Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5194/wes-20...
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://wes.copernicus.org/pre...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wind Energy Science
Other literature type . 2020
Data sources: Copernicus
Copernicus Publications
Other literature type . 2020
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Offshore Wind Energy Resource Assessment from Satellite Data Observations and WRF in Porto Santo Island

Authors: Carlos Santos Silva; Fabiola S. Pereira; Fabiola S. Pereira;

Offshore Wind Energy Resource Assessment from Satellite Data Observations and WRF in Porto Santo Island

Abstract

Abstract. The vast majority of isolated electricity production systems such as Islands depends on fossil fuels. Porto Santo Island, a Portuguese UNESCO Biosphere Reserve candidate from Madeira Archipelago situated in the Atlantic Ocean, aims to become a sustainable territory in order to reduce its carbon footprint. A sustainable pathway goes through the integration of renewable energy in the electricity production system, in particular, the potential of offshore wind energy. The scope of this work has three main purposes: (1) the offshore wind resource assessment in Porto Santo Island, (2) the determination of a zone of interest regarding the combination of different parameters such us the bathymetry, distance to the coastline and integrated in the national situation plan of maritime space (3) the estimation of the annual energy production from the best-fitted Weibull Distribution. In the first place, a methodology for data analysis was defined processing netcdf data regarding a ten year wind hindcast from WRF (Weather Research and Forecasting) atmospheric model at 100 m above mean sea level from Ocean Observatory, annual and monthly mean offshore wind energy resource maps were created and a comparison with about 20 year times series of surface winds derived from remotely satellite scatterometer observations at different locations was made. Results show that the average annual mean wind speeds reach the range of 6.6–7.6 m/s in specific areas, situated in the northern part of Porto Santo Island with a Weibull distribution shape parameter (k) of 2.4–2.9. Based on the results, the wind resource assessment, the estimation of the annual wind energy production and capacity factors were calculated from the best-fitted Weibull distribution for each of the geographical coordinates selected. Comparisons with observational data show that WRF model is a proficient wind generating tool. The technical energy production potential and a priority zoning for offshore wind power development is performed using wind turbine generators of 3.3 MW–8.0 MW capacity, that could generate between 12 and 26 GWh of energy per year, while avoiding CO2 emissions. The results show that an offshore wind farm plan is an eligible choice, with an average annual wind power density reaching about 300 W/m2 at 100 m height in the north region.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
hybrid