
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A review of thermal energy storage technologies for seasonal loops

Abstract As mitigating climate change becomes an increasing worldwide focus, it is vital to explore a diverse range of technologies for reducing emissions. Heating and cooling make up a significant proportion of energy demand, both domestically and in industry. An effective method of reducing this energy demand is the storage and use of waste heat through the application of seasonal thermal energy storage, used to address the mismatch between supply and demand and greatly increasing the efficiency of renewable resources. Four methods of sensible heat storage; Tank, pit, borehole, and aquifer thermal energy storage are at the time of writing at a more advanced stage of development when compared with other methods of thermal storage and are already being implemented within energy systems. This review aims to identify some of the barriers to development currently facing these methods of seasonal thermal energy storage, and subsequently some of the work being undertaken to address these barriers in order to facilitate wider levels of adoption throughout energy systems.
- University of Hull United Kingdom
- University of Edinburgh United Kingdom
- University of Hull United Kingdom
Sensible heat storage, Aquifer thermal energy storage, Thermal energy storage, Tank thermal energy storage, Borehole thermal energy storage, Seasonal storage, Pit thermal energy storage
Sensible heat storage, Aquifer thermal energy storage, Thermal energy storage, Tank thermal energy storage, Borehole thermal energy storage, Seasonal storage, Pit thermal energy storage
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).191 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
