- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 8. Economic growth
- GB
- Energy
- Energy Research
- 7. Clean energy
- 8. Economic growth
- GB
- Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2019 TurkeyPublisher:Elsevier BV Authors: Melih Soner Celiktas; Fikret Muge Alptekin;handle: 11454/63126 , 11454/15610
Abstract Biomass materials are renewable sources that abundant worldwide due to natural plants and living organisms. Lignocellulosic biomass can be categorized as hardwood, softwood, agricultural wastes, and grasses. Agricultural residues those which of them have importance due to being produced in huge amounts in the worldwide annually. Food wastes and agricultural wastes are utilized either alternative use such as generating energy, fuels or disposal. However, disposal of these residues is follow out either scraping or burning way. This study aims to convert industrial agricultural origin biomass by using hydrothermal carbonization method to carbon-based material having high conductivity for use in supercapacitor production by using different activating chemicals. Hydrothermal carbonization was applied to different biomass samples such as nutshell, hazelnut shell, and corn cob. The elemental analysis of the obtained biochar was carried out and it was determined that the highest source of biomass was corn cob. The selected biochar has been chemically activated with different chemicals such as KOH, NaOH, H3PO4 and, ZnCl2. Advanced carbonization of activated biochar was carried out at 500, 600, 700 and 800 °C with 1, 1.5 and 2-h retention times. The resulting carbon-based products were mixed with KBr and identical pellets were prepared and their electrical conductivity values were measured. Electrical conductivity results, NaOH-800 °C-2h and ZnCl2-700 °C-1.5 h obtained from the process prepared from the biocidal pellets were determined to have the highest conductivity value. Brunauer–Emmett–Teller (BET) and Scanning Electron Microscope (SEM) analyses of the samples with the highest conductivity values were performed and surface morphologies were examined.
Energy arrow_drop_down Ege University Institutional RepositoryArticle . 2020Data sources: Ege University Institutional RepositoryEge University Institutional RepositoryArticle . 2019Data sources: Ege University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down Ege University Institutional RepositoryArticle . 2020Data sources: Ege University Institutional RepositoryEge University Institutional RepositoryArticle . 2019Data sources: Ege University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 TurkeyPublisher:Elsevier BV Authors: Melih Soner Celiktas; Fikret Muge Alptekin;handle: 11454/63126 , 11454/15610
Abstract Biomass materials are renewable sources that abundant worldwide due to natural plants and living organisms. Lignocellulosic biomass can be categorized as hardwood, softwood, agricultural wastes, and grasses. Agricultural residues those which of them have importance due to being produced in huge amounts in the worldwide annually. Food wastes and agricultural wastes are utilized either alternative use such as generating energy, fuels or disposal. However, disposal of these residues is follow out either scraping or burning way. This study aims to convert industrial agricultural origin biomass by using hydrothermal carbonization method to carbon-based material having high conductivity for use in supercapacitor production by using different activating chemicals. Hydrothermal carbonization was applied to different biomass samples such as nutshell, hazelnut shell, and corn cob. The elemental analysis of the obtained biochar was carried out and it was determined that the highest source of biomass was corn cob. The selected biochar has been chemically activated with different chemicals such as KOH, NaOH, H3PO4 and, ZnCl2. Advanced carbonization of activated biochar was carried out at 500, 600, 700 and 800 °C with 1, 1.5 and 2-h retention times. The resulting carbon-based products were mixed with KBr and identical pellets were prepared and their electrical conductivity values were measured. Electrical conductivity results, NaOH-800 °C-2h and ZnCl2-700 °C-1.5 h obtained from the process prepared from the biocidal pellets were determined to have the highest conductivity value. Brunauer–Emmett–Teller (BET) and Scanning Electron Microscope (SEM) analyses of the samples with the highest conductivity values were performed and surface morphologies were examined.
Energy arrow_drop_down Ege University Institutional RepositoryArticle . 2020Data sources: Ege University Institutional RepositoryEge University Institutional RepositoryArticle . 2019Data sources: Ege University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down Ege University Institutional RepositoryArticle . 2020Data sources: Ege University Institutional RepositoryEge University Institutional RepositoryArticle . 2019Data sources: Ege University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Sung-Ho Jo; Uendo Lee; Uendo Lee; Uendo Lee; Chang Won Yang; Chang Won Yang; Chang Won Yang; Tae-Young Mun; Ji-Hong Moon; Hoang Khoi Nguyen; Hoang Khoi Nguyen; Byung-Ho Song; Ho Won Ra; Sung-Jin Park; Jae-Goo Lee; Jae-Goo Lee; Myung Won Seo; Sang-Jun Yoon; Sung-Min Yoon;Abstract Oxy-combustion with a circulating fluidized bed (Oxy-CFBC) can facilitate the separation of high CO2 concentration and reduce emissions by biomass co-firing. This study investigated Oxy-CFBC characteristics such as temperature, solid hold-up, flue gas concentrations including CO2, pollutant emissions (SO2, NO, and CO), combustion efficiency and ash properties (slagging, fouling index) with increasing input oxygen levels (21–29 vol%), and biomass co-firing ratios (50, 70, and 100 wt% with domestic wood pellet). The possibility of bio-energy carbon capture and storage for negative CO2 emission was also evaluated using a 0.1 MWth Oxy-CFBC test-rig. The results show that combustion stably achieved with at least 90 vol% CO2 in the flue gas. Compared to air-firing, oxy-firing (with 24 vol% oxygen) reduced pollutant emissions to 29.4% NO, 31.9% SO2 and 18.5% CO. Increasing the biomass co-firing from 50 to 100 wt% decreased the NO, SO2 and CO content from 19.2 mg/MJ to 16.1 mg/MJ, 92.8 mg/MJ to 25.0 mg/MJ, and 7.5 mg/MJ to 5.5 mg/MJ, respectively. In contrast to blends of sub-bituminous coal and lignite, negative CO2 emission (approximately −647 g/kWth) was predicted for oxy-combustion only biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Sung-Ho Jo; Uendo Lee; Uendo Lee; Uendo Lee; Chang Won Yang; Chang Won Yang; Chang Won Yang; Tae-Young Mun; Ji-Hong Moon; Hoang Khoi Nguyen; Hoang Khoi Nguyen; Byung-Ho Song; Ho Won Ra; Sung-Jin Park; Jae-Goo Lee; Jae-Goo Lee; Myung Won Seo; Sang-Jun Yoon; Sung-Min Yoon;Abstract Oxy-combustion with a circulating fluidized bed (Oxy-CFBC) can facilitate the separation of high CO2 concentration and reduce emissions by biomass co-firing. This study investigated Oxy-CFBC characteristics such as temperature, solid hold-up, flue gas concentrations including CO2, pollutant emissions (SO2, NO, and CO), combustion efficiency and ash properties (slagging, fouling index) with increasing input oxygen levels (21–29 vol%), and biomass co-firing ratios (50, 70, and 100 wt% with domestic wood pellet). The possibility of bio-energy carbon capture and storage for negative CO2 emission was also evaluated using a 0.1 MWth Oxy-CFBC test-rig. The results show that combustion stably achieved with at least 90 vol% CO2 in the flue gas. Compared to air-firing, oxy-firing (with 24 vol% oxygen) reduced pollutant emissions to 29.4% NO, 31.9% SO2 and 18.5% CO. Increasing the biomass co-firing from 50 to 100 wt% decreased the NO, SO2 and CO content from 19.2 mg/MJ to 16.1 mg/MJ, 92.8 mg/MJ to 25.0 mg/MJ, and 7.5 mg/MJ to 5.5 mg/MJ, respectively. In contrast to blends of sub-bituminous coal and lignite, negative CO2 emission (approximately −647 g/kWth) was predicted for oxy-combustion only biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014Publisher:Elsevier BV Authors: Osman Okur; Erdogan Alper; Ali Almansoori;Abstract The aim of this work is to determine the optimum operating conditions for the process of preparing anode electrocatalysts for direct sodium borohydride fuel cell (DSBHFC). Pt–Au/C electrocatalysts were studied as the anode catalysts while Pt/C were chosen as a cathode catalyst. Anode electrocatalysts were produced by the precipitation method. In this work, pH, temperature, drying time and Pt/Au ratio were selected as independent process parameters and their effects on dependent parameters, such as power density and hydrogen production rate, were investigated using response surface methodology (RSM). Based on this methodology, it was found that the maximum power density and the minimum hydrogen production rate were 354.4 mW cm−2 and 30 ml min−1 respectively. These findings were obtained at 90 °C, 9.27 pH, 61.07 h of drying time, and 93.54% Au ratio to total metal ratio.
Aperta - TÜBİTAK Açı... arrow_drop_down Aperta - TÜBİTAK Açık ArşiviOther literature type . 2014License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.01.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aperta - TÜBİTAK Açı... arrow_drop_down Aperta - TÜBİTAK Açık ArşiviOther literature type . 2014License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.01.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014Publisher:Elsevier BV Authors: Osman Okur; Erdogan Alper; Ali Almansoori;Abstract The aim of this work is to determine the optimum operating conditions for the process of preparing anode electrocatalysts for direct sodium borohydride fuel cell (DSBHFC). Pt–Au/C electrocatalysts were studied as the anode catalysts while Pt/C were chosen as a cathode catalyst. Anode electrocatalysts were produced by the precipitation method. In this work, pH, temperature, drying time and Pt/Au ratio were selected as independent process parameters and their effects on dependent parameters, such as power density and hydrogen production rate, were investigated using response surface methodology (RSM). Based on this methodology, it was found that the maximum power density and the minimum hydrogen production rate were 354.4 mW cm−2 and 30 ml min−1 respectively. These findings were obtained at 90 °C, 9.27 pH, 61.07 h of drying time, and 93.54% Au ratio to total metal ratio.
Aperta - TÜBİTAK Açı... arrow_drop_down Aperta - TÜBİTAK Açık ArşiviOther literature type . 2014License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.01.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aperta - TÜBİTAK Açı... arrow_drop_down Aperta - TÜBİTAK Açık ArşiviOther literature type . 2014License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.01.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Zhao, Xudong; Duan, Zhiyin; Li, Junming;Abstract The urges of reducing energy use and carbon footprint in buildings have prompted the developments of regenerative evaporative coolers (RECs). However, the physical dimensions of RECs have to be designed enormous in order to deliver a large amount of supply airflow rate and cooling capacity. To tackle the issue, this paper develops a large-scale counter-flow REC with compact heat exchanger through dedicated numerical modelling, optimal design, fabrication and experimentation. Using modified e-NTU method, a finite element model is established in Engineering Equation Solver environment to optimise the cooler's geometric and operating parameters. Based on modelling predictions, the cooler's experimental prototype was optimally designed and constructed to evaluate operating performance. The experiment results show that the cooler's attained wet-bulb effectiveness ranges from 0.96 to 1.07, the cooling capacity and energy efficiency ratio from 3.9 to 8.5 kW and 10.6 to 19.7 respectively. It can provide sub-wet bulb cooling while operating at high intake channel air velocities of 3.04–3.60 m/s. The superior performance of proposed cooler is disclosed by comparing with different RECs under similar operating conditions. Both the cooler's cooling capacity per unit of volume and per unit of airflow rate are found to be 62–108% and 21.6% higher respectively.
University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Zhao, Xudong; Duan, Zhiyin; Li, Junming;Abstract The urges of reducing energy use and carbon footprint in buildings have prompted the developments of regenerative evaporative coolers (RECs). However, the physical dimensions of RECs have to be designed enormous in order to deliver a large amount of supply airflow rate and cooling capacity. To tackle the issue, this paper develops a large-scale counter-flow REC with compact heat exchanger through dedicated numerical modelling, optimal design, fabrication and experimentation. Using modified e-NTU method, a finite element model is established in Engineering Equation Solver environment to optimise the cooler's geometric and operating parameters. Based on modelling predictions, the cooler's experimental prototype was optimally designed and constructed to evaluate operating performance. The experiment results show that the cooler's attained wet-bulb effectiveness ranges from 0.96 to 1.07, the cooling capacity and energy efficiency ratio from 3.9 to 8.5 kW and 10.6 to 19.7 respectively. It can provide sub-wet bulb cooling while operating at high intake channel air velocities of 3.04–3.60 m/s. The superior performance of proposed cooler is disclosed by comparing with different RECs under similar operating conditions. Both the cooler's cooling capacity per unit of volume and per unit of airflow rate are found to be 62–108% and 21.6% higher respectively.
University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV T.X. Li; S. Wu; T. Yan; R.Z. Wang; J. Zhu;A dual-mode seasonal solar thermochemical sorption energy storage system using working pair of expanded graphite/SrCl2-NH3 was constructed and investigated. Solar thermal energy is transformed into chemical bonds in summer, and the stored energy is released in the form of chemical reaction heat in winter. Two working modes are performed to produce heat with expected temperature according to the different ambient temperatures in winter. The direct heating supply mode is adopted at a relatively high ambient temperature. The effective energy storage density is higher than 700kJ/kg and the corresponding system COP is 0.41 when the heat output temperature and ambient temperature are 35oC and 15oC, respectively. The specific heating power increases with the decrease of heat output temperature for a given ambient temperature. The temperature-lift heating supply mode is adopted to upgrade the heat output temperature at a low ambient temperature below 0oC. It can produce heat with a temperature above 70 oC although the ambient temperature is as low as -15oC. It is desirable to further improve the system performance using low mass ratio and high global conversion. Experimental results showed the advanced dual-mode thermochemical sorption energy storage technology is feasible and effective for seasonal solar thermal energy storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV T.X. Li; S. Wu; T. Yan; R.Z. Wang; J. Zhu;A dual-mode seasonal solar thermochemical sorption energy storage system using working pair of expanded graphite/SrCl2-NH3 was constructed and investigated. Solar thermal energy is transformed into chemical bonds in summer, and the stored energy is released in the form of chemical reaction heat in winter. Two working modes are performed to produce heat with expected temperature according to the different ambient temperatures in winter. The direct heating supply mode is adopted at a relatively high ambient temperature. The effective energy storage density is higher than 700kJ/kg and the corresponding system COP is 0.41 when the heat output temperature and ambient temperature are 35oC and 15oC, respectively. The specific heating power increases with the decrease of heat output temperature for a given ambient temperature. The temperature-lift heating supply mode is adopted to upgrade the heat output temperature at a low ambient temperature below 0oC. It can produce heat with a temperature above 70 oC although the ambient temperature is as low as -15oC. It is desirable to further improve the system performance using low mass ratio and high global conversion. Experimental results showed the advanced dual-mode thermochemical sorption energy storage technology is feasible and effective for seasonal solar thermal energy storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Byungryeul Bang; Byungryeul Bang; Uendo Lee; Uendo Lee; Soo-Hwa Jeong; Soo-Hwa Jeong; Ji-Hong Moon; Jungho Hwang; Woojin Jo; Young-Tai Choi;Hot gas cleaning of producer gas generated from a gasification process has many advantages in terms of thermal efficiency, gas-quality improvement, compact gas-cleaning devices, and economic feasibility. In this study, the characteristics of molten tin as a working fluid for hot gas cleaning were examined. To evaluate the hot gas cleaning performance of molten tin, the producer gas generated from the gasification of empty fruit bunch pellets was tested with a molten-tin-based gas cleaning system connected to the downstream of the gasifier. Gas chromatographic analysis of the producer gas shows that the removal efficiencies of hydrogen sulfide and non-condensable tar were about 97% and 80%, respectively, in a molten tin bed maintained at 400 °C. The results suggest that molten tin could be used as a multifunctional gas-cleaning medium for the simultaneous removal of tar and hydrogen sulfide from the producer gas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.04.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.04.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Byungryeul Bang; Byungryeul Bang; Uendo Lee; Uendo Lee; Soo-Hwa Jeong; Soo-Hwa Jeong; Ji-Hong Moon; Jungho Hwang; Woojin Jo; Young-Tai Choi;Hot gas cleaning of producer gas generated from a gasification process has many advantages in terms of thermal efficiency, gas-quality improvement, compact gas-cleaning devices, and economic feasibility. In this study, the characteristics of molten tin as a working fluid for hot gas cleaning were examined. To evaluate the hot gas cleaning performance of molten tin, the producer gas generated from the gasification of empty fruit bunch pellets was tested with a molten-tin-based gas cleaning system connected to the downstream of the gasifier. Gas chromatographic analysis of the producer gas shows that the removal efficiencies of hydrogen sulfide and non-condensable tar were about 97% and 80%, respectively, in a molten tin bed maintained at 400 °C. The results suggest that molten tin could be used as a multifunctional gas-cleaning medium for the simultaneous removal of tar and hydrogen sulfide from the producer gas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.04.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.04.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, ItalyPublisher:Elsevier BV Funded by:UKRI | Generation Integrated Ene...UKRI| Generation Integrated Energy Storage - A Paradigm ShiftAuthors: Giorgio Locatelli; Chun Sing Lai; Chun Sing Lai; Chun Sing Lai;handle: 11311/1204834
New energy generation and storage systems are continuously being developed due to climate change, resource scarcity, and environmental laws. Some systems are incremental innovations of existing systems while others are radical innovations. Radical innovation systems are risky investments due to their relevant technical and economic uncertainties. Prototyping can hedge these risks by spending a fraction of the cost of a full-scale system and in return receiving economic and technical information regarding the system. In economic terms, prototyping is an option to hedge risk coming at a cost that needs to be properly assessed. Real options analysis is the project appraisal approach for these assessments. This paper aims to introduce and test an algorithm based on real options analysis to quantitatively assess the “option to prototype” in the energy sector. First, the interrelated research areas of prototyping, energy systems, and real options analysis are reviewed. Then, a novel algorithm is presented and applied to an innovative Generation Integrated Energy Storage system: Wind-driven Thermal Pumping to demonstrate the effectiveness of option to prototype and the main parameters influencing this decision. Results show that the cost of the prototype and the market size (number of identical systems to build) are key parameters.
RE.PUBLIC@POLIMI Res... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2020License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2020License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, ItalyPublisher:Elsevier BV Funded by:UKRI | Generation Integrated Ene...UKRI| Generation Integrated Energy Storage - A Paradigm ShiftAuthors: Giorgio Locatelli; Chun Sing Lai; Chun Sing Lai; Chun Sing Lai;handle: 11311/1204834
New energy generation and storage systems are continuously being developed due to climate change, resource scarcity, and environmental laws. Some systems are incremental innovations of existing systems while others are radical innovations. Radical innovation systems are risky investments due to their relevant technical and economic uncertainties. Prototyping can hedge these risks by spending a fraction of the cost of a full-scale system and in return receiving economic and technical information regarding the system. In economic terms, prototyping is an option to hedge risk coming at a cost that needs to be properly assessed. Real options analysis is the project appraisal approach for these assessments. This paper aims to introduce and test an algorithm based on real options analysis to quantitatively assess the “option to prototype” in the energy sector. First, the interrelated research areas of prototyping, energy systems, and real options analysis are reviewed. Then, a novel algorithm is presented and applied to an innovative Generation Integrated Energy Storage system: Wind-driven Thermal Pumping to demonstrate the effectiveness of option to prototype and the main parameters influencing this decision. Results show that the cost of the prototype and the market size (number of identical systems to build) are key parameters.
RE.PUBLIC@POLIMI Res... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2020License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2020License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Linrui Zhang; Hui Yan; Qian Zhang; Yanan Cui; Yongzhe Zhang; Hongwen Yu; Wei Pang; Xiaoyan Zhang;Abstract In this paper, the performance of a polycrystalline silicon photovoltaic module and photovoltaic/thermal module are experimentally investigated under outdoor conditions, using a roll-bond thermal collector attached on the backside of the photovoltaic module. Furthermore, the temperature, pressure and velocity distributions across the photovoltaic/thermal module are simulated using a steady state thermal model. Compared with the photovoltaic module, the performances of photovoltaic/thermal module with and without the coolant circulation are both examined using a water volume of 100 L and a coolant mass flow rate of 0.034 kg/s. Using a design with a timed supplement water strategy, the electrical energy produced by the photovoltaic/thermal system has been increased by 3.25%. Compared without supplement before, the electrical energy can be extra increased more than 1%. A good agreement is found between simulated and experimental results. There is no doubt that the output performance of the photovoltaic/thermal system can be improved effectively by the design of timed supplement water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.115990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.115990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Linrui Zhang; Hui Yan; Qian Zhang; Yanan Cui; Yongzhe Zhang; Hongwen Yu; Wei Pang; Xiaoyan Zhang;Abstract In this paper, the performance of a polycrystalline silicon photovoltaic module and photovoltaic/thermal module are experimentally investigated under outdoor conditions, using a roll-bond thermal collector attached on the backside of the photovoltaic module. Furthermore, the temperature, pressure and velocity distributions across the photovoltaic/thermal module are simulated using a steady state thermal model. Compared with the photovoltaic module, the performances of photovoltaic/thermal module with and without the coolant circulation are both examined using a water volume of 100 L and a coolant mass flow rate of 0.034 kg/s. Using a design with a timed supplement water strategy, the electrical energy produced by the photovoltaic/thermal system has been increased by 3.25%. Compared without supplement before, the electrical energy can be extra increased more than 1%. A good agreement is found between simulated and experimental results. There is no doubt that the output performance of the photovoltaic/thermal system can be improved effectively by the design of timed supplement water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.115990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.115990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:EC | NAVIGATEEC| NAVIGATEAuthors: Alexandre Szklo; Joana Portugal-Pereira; Joana Portugal-Pereira; Francielle Carvalho; +8 AuthorsAlexandre Szklo; Joana Portugal-Pereira; Joana Portugal-Pereira; Francielle Carvalho; Clarissa Bergman Fonte; Eduardo Müller-Casseres; Mariana Império; Pedro Rochedo; Tainan Nogueira; Roberto Schaeffer; Matheus Poggio; Huang Ken Wei;Abstract This study aims to provide an Integrated Assessment Model (IAM) perspective of the production and distribution of alternative marine fuels in Brazilian ports, considering the International Maritime Organization (IMO) emission reduction target for 2050 (IMO2050). Although other mitigation measures are available, it is likely that alternative fuels will be required, implying additional costs and entailing relevant impacts on other energy chains and land use. Hence, the national IAM BLUES model is adapted to represent the relevant part of the international shipping sector. A set of scenarios is developed considering different fuel alternatives, demand assumptions and national mitigation targets. Findings show that taking into account emissions of CO2 only or of all greenhouse gases (GHGs) within the IMO strategy significantly impacts the optimal technological portfolio. Furthermore, achieving the IMO2050 goal without considering a national decarbonization strategy may result in potential spillovers. The intense use of the energy sector could partially compromise the gains obtained by maritime decarbonization or even surpass it. Therefore, only an integrated mitigation strategy would lead to more effective decarbonization of the entire marine supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 25 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:EC | NAVIGATEEC| NAVIGATEAuthors: Alexandre Szklo; Joana Portugal-Pereira; Joana Portugal-Pereira; Francielle Carvalho; +8 AuthorsAlexandre Szklo; Joana Portugal-Pereira; Joana Portugal-Pereira; Francielle Carvalho; Clarissa Bergman Fonte; Eduardo Müller-Casseres; Mariana Império; Pedro Rochedo; Tainan Nogueira; Roberto Schaeffer; Matheus Poggio; Huang Ken Wei;Abstract This study aims to provide an Integrated Assessment Model (IAM) perspective of the production and distribution of alternative marine fuels in Brazilian ports, considering the International Maritime Organization (IMO) emission reduction target for 2050 (IMO2050). Although other mitigation measures are available, it is likely that alternative fuels will be required, implying additional costs and entailing relevant impacts on other energy chains and land use. Hence, the national IAM BLUES model is adapted to represent the relevant part of the international shipping sector. A set of scenarios is developed considering different fuel alternatives, demand assumptions and national mitigation targets. Findings show that taking into account emissions of CO2 only or of all greenhouse gases (GHGs) within the IMO strategy significantly impacts the optimal technological portfolio. Furthermore, achieving the IMO2050 goal without considering a national decarbonization strategy may result in potential spillovers. The intense use of the energy sector could partially compromise the gains obtained by maritime decarbonization or even surpass it. Therefore, only an integrated mitigation strategy would lead to more effective decarbonization of the entire marine supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 25 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 United KingdomPublisher:Elsevier BV Authors: Mahon, Harry; O'Connor, Dominic; Friedrich, Daniel; Hughes, Ben Richard;Abstract As mitigating climate change becomes an increasing worldwide focus, it is vital to explore a diverse range of technologies for reducing emissions. Heating and cooling make up a significant proportion of energy demand, both domestically and in industry. An effective method of reducing this energy demand is the storage and use of waste heat through the application of seasonal thermal energy storage, used to address the mismatch between supply and demand and greatly increasing the efficiency of renewable resources. Four methods of sensible heat storage; Tank, pit, borehole, and aquifer thermal energy storage are at the time of writing at a more advanced stage of development when compared with other methods of thermal storage and are already being implemented within energy systems. This review aims to identify some of the barriers to development currently facing these methods of seasonal thermal energy storage, and subsequently some of the work being undertaken to address these barriers in order to facilitate wider levels of adoption throughout energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 191 citations 191 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 United KingdomPublisher:Elsevier BV Authors: Mahon, Harry; O'Connor, Dominic; Friedrich, Daniel; Hughes, Ben Richard;Abstract As mitigating climate change becomes an increasing worldwide focus, it is vital to explore a diverse range of technologies for reducing emissions. Heating and cooling make up a significant proportion of energy demand, both domestically and in industry. An effective method of reducing this energy demand is the storage and use of waste heat through the application of seasonal thermal energy storage, used to address the mismatch between supply and demand and greatly increasing the efficiency of renewable resources. Four methods of sensible heat storage; Tank, pit, borehole, and aquifer thermal energy storage are at the time of writing at a more advanced stage of development when compared with other methods of thermal storage and are already being implemented within energy systems. This review aims to identify some of the barriers to development currently facing these methods of seasonal thermal energy storage, and subsequently some of the work being undertaken to address these barriers in order to facilitate wider levels of adoption throughout energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 191 citations 191 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 TurkeyPublisher:Elsevier BV Authors: Melih Soner Celiktas; Fikret Muge Alptekin;handle: 11454/63126 , 11454/15610
Abstract Biomass materials are renewable sources that abundant worldwide due to natural plants and living organisms. Lignocellulosic biomass can be categorized as hardwood, softwood, agricultural wastes, and grasses. Agricultural residues those which of them have importance due to being produced in huge amounts in the worldwide annually. Food wastes and agricultural wastes are utilized either alternative use such as generating energy, fuels or disposal. However, disposal of these residues is follow out either scraping or burning way. This study aims to convert industrial agricultural origin biomass by using hydrothermal carbonization method to carbon-based material having high conductivity for use in supercapacitor production by using different activating chemicals. Hydrothermal carbonization was applied to different biomass samples such as nutshell, hazelnut shell, and corn cob. The elemental analysis of the obtained biochar was carried out and it was determined that the highest source of biomass was corn cob. The selected biochar has been chemically activated with different chemicals such as KOH, NaOH, H3PO4 and, ZnCl2. Advanced carbonization of activated biochar was carried out at 500, 600, 700 and 800 °C with 1, 1.5 and 2-h retention times. The resulting carbon-based products were mixed with KBr and identical pellets were prepared and their electrical conductivity values were measured. Electrical conductivity results, NaOH-800 °C-2h and ZnCl2-700 °C-1.5 h obtained from the process prepared from the biocidal pellets were determined to have the highest conductivity value. Brunauer–Emmett–Teller (BET) and Scanning Electron Microscope (SEM) analyses of the samples with the highest conductivity values were performed and surface morphologies were examined.
Energy arrow_drop_down Ege University Institutional RepositoryArticle . 2020Data sources: Ege University Institutional RepositoryEge University Institutional RepositoryArticle . 2019Data sources: Ege University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down Ege University Institutional RepositoryArticle . 2020Data sources: Ege University Institutional RepositoryEge University Institutional RepositoryArticle . 2019Data sources: Ege University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 TurkeyPublisher:Elsevier BV Authors: Melih Soner Celiktas; Fikret Muge Alptekin;handle: 11454/63126 , 11454/15610
Abstract Biomass materials are renewable sources that abundant worldwide due to natural plants and living organisms. Lignocellulosic biomass can be categorized as hardwood, softwood, agricultural wastes, and grasses. Agricultural residues those which of them have importance due to being produced in huge amounts in the worldwide annually. Food wastes and agricultural wastes are utilized either alternative use such as generating energy, fuels or disposal. However, disposal of these residues is follow out either scraping or burning way. This study aims to convert industrial agricultural origin biomass by using hydrothermal carbonization method to carbon-based material having high conductivity for use in supercapacitor production by using different activating chemicals. Hydrothermal carbonization was applied to different biomass samples such as nutshell, hazelnut shell, and corn cob. The elemental analysis of the obtained biochar was carried out and it was determined that the highest source of biomass was corn cob. The selected biochar has been chemically activated with different chemicals such as KOH, NaOH, H3PO4 and, ZnCl2. Advanced carbonization of activated biochar was carried out at 500, 600, 700 and 800 °C with 1, 1.5 and 2-h retention times. The resulting carbon-based products were mixed with KBr and identical pellets were prepared and their electrical conductivity values were measured. Electrical conductivity results, NaOH-800 °C-2h and ZnCl2-700 °C-1.5 h obtained from the process prepared from the biocidal pellets were determined to have the highest conductivity value. Brunauer–Emmett–Teller (BET) and Scanning Electron Microscope (SEM) analyses of the samples with the highest conductivity values were performed and surface morphologies were examined.
Energy arrow_drop_down Ege University Institutional RepositoryArticle . 2020Data sources: Ege University Institutional RepositoryEge University Institutional RepositoryArticle . 2019Data sources: Ege University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down Ege University Institutional RepositoryArticle . 2020Data sources: Ege University Institutional RepositoryEge University Institutional RepositoryArticle . 2019Data sources: Ege University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Sung-Ho Jo; Uendo Lee; Uendo Lee; Uendo Lee; Chang Won Yang; Chang Won Yang; Chang Won Yang; Tae-Young Mun; Ji-Hong Moon; Hoang Khoi Nguyen; Hoang Khoi Nguyen; Byung-Ho Song; Ho Won Ra; Sung-Jin Park; Jae-Goo Lee; Jae-Goo Lee; Myung Won Seo; Sang-Jun Yoon; Sung-Min Yoon;Abstract Oxy-combustion with a circulating fluidized bed (Oxy-CFBC) can facilitate the separation of high CO2 concentration and reduce emissions by biomass co-firing. This study investigated Oxy-CFBC characteristics such as temperature, solid hold-up, flue gas concentrations including CO2, pollutant emissions (SO2, NO, and CO), combustion efficiency and ash properties (slagging, fouling index) with increasing input oxygen levels (21–29 vol%), and biomass co-firing ratios (50, 70, and 100 wt% with domestic wood pellet). The possibility of bio-energy carbon capture and storage for negative CO2 emission was also evaluated using a 0.1 MWth Oxy-CFBC test-rig. The results show that combustion stably achieved with at least 90 vol% CO2 in the flue gas. Compared to air-firing, oxy-firing (with 24 vol% oxygen) reduced pollutant emissions to 29.4% NO, 31.9% SO2 and 18.5% CO. Increasing the biomass co-firing from 50 to 100 wt% decreased the NO, SO2 and CO content from 19.2 mg/MJ to 16.1 mg/MJ, 92.8 mg/MJ to 25.0 mg/MJ, and 7.5 mg/MJ to 5.5 mg/MJ, respectively. In contrast to blends of sub-bituminous coal and lignite, negative CO2 emission (approximately −647 g/kWth) was predicted for oxy-combustion only biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Sung-Ho Jo; Uendo Lee; Uendo Lee; Uendo Lee; Chang Won Yang; Chang Won Yang; Chang Won Yang; Tae-Young Mun; Ji-Hong Moon; Hoang Khoi Nguyen; Hoang Khoi Nguyen; Byung-Ho Song; Ho Won Ra; Sung-Jin Park; Jae-Goo Lee; Jae-Goo Lee; Myung Won Seo; Sang-Jun Yoon; Sung-Min Yoon;Abstract Oxy-combustion with a circulating fluidized bed (Oxy-CFBC) can facilitate the separation of high CO2 concentration and reduce emissions by biomass co-firing. This study investigated Oxy-CFBC characteristics such as temperature, solid hold-up, flue gas concentrations including CO2, pollutant emissions (SO2, NO, and CO), combustion efficiency and ash properties (slagging, fouling index) with increasing input oxygen levels (21–29 vol%), and biomass co-firing ratios (50, 70, and 100 wt% with domestic wood pellet). The possibility of bio-energy carbon capture and storage for negative CO2 emission was also evaluated using a 0.1 MWth Oxy-CFBC test-rig. The results show that combustion stably achieved with at least 90 vol% CO2 in the flue gas. Compared to air-firing, oxy-firing (with 24 vol% oxygen) reduced pollutant emissions to 29.4% NO, 31.9% SO2 and 18.5% CO. Increasing the biomass co-firing from 50 to 100 wt% decreased the NO, SO2 and CO content from 19.2 mg/MJ to 16.1 mg/MJ, 92.8 mg/MJ to 25.0 mg/MJ, and 7.5 mg/MJ to 5.5 mg/MJ, respectively. In contrast to blends of sub-bituminous coal and lignite, negative CO2 emission (approximately −647 g/kWth) was predicted for oxy-combustion only biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014Publisher:Elsevier BV Authors: Osman Okur; Erdogan Alper; Ali Almansoori;Abstract The aim of this work is to determine the optimum operating conditions for the process of preparing anode electrocatalysts for direct sodium borohydride fuel cell (DSBHFC). Pt–Au/C electrocatalysts were studied as the anode catalysts while Pt/C were chosen as a cathode catalyst. Anode electrocatalysts were produced by the precipitation method. In this work, pH, temperature, drying time and Pt/Au ratio were selected as independent process parameters and their effects on dependent parameters, such as power density and hydrogen production rate, were investigated using response surface methodology (RSM). Based on this methodology, it was found that the maximum power density and the minimum hydrogen production rate were 354.4 mW cm−2 and 30 ml min−1 respectively. These findings were obtained at 90 °C, 9.27 pH, 61.07 h of drying time, and 93.54% Au ratio to total metal ratio.
Aperta - TÜBİTAK Açı... arrow_drop_down Aperta - TÜBİTAK Açık ArşiviOther literature type . 2014License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.01.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aperta - TÜBİTAK Açı... arrow_drop_down Aperta - TÜBİTAK Açık ArşiviOther literature type . 2014License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.01.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014Publisher:Elsevier BV Authors: Osman Okur; Erdogan Alper; Ali Almansoori;Abstract The aim of this work is to determine the optimum operating conditions for the process of preparing anode electrocatalysts for direct sodium borohydride fuel cell (DSBHFC). Pt–Au/C electrocatalysts were studied as the anode catalysts while Pt/C were chosen as a cathode catalyst. Anode electrocatalysts were produced by the precipitation method. In this work, pH, temperature, drying time and Pt/Au ratio were selected as independent process parameters and their effects on dependent parameters, such as power density and hydrogen production rate, were investigated using response surface methodology (RSM). Based on this methodology, it was found that the maximum power density and the minimum hydrogen production rate were 354.4 mW cm−2 and 30 ml min−1 respectively. These findings were obtained at 90 °C, 9.27 pH, 61.07 h of drying time, and 93.54% Au ratio to total metal ratio.
Aperta - TÜBİTAK Açı... arrow_drop_down Aperta - TÜBİTAK Açık ArşiviOther literature type . 2014License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.01.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aperta - TÜBİTAK Açı... arrow_drop_down Aperta - TÜBİTAK Açık ArşiviOther literature type . 2014License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.01.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Zhao, Xudong; Duan, Zhiyin; Li, Junming;Abstract The urges of reducing energy use and carbon footprint in buildings have prompted the developments of regenerative evaporative coolers (RECs). However, the physical dimensions of RECs have to be designed enormous in order to deliver a large amount of supply airflow rate and cooling capacity. To tackle the issue, this paper develops a large-scale counter-flow REC with compact heat exchanger through dedicated numerical modelling, optimal design, fabrication and experimentation. Using modified e-NTU method, a finite element model is established in Engineering Equation Solver environment to optimise the cooler's geometric and operating parameters. Based on modelling predictions, the cooler's experimental prototype was optimally designed and constructed to evaluate operating performance. The experiment results show that the cooler's attained wet-bulb effectiveness ranges from 0.96 to 1.07, the cooling capacity and energy efficiency ratio from 3.9 to 8.5 kW and 10.6 to 19.7 respectively. It can provide sub-wet bulb cooling while operating at high intake channel air velocities of 3.04–3.60 m/s. The superior performance of proposed cooler is disclosed by comparing with different RECs under similar operating conditions. Both the cooler's cooling capacity per unit of volume and per unit of airflow rate are found to be 62–108% and 21.6% higher respectively.
University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Zhao, Xudong; Duan, Zhiyin; Li, Junming;Abstract The urges of reducing energy use and carbon footprint in buildings have prompted the developments of regenerative evaporative coolers (RECs). However, the physical dimensions of RECs have to be designed enormous in order to deliver a large amount of supply airflow rate and cooling capacity. To tackle the issue, this paper develops a large-scale counter-flow REC with compact heat exchanger through dedicated numerical modelling, optimal design, fabrication and experimentation. Using modified e-NTU method, a finite element model is established in Engineering Equation Solver environment to optimise the cooler's geometric and operating parameters. Based on modelling predictions, the cooler's experimental prototype was optimally designed and constructed to evaluate operating performance. The experiment results show that the cooler's attained wet-bulb effectiveness ranges from 0.96 to 1.07, the cooling capacity and energy efficiency ratio from 3.9 to 8.5 kW and 10.6 to 19.7 respectively. It can provide sub-wet bulb cooling while operating at high intake channel air velocities of 3.04–3.60 m/s. The superior performance of proposed cooler is disclosed by comparing with different RECs under similar operating conditions. Both the cooler's cooling capacity per unit of volume and per unit of airflow rate are found to be 62–108% and 21.6% higher respectively.
University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV T.X. Li; S. Wu; T. Yan; R.Z. Wang; J. Zhu;A dual-mode seasonal solar thermochemical sorption energy storage system using working pair of expanded graphite/SrCl2-NH3 was constructed and investigated. Solar thermal energy is transformed into chemical bonds in summer, and the stored energy is released in the form of chemical reaction heat in winter. Two working modes are performed to produce heat with expected temperature according to the different ambient temperatures in winter. The direct heating supply mode is adopted at a relatively high ambient temperature. The effective energy storage density is higher than 700kJ/kg and the corresponding system COP is 0.41 when the heat output temperature and ambient temperature are 35oC and 15oC, respectively. The specific heating power increases with the decrease of heat output temperature for a given ambient temperature. The temperature-lift heating supply mode is adopted to upgrade the heat output temperature at a low ambient temperature below 0oC. It can produce heat with a temperature above 70 oC although the ambient temperature is as low as -15oC. It is desirable to further improve the system performance using low mass ratio and high global conversion. Experimental results showed the advanced dual-mode thermochemical sorption energy storage technology is feasible and effective for seasonal solar thermal energy storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV T.X. Li; S. Wu; T. Yan; R.Z. Wang; J. Zhu;A dual-mode seasonal solar thermochemical sorption energy storage system using working pair of expanded graphite/SrCl2-NH3 was constructed and investigated. Solar thermal energy is transformed into chemical bonds in summer, and the stored energy is released in the form of chemical reaction heat in winter. Two working modes are performed to produce heat with expected temperature according to the different ambient temperatures in winter. The direct heating supply mode is adopted at a relatively high ambient temperature. The effective energy storage density is higher than 700kJ/kg and the corresponding system COP is 0.41 when the heat output temperature and ambient temperature are 35oC and 15oC, respectively. The specific heating power increases with the decrease of heat output temperature for a given ambient temperature. The temperature-lift heating supply mode is adopted to upgrade the heat output temperature at a low ambient temperature below 0oC. It can produce heat with a temperature above 70 oC although the ambient temperature is as low as -15oC. It is desirable to further improve the system performance using low mass ratio and high global conversion. Experimental results showed the advanced dual-mode thermochemical sorption energy storage technology is feasible and effective for seasonal solar thermal energy storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Byungryeul Bang; Byungryeul Bang; Uendo Lee; Uendo Lee; Soo-Hwa Jeong; Soo-Hwa Jeong; Ji-Hong Moon; Jungho Hwang; Woojin Jo; Young-Tai Choi;Hot gas cleaning of producer gas generated from a gasification process has many advantages in terms of thermal efficiency, gas-quality improvement, compact gas-cleaning devices, and economic feasibility. In this study, the characteristics of molten tin as a working fluid for hot gas cleaning were examined. To evaluate the hot gas cleaning performance of molten tin, the producer gas generated from the gasification of empty fruit bunch pellets was tested with a molten-tin-based gas cleaning system connected to the downstream of the gasifier. Gas chromatographic analysis of the producer gas shows that the removal efficiencies of hydrogen sulfide and non-condensable tar were about 97% and 80%, respectively, in a molten tin bed maintained at 400 °C. The results suggest that molten tin could be used as a multifunctional gas-cleaning medium for the simultaneous removal of tar and hydrogen sulfide from the producer gas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.04.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.04.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Byungryeul Bang; Byungryeul Bang; Uendo Lee; Uendo Lee; Soo-Hwa Jeong; Soo-Hwa Jeong; Ji-Hong Moon; Jungho Hwang; Woojin Jo; Young-Tai Choi;Hot gas cleaning of producer gas generated from a gasification process has many advantages in terms of thermal efficiency, gas-quality improvement, compact gas-cleaning devices, and economic feasibility. In this study, the characteristics of molten tin as a working fluid for hot gas cleaning were examined. To evaluate the hot gas cleaning performance of molten tin, the producer gas generated from the gasification of empty fruit bunch pellets was tested with a molten-tin-based gas cleaning system connected to the downstream of the gasifier. Gas chromatographic analysis of the producer gas shows that the removal efficiencies of hydrogen sulfide and non-condensable tar were about 97% and 80%, respectively, in a molten tin bed maintained at 400 °C. The results suggest that molten tin could be used as a multifunctional gas-cleaning medium for the simultaneous removal of tar and hydrogen sulfide from the producer gas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.04.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.04.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, ItalyPublisher:Elsevier BV Funded by:UKRI | Generation Integrated Ene...UKRI| Generation Integrated Energy Storage - A Paradigm ShiftAuthors: Giorgio Locatelli; Chun Sing Lai; Chun Sing Lai; Chun Sing Lai;handle: 11311/1204834
New energy generation and storage systems are continuously being developed due to climate change, resource scarcity, and environmental laws. Some systems are incremental innovations of existing systems while others are radical innovations. Radical innovation systems are risky investments due to their relevant technical and economic uncertainties. Prototyping can hedge these risks by spending a fraction of the cost of a full-scale system and in return receiving economic and technical information regarding the system. In economic terms, prototyping is an option to hedge risk coming at a cost that needs to be properly assessed. Real options analysis is the project appraisal approach for these assessments. This paper aims to introduce and test an algorithm based on real options analysis to quantitatively assess the “option to prototype” in the energy sector. First, the interrelated research areas of prototyping, energy systems, and real options analysis are reviewed. Then, a novel algorithm is presented and applied to an innovative Generation Integrated Energy Storage system: Wind-driven Thermal Pumping to demonstrate the effectiveness of option to prototype and the main parameters influencing this decision. Results show that the cost of the prototype and the market size (number of identical systems to build) are key parameters.
RE.PUBLIC@POLIMI Res... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2020License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2020License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, ItalyPublisher:Elsevier BV Funded by:UKRI | Generation Integrated Ene...UKRI| Generation Integrated Energy Storage - A Paradigm ShiftAuthors: Giorgio Locatelli; Chun Sing Lai; Chun Sing Lai; Chun Sing Lai;handle: 11311/1204834
New energy generation and storage systems are continuously being developed due to climate change, resource scarcity, and environmental laws. Some systems are incremental innovations of existing systems while others are radical innovations. Radical innovation systems are risky investments due to their relevant technical and economic uncertainties. Prototyping can hedge these risks by spending a fraction of the cost of a full-scale system and in return receiving economic and technical information regarding the system. In economic terms, prototyping is an option to hedge risk coming at a cost that needs to be properly assessed. Real options analysis is the project appraisal approach for these assessments. This paper aims to introduce and test an algorithm based on real options analysis to quantitatively assess the “option to prototype” in the energy sector. First, the interrelated research areas of prototyping, energy systems, and real options analysis are reviewed. Then, a novel algorithm is presented and applied to an innovative Generation Integrated Energy Storage system: Wind-driven Thermal Pumping to demonstrate the effectiveness of option to prototype and the main parameters influencing this decision. Results show that the cost of the prototype and the market size (number of identical systems to build) are key parameters.
RE.PUBLIC@POLIMI Res... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2020License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2020License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Linrui Zhang; Hui Yan; Qian Zhang; Yanan Cui; Yongzhe Zhang; Hongwen Yu; Wei Pang; Xiaoyan Zhang;Abstract In this paper, the performance of a polycrystalline silicon photovoltaic module and photovoltaic/thermal module are experimentally investigated under outdoor conditions, using a roll-bond thermal collector attached on the backside of the photovoltaic module. Furthermore, the temperature, pressure and velocity distributions across the photovoltaic/thermal module are simulated using a steady state thermal model. Compared with the photovoltaic module, the performances of photovoltaic/thermal module with and without the coolant circulation are both examined using a water volume of 100 L and a coolant mass flow rate of 0.034 kg/s. Using a design with a timed supplement water strategy, the electrical energy produced by the photovoltaic/thermal system has been increased by 3.25%. Compared without supplement before, the electrical energy can be extra increased more than 1%. A good agreement is found between simulated and experimental results. There is no doubt that the output performance of the photovoltaic/thermal system can be improved effectively by the design of timed supplement water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.115990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.115990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Linrui Zhang; Hui Yan; Qian Zhang; Yanan Cui; Yongzhe Zhang; Hongwen Yu; Wei Pang; Xiaoyan Zhang;Abstract In this paper, the performance of a polycrystalline silicon photovoltaic module and photovoltaic/thermal module are experimentally investigated under outdoor conditions, using a roll-bond thermal collector attached on the backside of the photovoltaic module. Furthermore, the temperature, pressure and velocity distributions across the photovoltaic/thermal module are simulated using a steady state thermal model. Compared with the photovoltaic module, the performances of photovoltaic/thermal module with and without the coolant circulation are both examined using a water volume of 100 L and a coolant mass flow rate of 0.034 kg/s. Using a design with a timed supplement water strategy, the electrical energy produced by the photovoltaic/thermal system has been increased by 3.25%. Compared without supplement before, the electrical energy can be extra increased more than 1%. A good agreement is found between simulated and experimental results. There is no doubt that the output performance of the photovoltaic/thermal system can be improved effectively by the design of timed supplement water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.115990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.115990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:EC | NAVIGATEEC| NAVIGATEAuthors: Alexandre Szklo; Joana Portugal-Pereira; Joana Portugal-Pereira; Francielle Carvalho; +8 AuthorsAlexandre Szklo; Joana Portugal-Pereira; Joana Portugal-Pereira; Francielle Carvalho; Clarissa Bergman Fonte; Eduardo Müller-Casseres; Mariana Império; Pedro Rochedo; Tainan Nogueira; Roberto Schaeffer; Matheus Poggio; Huang Ken Wei;Abstract This study aims to provide an Integrated Assessment Model (IAM) perspective of the production and distribution of alternative marine fuels in Brazilian ports, considering the International Maritime Organization (IMO) emission reduction target for 2050 (IMO2050). Although other mitigation measures are available, it is likely that alternative fuels will be required, implying additional costs and entailing relevant impacts on other energy chains and land use. Hence, the national IAM BLUES model is adapted to represent the relevant part of the international shipping sector. A set of scenarios is developed considering different fuel alternatives, demand assumptions and national mitigation targets. Findings show that taking into account emissions of CO2 only or of all greenhouse gases (GHGs) within the IMO strategy significantly impacts the optimal technological portfolio. Furthermore, achieving the IMO2050 goal without considering a national decarbonization strategy may result in potential spillovers. The intense use of the energy sector could partially compromise the gains obtained by maritime decarbonization or even surpass it. Therefore, only an integrated mitigation strategy would lead to more effective decarbonization of the entire marine supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 25 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:EC | NAVIGATEEC| NAVIGATEAuthors: Alexandre Szklo; Joana Portugal-Pereira; Joana Portugal-Pereira; Francielle Carvalho; +8 AuthorsAlexandre Szklo; Joana Portugal-Pereira; Joana Portugal-Pereira; Francielle Carvalho; Clarissa Bergman Fonte; Eduardo Müller-Casseres; Mariana Império; Pedro Rochedo; Tainan Nogueira; Roberto Schaeffer; Matheus Poggio; Huang Ken Wei;Abstract This study aims to provide an Integrated Assessment Model (IAM) perspective of the production and distribution of alternative marine fuels in Brazilian ports, considering the International Maritime Organization (IMO) emission reduction target for 2050 (IMO2050). Although other mitigation measures are available, it is likely that alternative fuels will be required, implying additional costs and entailing relevant impacts on other energy chains and land use. Hence, the national IAM BLUES model is adapted to represent the relevant part of the international shipping sector. A set of scenarios is developed considering different fuel alternatives, demand assumptions and national mitigation targets. Findings show that taking into account emissions of CO2 only or of all greenhouse gases (GHGs) within the IMO strategy significantly impacts the optimal technological portfolio. Furthermore, achieving the IMO2050 goal without considering a national decarbonization strategy may result in potential spillovers. The intense use of the energy sector could partially compromise the gains obtained by maritime decarbonization or even surpass it. Therefore, only an integrated mitigation strategy would lead to more effective decarbonization of the entire marine supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 25 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 United KingdomPublisher:Elsevier BV Authors: Mahon, Harry; O'Connor, Dominic; Friedrich, Daniel; Hughes, Ben Richard;Abstract As mitigating climate change becomes an increasing worldwide focus, it is vital to explore a diverse range of technologies for reducing emissions. Heating and cooling make up a significant proportion of energy demand, both domestically and in industry. An effective method of reducing this energy demand is the storage and use of waste heat through the application of seasonal thermal energy storage, used to address the mismatch between supply and demand and greatly increasing the efficiency of renewable resources. Four methods of sensible heat storage; Tank, pit, borehole, and aquifer thermal energy storage are at the time of writing at a more advanced stage of development when compared with other methods of thermal storage and are already being implemented within energy systems. This review aims to identify some of the barriers to development currently facing these methods of seasonal thermal energy storage, and subsequently some of the work being undertaken to address these barriers in order to facilitate wider levels of adoption throughout energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 191 citations 191 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 United KingdomPublisher:Elsevier BV Authors: Mahon, Harry; O'Connor, Dominic; Friedrich, Daniel; Hughes, Ben Richard;Abstract As mitigating climate change becomes an increasing worldwide focus, it is vital to explore a diverse range of technologies for reducing emissions. Heating and cooling make up a significant proportion of energy demand, both domestically and in industry. An effective method of reducing this energy demand is the storage and use of waste heat through the application of seasonal thermal energy storage, used to address the mismatch between supply and demand and greatly increasing the efficiency of renewable resources. Four methods of sensible heat storage; Tank, pit, borehole, and aquifer thermal energy storage are at the time of writing at a more advanced stage of development when compared with other methods of thermal storage and are already being implemented within energy systems. This review aims to identify some of the barriers to development currently facing these methods of seasonal thermal energy storage, and subsequently some of the work being undertaken to address these barriers in order to facilitate wider levels of adoption throughout energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 191 citations 191 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu