- home
- Advanced Search
- Energy Research
- GB
- Wind Energy Science
- Energy Research
- GB
- Wind Energy Science
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Authors: Carlos Santos Silva; Fabiola S. Pereira; Fabiola S. Pereira;doi: 10.5194/wes-2020-7
Abstract. The vast majority of isolated electricity production systems such as Islands depends on fossil fuels. Porto Santo Island, a Portuguese UNESCO Biosphere Reserve candidate from Madeira Archipelago situated in the Atlantic Ocean, aims to become a sustainable territory in order to reduce its carbon footprint. A sustainable pathway goes through the integration of renewable energy in the electricity production system, in particular, the potential of offshore wind energy. The scope of this work has three main purposes: (1) the offshore wind resource assessment in Porto Santo Island, (2) the determination of a zone of interest regarding the combination of different parameters such us the bathymetry, distance to the coastline and integrated in the national situation plan of maritime space (3) the estimation of the annual energy production from the best-fitted Weibull Distribution. In the first place, a methodology for data analysis was defined processing netcdf data regarding a ten year wind hindcast from WRF (Weather Research and Forecasting) atmospheric model at 100 m above mean sea level from Ocean Observatory, annual and monthly mean offshore wind energy resource maps were created and a comparison with about 20 year times series of surface winds derived from remotely satellite scatterometer observations at different locations was made. Results show that the average annual mean wind speeds reach the range of 6.6–7.6 m/s in specific areas, situated in the northern part of Porto Santo Island with a Weibull distribution shape parameter (k) of 2.4–2.9. Based on the results, the wind resource assessment, the estimation of the annual wind energy production and capacity factors were calculated from the best-fitted Weibull distribution for each of the geographical coordinates selected. Comparisons with observational data show that WRF model is a proficient wind generating tool. The technical energy production potential and a priority zoning for offshore wind power development is performed using wind turbine generators of 3.3 MW–8.0 MW capacity, that could generate between 12 and 26 GWh of energy per year, while avoiding CO2 emissions. The results show that an offshore wind farm plan is an eligible choice, with an average annual wind power density reaching about 300 W/m2 at 100 m height in the north region.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2020-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2020-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Authors: Carlos Santos Silva; Fabiola S. Pereira; Fabiola S. Pereira;doi: 10.5194/wes-2020-7
Abstract. The vast majority of isolated electricity production systems such as Islands depends on fossil fuels. Porto Santo Island, a Portuguese UNESCO Biosphere Reserve candidate from Madeira Archipelago situated in the Atlantic Ocean, aims to become a sustainable territory in order to reduce its carbon footprint. A sustainable pathway goes through the integration of renewable energy in the electricity production system, in particular, the potential of offshore wind energy. The scope of this work has three main purposes: (1) the offshore wind resource assessment in Porto Santo Island, (2) the determination of a zone of interest regarding the combination of different parameters such us the bathymetry, distance to the coastline and integrated in the national situation plan of maritime space (3) the estimation of the annual energy production from the best-fitted Weibull Distribution. In the first place, a methodology for data analysis was defined processing netcdf data regarding a ten year wind hindcast from WRF (Weather Research and Forecasting) atmospheric model at 100 m above mean sea level from Ocean Observatory, annual and monthly mean offshore wind energy resource maps were created and a comparison with about 20 year times series of surface winds derived from remotely satellite scatterometer observations at different locations was made. Results show that the average annual mean wind speeds reach the range of 6.6–7.6 m/s in specific areas, situated in the northern part of Porto Santo Island with a Weibull distribution shape parameter (k) of 2.4–2.9. Based on the results, the wind resource assessment, the estimation of the annual wind energy production and capacity factors were calculated from the best-fitted Weibull distribution for each of the geographical coordinates selected. Comparisons with observational data show that WRF model is a proficient wind generating tool. The technical energy production potential and a priority zoning for offshore wind power development is performed using wind turbine generators of 3.3 MW–8.0 MW capacity, that could generate between 12 and 26 GWh of energy per year, while avoiding CO2 emissions. The results show that an offshore wind farm plan is an eligible choice, with an average annual wind power density reaching about 300 W/m2 at 100 m height in the north region.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2020-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2020-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Copernicus GmbH Authors: Hart, E.; de Mello, E.; Dwyer-Joyce, R.;Abstract. This paper is the second in a two-part study on lubrication in wind turbine main bearings. Where Part 1 provided an introductory review of elastohydrodynamic lubrication theory, this paper will apply those ideas to investigate lubrication in the double-row spherical roller main bearing of a 1.5 MW wind turbine. Lubrication is investigated across a “contact conditions dataset” generated by inputting main-bearing applied loads, estimated from hub loads generated using aeroelastic simulation software, into a Hertzian contact model of the main bearing. From the Hertzian model is extracted values of roller load and contact patch dimensions, along with the time rate of change of contact patch dimensions. Also included in the dataset are additional environmental and operational variable values (e.g. wind speeds and shaft rotational speeds). A suitable formula for estimating film thickness within this particular bearing is then identified. Using lubricant properties of a commercially available wind turbine grease, specifically marketed for use in main bearings, an analysis of film thickness across the generated dataset is undertaken. The analysis includes consideration of effects relating to temperature, starvation, grease thickener interactions and possible non-steady effects. Results show that the studied main bearing is at risk of operating under mixed lubrication conditions for a non-negligible proportion of its operational life, indicating that further work is required to better understand lubrication in this context and implications for main-bearing damage and operational lifetimes. Key sensitivities and uncertainties within the analysis are discussed, along with recommendations for future work.
CORE arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-1533-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-1533-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Copernicus GmbH Authors: Hart, E.; de Mello, E.; Dwyer-Joyce, R.;Abstract. This paper is the second in a two-part study on lubrication in wind turbine main bearings. Where Part 1 provided an introductory review of elastohydrodynamic lubrication theory, this paper will apply those ideas to investigate lubrication in the double-row spherical roller main bearing of a 1.5 MW wind turbine. Lubrication is investigated across a “contact conditions dataset” generated by inputting main-bearing applied loads, estimated from hub loads generated using aeroelastic simulation software, into a Hertzian contact model of the main bearing. From the Hertzian model is extracted values of roller load and contact patch dimensions, along with the time rate of change of contact patch dimensions. Also included in the dataset are additional environmental and operational variable values (e.g. wind speeds and shaft rotational speeds). A suitable formula for estimating film thickness within this particular bearing is then identified. Using lubricant properties of a commercially available wind turbine grease, specifically marketed for use in main bearings, an analysis of film thickness across the generated dataset is undertaken. The analysis includes consideration of effects relating to temperature, starvation, grease thickener interactions and possible non-steady effects. Results show that the studied main bearing is at risk of operating under mixed lubrication conditions for a non-negligible proportion of its operational life, indicating that further work is required to better understand lubrication in this context and implications for main-bearing damage and operational lifetimes. Key sensitivities and uncertainties within the analysis are discussed, along with recommendations for future work.
CORE arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-1533-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-1533-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Authors: Carlos Santos Silva; Fabiola S. Pereira; Fabiola S. Pereira;doi: 10.5194/wes-2020-7
Abstract. The vast majority of isolated electricity production systems such as Islands depends on fossil fuels. Porto Santo Island, a Portuguese UNESCO Biosphere Reserve candidate from Madeira Archipelago situated in the Atlantic Ocean, aims to become a sustainable territory in order to reduce its carbon footprint. A sustainable pathway goes through the integration of renewable energy in the electricity production system, in particular, the potential of offshore wind energy. The scope of this work has three main purposes: (1) the offshore wind resource assessment in Porto Santo Island, (2) the determination of a zone of interest regarding the combination of different parameters such us the bathymetry, distance to the coastline and integrated in the national situation plan of maritime space (3) the estimation of the annual energy production from the best-fitted Weibull Distribution. In the first place, a methodology for data analysis was defined processing netcdf data regarding a ten year wind hindcast from WRF (Weather Research and Forecasting) atmospheric model at 100 m above mean sea level from Ocean Observatory, annual and monthly mean offshore wind energy resource maps were created and a comparison with about 20 year times series of surface winds derived from remotely satellite scatterometer observations at different locations was made. Results show that the average annual mean wind speeds reach the range of 6.6–7.6 m/s in specific areas, situated in the northern part of Porto Santo Island with a Weibull distribution shape parameter (k) of 2.4–2.9. Based on the results, the wind resource assessment, the estimation of the annual wind energy production and capacity factors were calculated from the best-fitted Weibull distribution for each of the geographical coordinates selected. Comparisons with observational data show that WRF model is a proficient wind generating tool. The technical energy production potential and a priority zoning for offshore wind power development is performed using wind turbine generators of 3.3 MW–8.0 MW capacity, that could generate between 12 and 26 GWh of energy per year, while avoiding CO2 emissions. The results show that an offshore wind farm plan is an eligible choice, with an average annual wind power density reaching about 300 W/m2 at 100 m height in the north region.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2020-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2020-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Authors: Carlos Santos Silva; Fabiola S. Pereira; Fabiola S. Pereira;doi: 10.5194/wes-2020-7
Abstract. The vast majority of isolated electricity production systems such as Islands depends on fossil fuels. Porto Santo Island, a Portuguese UNESCO Biosphere Reserve candidate from Madeira Archipelago situated in the Atlantic Ocean, aims to become a sustainable territory in order to reduce its carbon footprint. A sustainable pathway goes through the integration of renewable energy in the electricity production system, in particular, the potential of offshore wind energy. The scope of this work has three main purposes: (1) the offshore wind resource assessment in Porto Santo Island, (2) the determination of a zone of interest regarding the combination of different parameters such us the bathymetry, distance to the coastline and integrated in the national situation plan of maritime space (3) the estimation of the annual energy production from the best-fitted Weibull Distribution. In the first place, a methodology for data analysis was defined processing netcdf data regarding a ten year wind hindcast from WRF (Weather Research and Forecasting) atmospheric model at 100 m above mean sea level from Ocean Observatory, annual and monthly mean offshore wind energy resource maps were created and a comparison with about 20 year times series of surface winds derived from remotely satellite scatterometer observations at different locations was made. Results show that the average annual mean wind speeds reach the range of 6.6–7.6 m/s in specific areas, situated in the northern part of Porto Santo Island with a Weibull distribution shape parameter (k) of 2.4–2.9. Based on the results, the wind resource assessment, the estimation of the annual wind energy production and capacity factors were calculated from the best-fitted Weibull distribution for each of the geographical coordinates selected. Comparisons with observational data show that WRF model is a proficient wind generating tool. The technical energy production potential and a priority zoning for offshore wind power development is performed using wind turbine generators of 3.3 MW–8.0 MW capacity, that could generate between 12 and 26 GWh of energy per year, while avoiding CO2 emissions. The results show that an offshore wind farm plan is an eligible choice, with an average annual wind power density reaching about 300 W/m2 at 100 m height in the north region.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2020-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2020-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Copernicus GmbH Authors: Hart, E.; de Mello, E.; Dwyer-Joyce, R.;Abstract. This paper is the second in a two-part study on lubrication in wind turbine main bearings. Where Part 1 provided an introductory review of elastohydrodynamic lubrication theory, this paper will apply those ideas to investigate lubrication in the double-row spherical roller main bearing of a 1.5 MW wind turbine. Lubrication is investigated across a “contact conditions dataset” generated by inputting main-bearing applied loads, estimated from hub loads generated using aeroelastic simulation software, into a Hertzian contact model of the main bearing. From the Hertzian model is extracted values of roller load and contact patch dimensions, along with the time rate of change of contact patch dimensions. Also included in the dataset are additional environmental and operational variable values (e.g. wind speeds and shaft rotational speeds). A suitable formula for estimating film thickness within this particular bearing is then identified. Using lubricant properties of a commercially available wind turbine grease, specifically marketed for use in main bearings, an analysis of film thickness across the generated dataset is undertaken. The analysis includes consideration of effects relating to temperature, starvation, grease thickener interactions and possible non-steady effects. Results show that the studied main bearing is at risk of operating under mixed lubrication conditions for a non-negligible proportion of its operational life, indicating that further work is required to better understand lubrication in this context and implications for main-bearing damage and operational lifetimes. Key sensitivities and uncertainties within the analysis are discussed, along with recommendations for future work.
CORE arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-1533-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-1533-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Copernicus GmbH Authors: Hart, E.; de Mello, E.; Dwyer-Joyce, R.;Abstract. This paper is the second in a two-part study on lubrication in wind turbine main bearings. Where Part 1 provided an introductory review of elastohydrodynamic lubrication theory, this paper will apply those ideas to investigate lubrication in the double-row spherical roller main bearing of a 1.5 MW wind turbine. Lubrication is investigated across a “contact conditions dataset” generated by inputting main-bearing applied loads, estimated from hub loads generated using aeroelastic simulation software, into a Hertzian contact model of the main bearing. From the Hertzian model is extracted values of roller load and contact patch dimensions, along with the time rate of change of contact patch dimensions. Also included in the dataset are additional environmental and operational variable values (e.g. wind speeds and shaft rotational speeds). A suitable formula for estimating film thickness within this particular bearing is then identified. Using lubricant properties of a commercially available wind turbine grease, specifically marketed for use in main bearings, an analysis of film thickness across the generated dataset is undertaken. The analysis includes consideration of effects relating to temperature, starvation, grease thickener interactions and possible non-steady effects. Results show that the studied main bearing is at risk of operating under mixed lubrication conditions for a non-negligible proportion of its operational life, indicating that further work is required to better understand lubrication in this context and implications for main-bearing damage and operational lifetimes. Key sensitivities and uncertainties within the analysis are discussed, along with recommendations for future work.
CORE arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-1533-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-1533-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu