exergy efficiency at rather higher cycle pressure ratio compared to pure CO2 power cycles. PHC with CO2-C7H8 mixture shows 28.68% increment in exergy efficiency with the levelized cost of electricity (LCOE) 21.62% higher than pure CO2 PHC. Whereas, SRC with CO2-C7H8 mixture shows 25.17% increment in exergy efficiency with LCOE 57.14% higher than pure CO2 SRC. Besides showing lower economic value, cycles with a CO2-C7H8 mixture saves larger CO2 emissions and also shows greater exergo-environmental impact improvement and plant sustainability index.
CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5080/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5080/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors: Mehrdad Chahardowli;Hassan Sajadzadeh;
Hassan Sajadzadeh
Hassan Sajadzadeh in OpenAIREFarshid Aram;
Farshid Aram
Farshid Aram in OpenAIREAmir Mosavi;
Amir Mosavi
Amir Mosavi in OpenAIREdoi: 10.3390/en13112708
The united nations educational, scientific and cultural organization (UNESCO) considers the historic urban landscapes as the world heritages. Managing historic city centers and maintaining historic cores are the emerging challenges for sustainable urban planning. Today, the historic cores form an important part of the economic, social, environmental, and physical assets and capacities of contemporary cities, and play a strategic role in their development. One of the most important approaches to the development of central textures, especially in historical and cultural cities, is the sustainable urban regeneration approach, which encompasses all aspects of sustainability, such as the economic, social, cultural and environmental aspects. To maintain sustainability and regeneration of historic cores of cities, it is necessary to provide insight into the underlying characteristics of the local urbanization. Furthermore, the fundamental assets are to be investigated as indicators of sustainable regeneration and drivers of urban development. In the meantime, a variety of research and experience has taken place around the world, all of which has provided different criteria and indicators for the development of strategies for the historic cores of cities. The present study, through a meta-analytic and survey method, analyzing the experience and research reported in 139 theoretical and empirical papers in the last twenty years, seeks to provide a comprehensive conceptual model taking into account the criteria and indices of sustainable regeneration in historic cores of cities. The quality of the survey has been ensured using the preferred reporting items for systematic reviews and meta-analysis (PRISMA).
Oxford Brookes Unive... arrow_drop_down Oxford Brookes University: RADARArticle . 2020License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/24d1653d-d5ca-4d9a-a3aa-808d6a402434/1/energies-13-02708.pdfData sources: Oxford Brookes University: RADARRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOxford Brookes University: RADAROther literature type . 2020License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oxford Brookes Unive... arrow_drop_down Oxford Brookes University: RADARArticle . 2020License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/24d1653d-d5ca-4d9a-a3aa-808d6a402434/1/energies-13-02708.pdfData sources: Oxford Brookes University: RADARRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOxford Brookes University: RADAROther literature type . 2020License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:SSHRCSSHRCAuthors:Hassan Qudrat-Ullah;
Hassan Qudrat-Ullah
Hassan Qudrat-Ullah in OpenAIREChinedu Miracle Nevo;
Chinedu Miracle Nevo
Chinedu Miracle Nevo in OpenAIREdoi: 10.3390/en15165953
This research investigates the relationships among renewable energy consumption, economic growth, and financial development in five sub-Saharan African nations utilizing panel data from 2000 to 2020. Econometric methods are used to ascertain the existence or absence of cross-sectional dependence and the short-run and long-run connections between the following factors: Pesaran cross-sectional dependence (CD) and cross-sectionally augmented IPS (CIPS) unit root tests, pooled mean group (PMG), and dynamic ordinary least squares (DOLS) estimations. The presence of cross-sectional dependence is found and represented with the CIPS unit root test. No significant short-run relationship is found between the variables of the study, yet a significant long-run relationship is present among them. A positive relationship exists between CO2 emissions and financial development, while financial development and renewable energy consumption are found to have negative relationships with CO2 emissions. The study also supports the scale effect of the environmental Kuznets curve hypothesis. Additionally, no causality is found among the variables, and impulse response and variance decomposition estimation are carried out to recommend future effects. Policy implications of findings are discussed, with accompanying suggestions.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/16/5953/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15165953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/16/5953/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15165953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:A. G. Olabi;
Tabbi Wilberforce;A. G. Olabi
A. G. Olabi in OpenAIREEnas Taha Sayed;
Nabila Shehata; +3 AuthorsEnas Taha Sayed
Enas Taha Sayed in OpenAIREA. G. Olabi;
Tabbi Wilberforce;A. G. Olabi
A. G. Olabi in OpenAIREEnas Taha Sayed;
Nabila Shehata;Enas Taha Sayed
Enas Taha Sayed in OpenAIREAbdul Hai Alami;
Abdul Hai Alami
Abdul Hai Alami in OpenAIREHussein M. Maghrabie;
Hussein M. Maghrabie
Hussein M. Maghrabie in OpenAIREMohammad Ali Abdelkareem;
Mohammad Ali Abdelkareem
Mohammad Ali Abdelkareem in OpenAIREdoi: 10.3390/en15228639
The sudden increase in the concentration of carbon dioxide (CO2) in the atmosphere due to the high dependency on fossil products has created the need for an urgent solution to mitigate this challenge. Global warming, which is a direct result of excessive CO2 emissions into the atmosphere, is one major issue that the world is trying to curb, especially in the 21st Century where most energy generation mediums operate using fossil products. This investigation considered a number of materials ideal for the capturing of CO2 in the post-combustion process. The application of aqueous ammonia, amine solutions, ionic liquids, and activated carbons is thoroughly discussed. Notable challenges are impeding their advancement, which are clearly expatiated in the report. Some merits and demerits of these technologies are also presented. Future research directions for each of these technologies are also analyzed and explained in detail. Furthermore, the impact of post-combustion CO2 capture on the circular economy is also presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United KingdomPublisher:MDPI AG Funded by:UKRI | FITS-LCD: Fabric Integrat...UKRI| FITS-LCD: Fabric Integrated Thermal Storage for Low-Carbon DwellingsAuthors: Oluleye, G; Hawkes, AD;Allison, J;
Allison, J
Allison, J in OpenAIREKelly, N;
+1 AuthorsKelly, N
Kelly, N in OpenAIREOluleye, G; Hawkes, AD;Allison, J;
Allison, J
Allison, J in OpenAIREKelly, N;
Clarke, J;Kelly, N
Kelly, N in OpenAIREdoi: 10.3390/en11051095
handle: 10044/1/77483
In spite of the benefits from thermal energy storage (TES) integration in dwellings, the penetration rate in Europe is 5%. Effective fiscal policies are necessary to accelerate deployment. However, there is currently no direct support for TES in buildings compared to support for electricity storage. This could be due to lack of evidence to support incentivisation. In this study, a novel systematic framework is developed to provide a case in support of TES incentivisation. The model determines the costs, CO2 emissions, dispatch strategy and sizes of technologies, and TES for a domestic user under policy neutral and policy intensive scenarios. The model is applied to different building types in the UK. The model is applied to a case study for a detached dwelling in the UK (floor area of 122 m2), where heat demand is satisfied by a boiler and electricity imported from the grid. Results show that under a policy neutral scenario, integrating a micro-Combined Heat and Power (CHP) reduces the primary energy demand by 11%, CO2 emissions by 21%, but with a 16 year payback. Additional benefits from TES integration can pay for the investment within the first 9 years, reducing to 3.5–6 years when the CO2 levy is accounted for. Under a policy intensive scenario (for example considering the Feed in Tariff (FIT)), primary energy demand and CO2 emissions reduce by 17 and 33% respectively with a 5 year payback. In this case, the additional benefits for TES integration can pay for the investment in TES within the first 2 years. The framework developed is a useful tool is determining the role TES in decarbonising domestic energy systems.
CORE arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1095/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/77483Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1095/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/77483Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:MDPI AG Authors:Dhanuja Lekshmi J;
Zakir Hussain Rather; Bikash C Pal;Dhanuja Lekshmi J
Dhanuja Lekshmi J in OpenAIREdoi: 10.3390/en14248529
handle: 10044/1/93161
With diminishing fossil fuel resources and increasing environmental concerns, large-scale deployment of Renewable Energy Sources (RES) has accelerated the transition towards clean energy systems, leading to significant RES generation share in power systems worldwide. Among different RES, solar PV is receiving major focus as it is most abundant in nature compared to others, complimented by falling prices of PV technology. However, variable, intermittent and non-synchronous nature of PV power generation technology introduces several technical challenges, ranging from short-term issues, such as low inertia, frequency stability, voltage stability and small signal stability, to long-term issues, such as unit commitment and scheduling issues. Therefore, such technical issues often limit the amount of non-synchronous instantaneous power that can be securely accommodated by a grid. In this backdrop, this research work proposes a tool to estimate maximum PV penetration level that a given power system can securely accommodate for a given unit commitment interval. The proposed tool will consider voltage and frequency while estimating maximum PV power penetration of a system. The tool will be useful to a system operator in assessing grid stability and security under a given generation mix, network topology and PV penetration level. Besides estimating maximum PV penetration, the proposed tool provides useful inputs to the system operator which will allow the operator to take necessary actions to handle high PV penetration in a secure and stable manner.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8529/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93161Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8529/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93161Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors:Yuriy Zhukovskiy;
Yuriy Zhukovskiy
Yuriy Zhukovskiy in OpenAIREAnastasia Koshenkova;
Anastasia Koshenkova
Anastasia Koshenkova in OpenAIREValeriya Vorobeva;
Valeriya Vorobeva
Valeriya Vorobeva in OpenAIREDaniil Rasputin;
+1 AuthorsDaniil Rasputin
Daniil Rasputin in OpenAIREYuriy Zhukovskiy;
Yuriy Zhukovskiy
Yuriy Zhukovskiy in OpenAIREAnastasia Koshenkova;
Anastasia Koshenkova
Anastasia Koshenkova in OpenAIREValeriya Vorobeva;
Valeriya Vorobeva
Valeriya Vorobeva in OpenAIREDaniil Rasputin;
Roman Pozdnyakov;Daniil Rasputin
Daniil Rasputin in OpenAIREdoi: 10.3390/en16073185
The beginning of the 21st century for the fuel and energy complexes of most countries is characterized as a period of active restructuring and a fundamental shift in developmental priorities. The basis of these changes is technological development. Industry 4.0 technologies have particular importance in achieving maximum optimization of production processes. In the same way, they are applicable in establishing effective interaction between the energy sector and other sectors of the economy. The authors outline an approach to assessing the country’s fuel and energy balance state through the selected properties: sustainability, accessibility, efficiency, adaptability and reliability. Hence, a model of the fuel and energy complex was created on the example of the Russian Federation, considering the country’s territorial and functional division. The methodology is based on scenario modeling of the influence level of external challenges in conjunction with the accompanying technological development. The mathematical model allowed forecasting changes in the properties of the energy system. The scientific significance of the work lies in the application of a consistent hybrid modeling approach to forecast the state of the fuel and energy balance. The results of the study are useful in compiling scenarios for the regional and entire development of the fuel and energy complex. Further model improvements should include an expansion of the number of counted industries and their relations.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3185/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3185/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United Kingdom, FinlandPublisher:MDPI AG Funded by:EC | AUTOSHIPEC| AUTOSHIPAuthors:Theotokatos, Gerasimos;
Hamann, Rainer; Psarros, George; Boulougouris; +2 AuthorsTheotokatos, Gerasimos
Theotokatos, Gerasimos in OpenAIRETheotokatos, Gerasimos;
Hamann, Rainer; Psarros, George; Boulougouris; Evangelos;Theotokatos, Gerasimos
Theotokatos, Gerasimos in OpenAIREBolbot, Victor;
Bolbot, Victor
Bolbot, Victor in OpenAIREdoi: 10.3390/en14206598
Stringent environmental regulations and efforts to improve the shipping operations sustainability have resulted in designing and employing more complex configurations for the ship power plants systems and the implementation of digitalised functionalities. Due to these systems complexity, critical situations arising from the components and subsystem failures, which may lead to accidents, require timely detection and mitigation. This study aims at enhancing the safety of ship complex systems and their operation by developing the concept of an integrated monitoring safety system that employs existing safety models and data fusion from shipboard sensors. Detailed Fault Trees that model the blackout top event, representing the sailing modes of a cruise ship and the operating modes of its plant, are employed. Shipboard sensors’ measurements acquired by the cruise ship alarm and monitoring system are integrated with these Fault Trees to account for the acquired shipboard information on the investigated power plant configuration and its components operating conditions, thus, facilitating the estimation of the blackout probability time variation as well as the dynamic criticality assessment of the power plant components. The proposed concept is verified by using a virtual simulation environment developed in Matlab/Simulink. This study supports the dynamic assessment of the ship power plants and therefore benefits the decision-making for enhancing the plant safety during operations.
CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/20/6598/pdfData sources: Multidisciplinary Digital Publishing InstituteAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archivehttp://dx.doi.org/10.3390/en14...Other literature type . 2021Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/20/6598/pdfData sources: Multidisciplinary Digital Publishing InstituteAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archivehttp://dx.doi.org/10.3390/en14...Other literature type . 2021Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United KingdomPublisher:MDPI AG Funded by:UKRI | Supergen Wind HubUKRI| Supergen Wind HubAuthors: Tobi Elusakin;Mahmood Shafiee;
Mahmood Shafiee
Mahmood Shafiee in OpenAIRETosin Adedipe;
Tosin Adedipe
Tosin Adedipe in OpenAIREFateme Dinmohammadi;
Fateme Dinmohammadi
Fateme Dinmohammadi in OpenAIREdoi: 10.3390/en14041134
With increasing deployment of offshore wind farms further from shore and in deeper waters, the efficient and effective planning of operation and maintenance (O&M) activities has received considerable attention from wind energy developers and operators in recent years. The O&M planning of offshore wind farms is a complicated task, as it depends on many factors such as asset degradation rates, availability of resources required to perform maintenance tasks (e.g., transport vessels, service crew, spare parts, and special tools) as well as the uncertainties associated with weather and climate variability. A brief review of the literature shows that a lot of research has been conducted on optimizing the O&M schedules for fixed-bottom offshore wind turbines; however, the literature for O&M planning of floating wind farms is too limited. This paper presents a stochastic Petri network (SPN) model for O&M planning of floating offshore wind turbines (FOWTs) and their support structure components, including floating platform, moorings and anchoring system. The proposed model incorporates all interrelationships between different factors influencing O&M planning of FOWTs, including deterioration and renewal process of components within the system. Relevant data such as failure rate, mean-time-to-failure (MTTF), degradation rate, etc. are collected from the literature as well as wind energy industry databases, and then the model is tested on an NREL 5 MW reference wind turbine system mounted on an OC3-Hywind spar buoy floating platform. The results indicate that our proposed model can significantly contribute to the reduction of O&M costs in the floating offshore wind sector.
CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1134/pdfData sources: Multidisciplinary Digital Publishing InstituteCranfield University: Collection of E-Research - CERESArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/en14041134Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1134/pdfData sources: Multidisciplinary Digital Publishing InstituteCranfield University: Collection of E-Research - CERESArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/en14041134Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu