- home
- Advanced Search
- Energy Research
- GB
- English
- DRYAD
- Energy Research
- GB
- English
- DRYAD
Research data keyboard_double_arrow_right Dataset 2024Embargo end date: 16 Jan 2024Publisher:Dryad Authors: Pérez-Navarro, María Ángeles;This repository contains a series of .csv files developed for the study titled "Plant canopies promote climatic disequilibrium in Mediterranean recruit communities", authored by: Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcántara JM and Verdú M. The author of these files is Perez-Navarro MA. These files are used to characterize species niches, estimate climatic disequilibrium for recruit communities growing under plant canopies and open spaces, and conduct statistical analyses. Variables description of each table is compiled in the METADATA.txt file. Please visit Github readme () to correctly place these files in the folder tree and check for the corresponding scripts where they are required. Please notice that although alternative approaches were calibrated to estimate species niche (accordingly producing multiple niche, distances and disequilibrium dataframes), only niche centroid calibrated discarding 95 percentile of lowest niche density was used for paper results and figures. Also, in case of univariate analyses only bio01, bio06 and bio12 were used in analyses, though species niche and further niche and community estimations were obtained for all 19 variables. This is version 2 (v2) and include extra intermediate .csv required to run all the R scripts included in the abovementioned Github repository. NAs or empty cells present in the .csv files of this repository means no data and do not contribute to the analyses. Visit METADATA.txt file for variables description. These data are under CC0 license. It is possible to share, copy and redistribute the material in any medium or format, and adapt, remix, transform, and build upon the material for any purpose. Studies using R scripts or any data files from these study should cite the abovementioned paper (Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcantara JM, Verdu M. (2024). Plant canopies promote climatic disequilibrium in Mediterranean recruit communities). Please contact m.angeles582@gmail.com in case of having doubts or problems with the existing files and scripts. Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyze differences in climatic disequilibrium between understory and open ground woody plant recruits in 28 localities, covering more than 100,000 m2, across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favor warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh18932dg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh18932dg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2016Embargo end date: 01 Apr 2017Publisher:Dryad Russell, Debbie J. F.; Hastie, Gordon D.; Thompson, David; Janik, Vincent M.; Hammond, Philip S.; Scott-Hayward, Lindesay A. S.; Matthiopoulos, Jason; Jones, Esther L.; McConnell, Bernie J.; Russell, Debbie J.F.;doi: 10.5061/dryad.9r0gv
As part of global efforts to reduce dependence on carbon-based energy sources there has been a rapid increase in the installation of renewable energy devices. The installation and operation of these devices can result in conflicts with wildlife. In the marine environment, mammals may avoid wind farms that are under construction or operating. Such avoidance may lead to more time spent travelling or displacement from key habitats. A paucity of data on at-sea movements of marine mammals around wind farms limits our understanding of the nature of their potential impacts. Here, we present the results of a telemetry study on harbour seals Phoca vitulina in The Wash, south-east England, an area where wind farms are being constructed using impact pile driving. We investigated whether seals avoid wind farms during operation, construction in its entirety, or during piling activity. The study was carried out using historical telemetry data collected prior to any wind farm development and telemetry data collected in 2012 during the construction of one wind farm and the operation of another. Within an operational wind farm, there was a close-to-significant increase in seal usage compared to prior to wind farm development. However, the wind farm was at the edge of a large area of increased usage, so the presence of the wind farm was unlikely to be the cause. There was no significant displacement during construction as a whole. However, during piling, seal usage (abundance) was significantly reduced up to 25 km from the piling activity; within 25 km of the centre of the wind farm, there was a 19 to 83% (95% confidence intervals) decrease in usage compared to during breaks in piling, equating to a mean estimated displacement of 440 individuals. This amounts to significant displacement starting from predicted received levels of between 166 and 178 dB re 1 μPa(p-p). Displacement was limited to piling activity; within 2 h of cessation of pile driving, seals were distributed as per the non-piling scenario. Synthesis and applications. Our spatial and temporal quantification of avoidance of wind farms by harbour seals is critical to reduce uncertainty and increase robustness in environmental impact assessments of future developments. Specifically, the results will allow policymakers to produce industry guidance on the likelihood of displacement of seals in response to pile driving; the relationship between sound levels and avoidance rates; and the duration of any avoidance, thus allowing far more accurate environmental assessments to be carried out during the consenting process. Further, our results can be used to inform mitigation strategies in terms of both the sound levels likely to cause displacement and what temporal patterns of piling would minimize the magnitude of the energetic impacts of displacement. Wash_diagWash_diag.xlsx is the historic location data (pre windfarm construction) for the 19 individuals used in the analysis described in Russell et al.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9r0gv&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 13 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9r0gv&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Jan 2022Publisher:Dryad Authors: Barreaux, Antoine; Higginson, Andrew; Bonsall, Michael; English, Sinead;Here, we investigate how stochasticity and age-dependence in energy dynamics influence maternal allocation in iteroparous females. We develop a state-dependent model to calculate the optimal maternal allocation strategy with respect to maternal age and energy reserves, focusing on allocation in a single offspring at a time. We introduce stochasticity in energetic costs– in terms of the amount of energy required to forage successfully and individual differences in metabolism – and in feeding success. We systematically assess how allocation is influenced by age-dependence in energetic costs, feeding success, energy intake per successful feeding attempt, and environmentally-driven mortality. First, using stochastic dynamic programming, we calculate the optimal amount of reserves M that mothers allocate to each offspring depending on their own reserves R and age A. The optimal life history strategy is then the set of allocation decisions M(R, A) over the whole lifespan which maximizes the total reproductive success of distant descendants. Second, we simulated the life histories of 1000 mothers following the optimisation strategy and the reserves at the start of adulthood R1, the distribution of which was determined, the distribution of which was determined using an iterative procedure as described . For each individual, we calculated maternal allocation Mt, maternal reserves Rt, and relative allocation Mt⁄Rt at each time period t. The relative allocation helps us to understand how resources are partitioned between mother and offspring. Third, we consider how the optimal strategy varies when there is age-dependence in resource acquisition, energetic costs and survival. Specifically, we include varying scenarios with an age-dependent increase or a decrease with age in energetic costs (c_t), feeding success (q_t), energy intake per successful feeding attempt (y_t), and environmentally-driven extrinsic mortality rate (d_t) (Table 2). We consider the age-dependence of parameters one at a time or in pairs, altering the slope, intercept, or asymptote of the age-dependence (linear or asymptotic function). Our aim is to identify whether the observed reproductive senescence can arise from optimal maternal allocation. As such, we do not impose a decline in selection in later life as all offspring are equally valuable at all ages (for a given maternal allocation), and there are no mutations. For each scenario, we run the backward iteration process with these age-dependent functions, obtain the allocation strategy, and simulate the life history of 1000 individuals based on the novel strategy. We then fit quadratic and linear models to the reproduction of these 1000 individuals using the lme function, nlme package in R. For these models, the response variable is the maternal allocation Mt and explanatory variables are the time period t and t2 (for the quadratic fit only), with individual identity as a random term. We use likelihood ratio tests to compare linear and quadratic models using the anova function (package nlme) with the maximum-likelihood method. If the comparison is significant (p-value <0.05), we considered the quadratic model to have a better fit, otherwise the linear model is considered more parsimonious. We were particularly interested in identifying scenarios where the fit was quadratic with a negative quadratic term. For each scenario, the pseudo R2 conditional value (proportion of variance explained by the fixed and random terms, accounting for individual identity) is calculated to assess the goodness-of-fit of the lme model, on a scale from 0 to 1, using the “r.squared” function, package gabtool. All calculations and coding are done in R. Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Optimal allocation varies across age, and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This non-linear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake, and environmentally-driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation: when energetic costs and energy intake increase with age; and also when energy intake decreases, and energetic costs increase or decrease. Feeding success and mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of non-linear maternal allocation across diverse taxonomic groups.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 47visibility views 47 download downloads 60 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 11 Oct 2023Publisher:Dryad Ding, Fangyu; Ge, Honghan; Ma, Tian; Wang, Qian; Hao, Mengmeng; Li, Hao; Zhang, Xiao-Ai; Maude, Richard James; Wang, Liping; Jiang, Dong; Fang, Li-Qun; Liu, Wei;# Data on: Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China [https://doi.org/10.5061/dryad.vdncjsz1z](https://doi.org/10.5061/dryad.vdncjsz1z) This dataset is the data used in the paper of Global change biology entitled "Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China". We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in the mainland of China. ## Description of the data and file structure The predicted annual incidence of national SFTS cases with or without human population reduction under four RCPs under different climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the 2030s, 2050s, and 2080s. The value represents the annual incidence, and the unit is 105/year. The Dataset-1 file includes the predicted annual incidence of national SFTS cases with a fixed future human population under different climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the 2030s, 2050s, and 2080s. The Dataset-2 file includes the predicted annual incidence of national SFTS cases in the 2030s, 2050s, and 2080s with human population reduction (SSP2) under four RCPs. ## Sharing/Access information Data was derived from the following sources: * https://doi.org/10.1111/gcb.16969 This dataset is the data used in the paper of Global change biology entitled "Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China". We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in the mainland of China. The SFTS incidence in three time periods (2030-2039, 2050-2059, 2080-2089) is predicted to be increased as compared to the 2010s in the context of various RCPs. The projected spatiotemporal dynamics of SFTS will be heterogeneous across provinces. Notably, we predict possible outbreaks in Xinjiang and Yunnan in the future, where only sporadic cases have been reported previously. These findings highlight the need for population awareness of SFTS in endemic regions, and enhanced monitoring in potential risk areas. See the Materials and methods section in the original paper. The code used in the statistical analyses are present in the paper and/or the Supplementary Materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsz1z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsz1z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 11 Oct 2021Publisher:Dryad Authors: Lempidakis, Emmanouil; Ross, Andrew; Börger, Luca; Shepard, Emily;Variable list for files: SW wind - Section table on Skomer (Standardised).csv / NW wind - Section table on Skomer (Standardised).csv / SE wind - Section table on Skomer (Standardised).csv /NE wind - Section table on Skomer (Standardised).csv and SW wind - Sections on Skokholm (Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) X_Centre: X coordinate of the central point of each section Y_Centre: Y coordinate of the central point of each section Sector: Section ID MeanUMedian; MeanUIQR, MeanUSkewness, MeanUCV: Median, interquartile range,skewness and coefficient of variation of mean wind speed per section HorizontalMedian;HorizontalIQR,HorizontalSkewness,HorizontalCV: Median, interquartile range,skewness and coefficient of variation of horizontal wind speed per section PMedian;PIQR,PSkewness,PCV: Median, interquartile range,skewness and coefficient of variation of preessure per section TKEMedian;TKEIQR,TKESkewness,TKECV: Median, interquartile range,skewness and coefficient of variation of turbulent kinetic energy per section TIMedian;TIIQR,TISkewness,TICV: Median, interquartile range,skewness and coefficient of variation of turbulence intensity per section U_2Median;lU_2IQR;U_2Skewness;U_2CV: Median, interquartile range,skewness and coefficient of variation of vertical wind speed per section EpsilonMedian;EpsilonIQR,EpsilonSkewness,EpsilonCV: Median, interquartile range,skewness and coefficient of variation of turbulent dissipation rate per section NutMedian;NutIQR,NutSkewness,NutCV: Median, interquartile range,skewness and coefficient of variation of kinematic viscosity per section GustsMedian;GustsIQR,GustsSkewness,GustsCV: Median, interquartile range,skewness and coefficient of variation of instataneous gusts per section MeanSectorSlope: Mean slope per section ColPresence: Binomial variable, indicating whether a section has birds or not. This variable varies with classification, based on either the count of birds or the density per section Variable list for file: Section table on Skomer - with Mean cliff orientation and Slope (NOT-Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) X_Centre: X coordinate of the central point of each section Y_Centre: Y coordinate of the central point of each section Sector: Section ID MeanSectorSlope: Mean slope per section MeanSectorAspectCircular: Mean cliff orientation per section ApsectClass: Factor indicating whether the mean cliff orientation is lee- or windward to the SW wind ColPresence: Binomial variable, indicating whether a section has birds or not. This variable varies with classification, based on either the count of birds or the density per section Variable list for file: SW wind - Sections on Skokholm to predict colonies using cliff orientation and slope model from Skomer (NON - Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) Sector: Section ID MeanSectorSlope: Mean slope per section MeanSectorAspectCircular: Mean cliff orientation per section Wind is fundamentally related to shelter and flight performance: two factors that are critical for birds at their nest sites. Despite this, airflows have never been fully integrated into models of breeding habitat selection, even for well-studied seabirds. Here we use computational fluid dynamics to provide the first assessment of whether flow characteristics (including wind speed and turbulence) predict the distribution of seabird colonies, taking common guillemots (Uria aalge) breeding on Skomer island as our study system. This demonstrates that occupancy is driven by the need to shelter from both wind and rain/ wave action, rather than airflow characteristics alone. Models of airflows and cliff orientation both performed well in predicting high quality habitat in our study site, identifying 80% of colonies and 93% of avoided sites, as well as 73% of the largest colonies on a neighbouring island. This suggests generality in the mechanisms driving breeding distributions, and provides an approach for identifying habitat for seabird reintroductions considering current and projected wind speeds and directions. Methods detailed in manuscript: https://doi.org/10.1111/ecog.05733.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.h9w0vt4jk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 33visibility views 33 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.h9w0vt4jk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 07 Dec 2022Publisher:Dryad Shao, Junjiong; Zhou, Xuhui; van Groenigen, Kees; Zhou, Guiyao; Zhou, Huimin; Zhou, Lingyan; Lu, Meng; Xia, Jianyang; Jiang, Lin; Hungate, Bruce; Luo, Yiqi; He, Fangliang; Thakur, Madhav;Aim: Climate warming and biodiversity loss both alter plant productivity, yet we lack an understanding of how biodiversity regulates the responses of ecosystems to warming. In this study, we examine how plant diversity regulates the responses of grassland productivity to experimental warming using meta-analytic techniques. Location: Global Major taxa studied: Grassland ecosystems Methods: Our meta-analysis is based on warming responses of 40 different plant communities obtained from 20 independent studies on grasslands across five continents. Results: Our results show that plant diversity and its responses to warming were the most important factors regulating the warming effects on plant productivity, among all the factors considered (plant diversity, climate and experimental settings). Specifically, warming increased plant productivity when plant diversity (indicated by effective number of species) in grasslands was lesser than 10, whereas warming decreased plant productivity when plant diversity was greater than 10. Moreover, the structural equation modelling showed that the magnitude of warming enhanced plant productivity by increasing the performance of dominant plant species in grasslands of diversity lesser than 10. The negative effects of warming on productivity in grasslands with plant diversity greater than 10 were partly explained by diversity-induced decline in plant dominance. Main Conclusions: Our findings suggest that the positive or negative effect of warming on grassland productivity depends on how biodiverse a grassland is. This could mainly owe to differences in how warming may affect plant dominance and subsequent shifts in interspecific interactions in grasslands of different plant diversity levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Embargo end date: 04 Jun 2015Publisher:Dryad Piper, Adam T.; Manes, Costantino; Siniscalchi, Fabio; Marion, Andrea; Wright, Rosalind M.; Kemp, Paul S.;doi: 10.5061/dryad.c77jn
Anthropogenic structures (e.g. weirs and dams) fragment river networks and restrict the movement of migratory fish. Poor understanding of behavioural response to hydrodynamic cues at structures currently limits the development of effective barrier mitigation measures. This study aimed to assess the effect of flow constriction and associated flow patterns on eel behaviour during downstream migration. In a field experiment, we tracked the movements of 40 tagged adult European eels (Anguilla anguilla) through the forebay of a redundant hydropower intake under two manipulated hydrodynamic treatments. Interrogation of fish trajectories in relation to measured and modelled water velocities provided new insights into behaviour, fundamental for developing passage technologies for this endangered species. Eels rarely followed direct routes through the site. Initially, fish aligned with streamlines near the channel banks and approached the intake semi-passively. A switch to more energetically costly avoidance behaviours occurred on encountering constricted flow, prior to physical contact with structures. Under high water velocity gradients, fish then tended to escape rapidly back upstream, whereas exploratory ‘search’ behaviour was common when acceleration was low. This study highlights the importance of hydrodynamics in informing eel behaviour. This offers potential to develop behavioural guidance, improve fish passage solutions and enhance traditional physical screening. Fish_detections_UL_CHFish positions derived from acoustic telemetry contained within excel file with 5 columns. 'Record' denotes tag detection numbered consecutively in sequence; 'tag_number' denotes the fish identification number; ‘PosX’ denotes fish x coordinate in UTM; ‘PosY’ denotes fish y coordinate in UTM, ‘Treatment’ denotes experimental treatment
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.c77jn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 25visibility views 25 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.c77jn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 31 Aug 2022Publisher:Dryad Chen, Bingzhang; Montagnes, David; Wang, Qing; Liu, Hongbin; Menden-Deuer, Susanne;Conventional analyses suggest the metabolism of heterotrophs is thermally more sensitive than that of autotrophs, implying that warming leads to pronounced trophodynamic imbalances. However, these analyses inappropriately combine within- and across-taxa trends. We present a novel mathematic framework to separate these, revealing that the higher temperature sensitivity of heterotrophs is mainly caused by within-taxa responses which account for 92% of the difference between autotrophic and heterotrophic protists. This dataset contains both the datasets and R codes of per capita growth rates of autotrophic and heterotrophic protists as well as heterotrophic bacteria and insects. The datasets of per capita growth rates against temperature were compiled from the literature. Experimental data were included if they met the following criteria: at least 3 data points with positive growth rate (µ) and at least 2 unique temperatures at which positive µ were measured. To calculate apparent activation energy, we also removed data points with nonpositive µ and those with temperatures above the optimal growth temperature (defined as the temperature corresponding to the maximal µ). We use the free software R (version 4.2.0) with R packages (foreach, nlme, plyr, dplyr) to analyse these datasets. R codes are also provided.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.dr7sqvb1v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.dr7sqvb1v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 06 Jul 2024Publisher:Dryad Zimova, Marketa; Newey, Scott; Denny, Becks; Pedersen, Simen; Mills, Scott;# Scottish mountain hares do not respond behaviorally to increased camouflage mismatch [https://doi.org/10.5061/dryad.hqbzkh1rc](https://doi.org/10.5061/dryad.hqbzkh1rc) **Abstract** Climate change has resulted in myriad stressors to wild organisms. Phenotypic plasticity, including behavioral plasticity, is hypothesized to play a key role in allowing animals to cope with rapid climate change and mitigate its negative fitness consequences. Camouflage mismatch resulting from decreasing duration of snow cover presents a stressor to species that undergo coat color molts to maintain camouflage against seasonally changing backgrounds. Winter white animals appear highly conspicuous against dark, snowless background and experience increased predation-induced mortality. Here, we evaluate the potential of behavioral plasticity to buffer against camouflage mismatch in mountain hares (*Lepus timidus*) in Scotland. We carried out field surveys in three populations over two years and found no evidence that hares modify their behaviors in response to increasing camouflage mismatch. Hares did not prefer to rest closer to light-colored rocks or farther from conspecifics with increasing color contrast. Furthermore, whiter hares did not seek to rest closer to snowy backgrounds; rather, hares preferred to sit farther from snow. These results suggest that behavioral plasticity might not be a universal, rapid mechanism facilitating adaptation to climate change. ## Description of the data and file structure This dataset contains the following variables: * Date: Date of stationary hare observation. * Area: Area where the observation was taken. * Dist_Rock: The distance a stationary hare was to the closest light-colored rock in meters. Measurements are in 1 m increments between 0 and 20 m. >20 marks occasions when a hare was farther than 20 m from the closest rock. 0 indicates occasions when a resting hare was immediately adjacent to a rock. 'n/a's signify that data was not collected. * Dist_Snow: The distance a stationary hare was to the closest snow field/patch in meters. Measurements are in 1 m increments between 0 and 20 m. >20 marks occasions when a hare was farther than 20 m from the closest snow field/patch. 0 indicates occasions when a hare was resting on snow field/patch. 'n/a's signify that data was not collected. * Dist_Hare: The distance a stationary hare was to the closest conspecific. Measurements are in 1 m increments between 1 and 20 m. >20 marks occasions when a hare was farther than 20 m from another hare. 'n/a's signify that data was not collected. * Snow_5m: The percent snow cover within 5-m radius circle centered at the hare's resting site. Estimated in 25% increments. 'n/a's signify that data was not collected. * Snow_10m: The percent snow cover within 10-m radius circle centered at the hare's resting site. Estimated in 25% increments. 'n/a's signify that data was not collected. * Hare_White: Hare's coat color measured in percent white in four categories ; 0% (completely dark), 25% (mostly dark), 50% (half-dark and half-white), 75% (mostly white) or 100% white (completely white). For detailed description of categories see Zimova et al. 2020 ProcB. 'n/a's signify that data was not collected. Study Sites Field surveys were carried out at three sites (Lecht [57.193 ̊ N, −3.240 ̊ W], Findhorn High [57.235 ̊ N, −4.136 ̊ W], Findhorn Low [57.206 ̊ N, −4.102 ̊ W]) in the northeast and central highlands of Scotland, UK. All sites were located between 430-730 m a.s.l. and dominated by dwarf heath and subalpine plant communities. The Lecht site included areas of eroded peat, and both sites were scatted with occasional white/pale, sometimes lichen covered, hare-sized rocks. Field Surveys We surveyed mountain hares twice a month in fall (October–January) and spring (March–June) seasons during 2015 and 2016 for a total of 5–11 surveys per season (Zimova et al. 2020b). During each survey, one surveyor walked along a predetermined route (ca 3–6 km long) and observed hares as they were either flushed (moved from their resting site in response to disturbance), or less frequently, detected by the surveyor during the frequent and thorough binoculars scans of the landscape. Hares are largely inactive during the day when they sit at a resting site above ground. We only used observations during which the observer had a clear view that allowed coat color to be assessed and was confident of the hare’s original resting location. For all hares detected within 200 m of the observer, we photographed the hare and recorded coat color following (Watson 1963). Coat color was ranked into four categories ; 0% (completely dark), 25% (mostly dark), 50% (half-dark and half-white), 75% (mostly white) or 100% white (completely white) (for detailed description of categories see Zimova et al. 2020b). For observations accompanied by photographs (> 80% of all observations) field estimates of molt were later verified by one of us (MZ). Finally, for each hare’s original resting site, we visually estimated the minimum distance a hare was to 1) any light-colored rocks of equal or larger size than the size of a resting hare, 2) another hare, and 3) snow. All distances between 0 and 20 m were estimated in 1 m increments; all other distances were recorded as ‘>20 m’ as we were not able to accurately estimate distances beyond 20 m. Climate change has resulted in myriad stressors to wild organisms. Phenotypic plasticity, including behavioral plasticity, is hypothesized to play a key role in allowing animals to cope with rapid climate change and mitigate its negative fitness consequences. Camouflage mismatch resulting from decreasing duration of snow cover presents a stressor to species that undergo coat color molts to maintain camouflage against seasonally changing backgrounds. Winter white animals appear highly conspicuous against dark, snowless background and experience increased predation-induced mortality. Here, we evaluate the potential of behavioral plasticity to buffer against camouflage mismatch in mountain hares (Lepus timidus) in Scotland. We carried out field surveys in three populations over two years and found no evidence that hares modify their behaviors in response to increasing camouflage mismatch. Hares did not prefer to rest closer to light-colored rocks or farther from conspecifics with increasing color contrast. Furthermore, whiter hares did not seek to rest closer to snowy backgrounds; rather, hares preferred to sit farther from snow. These results suggest that behavioral plasticity might not be a universal, rapid mechanism facilitating adaptation to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.hqbzkh1rc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.hqbzkh1rc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 01 Aug 2024Publisher:Dryad Malanoski, Cooper; Lunt, Daniel; Farnsworth, Alex; Valdes, Paul; Saupe, Erin;This README file was generated on [25/02/2024] by [Cooper Malanoski]. GENERAL INFORMATION 1. Title of Dataset: Climate change is an important predictor of extinction risk on macroevolutionary timescales 2. Author Information A. Principal Investigator Contact Information Name: [Cooper Malanoski] Institution: [Oxford University] Address: [Department of Earth Sciences, Oxford University, South Parks Road, Oxford, OX1 3AN, UK.] Email: [] B. Associate or Co-investigator Contact Information Name: [Dr. Erin Saupe] Institution: [Oxford University] Address: [1Department of Earth Sciences, Oxford University, South Parks Road, Oxford, OX1 3AN, UK.] Email: [] 3. Date of data collection: [NA] 4. Geographic location of data collection: [NA] 5. Information about funding sources: [National science research council (NERC), Award: NE/V011405/1 Leverhulme Prize Chinese Academy of Sciences Visiting Professorship for Senior International Scientists, Award: 2021FSE0001] SHARING/ACCESS INFORMATION 1. Licenses/restrictions placed on the data: [Copyright © 2024 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. reuse] 2. Links to publications that cite or use the data: Malanoski et al. (2024). [Climate change is an important predictor of extinction risk on macroevolutionary timescales]. [Science]. 3. Links to other publicly accessible locations of the data: [NA] 4. Links/relationships to ancillary data sets: [Monarrez et al. (2021) was used to source the Generic_bodysize_data_monarrezetal2021.csv file] 5. Was data derived from another source? [Yes] A. If yes, list source(s): [Monarrez et al. (2021) was used to source the Generic_bodysize_data_monarrezetal2021.csv file] 6. Recommended citation for this dataset: Malanoski et al. (2024). Data from: Climate change is an important predictor of extinction risk on macroevolutionary timescales. Dryad Digital Repository. [doi:10.5061/dryad.1ns1rn91g] DATA & FILE OVERVIEW 1. File List: A) pbdbdata_code.Rmd B) Generic_bodysize_data_monarrezetal2021.csv C) raw_extracted_climatemodeldata.csv D) Geographic_range_code.Rmd E) Climate_based_variable_code.Rmd F) figures_code.Rmd G) intrinsic_and_extrinsic_variables.csv 2. Relationship between files: The utility of each dataset and code file is detailed below. 3. Additional related data collected that was not included in the current data package: [NA] 4. Are there multiple versions of the dataset? [No] A. If yes, name of file(s) that was updated: [NA] i. Why was the file updated? [NA] ii. When was the file updated? [NA] DATA-SPECIFIC INFORMATION \######################################################################### DATA-SPECIFIC INFORMATION FOR: Generic_bodysize_data_monarrezetal2021.csv includes the genera, log body volume and log body size estimates provided in Monarrez et al. (2021). For our analyses we use logvol, but logsize is retained for future studies. We removed bony fish from the original dataset, and the reasoning is provided in the Supplementary methods and materials. We join the log volume with our data based on the genus level. Higher taxonomic ranking revisions which Monarrez et al. (2021) revised were applied to our data using code found in Geographic_range_code.Rmd. 1. Number of variables: 7 2. Number of cases/rows: 9,461 3. Variable List: * genus: all invertebrate genera with body size information in Monarrez et al. (2021), except for Bony fish genera. * class: Linnean Class * logsize: log body size data from Monarrez et al. (2021) calculated from the treatise images in mm-squared. * logvol: log body volume data from Monarrez et al. (2021) calculated from the treatise images in mm-cubed. * phylum: Linnean Phylum * order: Linnean Order * family: Linnean Family 4. Missing data: Some Na's are present if a higher taxonomic ranking was not available for a genus. 5. Specialized formats or other abbreviations used: None \######################################################################### DATA-SPECIFIC INFORMATION FOR: raw_extracted_climatemodeldata.csv 1. Number of variables: 12 2. Number of cases/rows: 462,855 3. Variable List: * collection_no: Collection number of occurrence in the PBDB * stage: Geologic stage * Age: Age in millions of years before present * phylum: Linnean phylum * class: Linnean class * order: linnean order * family: linnean family * genus: linnean genus * paleolng: Paleolatitude coordinates * paleolat: Paleolongitude coordinates * Localized temperature: The temperature extracted for each occurrence in degrees Celsius * Localized change in temperature: Change in temperature between stages for each occurrence in degrees Celsius. 4. Missing data codes: Some Na's are present if a higher taxonomic ranking was not available for a genus. 5. Specialized formats or other abbreviations used: None \######################################################################### DATA-SPECIFIC INFORMATION FOR: intrinsic_and_extrinsic_variables.csv includes the climate model data for each occurrence in the PBDB data that can be sourced from pbdbdata_code.Rmd. This includes the localized temperatures and climate change estimates necessary to carry out future studies, and all analyses in Malanoski et al. (2024) 1. Number of variables: 17 2. Number of cases/rows: 22,222 3. Variable List: * ext: Binary extinction variable based on range through methods. A value of 0 indicates that the genus survived into subsequent stages and 1 indicates that the genus went extinct and is absent from subsequent stages. * Genus: Linnean genus * Stage: Geologic stage * Phylum: Linnean phylum * Class: Linnean class * Order: Linnean order * Family: Linnean family * Realized_thermal_niche_breadth: Realized thermal niche breadth calculated as the difference between the maximum and minimum occuppied temperatures for each genus. This variable is based on the median of all subsampled ranges for a genus. * Absolute_realized_thermal_preference: Realized thermal preference is calculated as the absolute value of the deviation in median occuppied temperature for a genus from the median for all occurrences within a stage. This variable is based on the median of all subsampled preferences for a genus. * Geographic_range_size: Geographic range size is calculated using the log convex hull area (km-squared). This variable is based on the median of all subsampled areas for a genus. * Body_size: Body size is calculated as the log body volume (mm-cubed) for each genus, derived from Monarrez et al. (2021). * Absolute_temperature_change: Change in temperature or climate change is calculated as the absolute change in temperature from stage n to n+1. This variable is based on the median of all subsampled ranges for a genus. * Realized_thermal_niche_breadth_std: Standardized realized thermal niche breadth * Realized_thermal_preference_std: Standardized realized thermal preference * Geographic_range_size_std: Standardized geographic range size * Body_size_std: Standardized body size * Absolute_temperature_change_std: Standardized absolute temperature change 4. Missing data codes: NA (data not applicable). Higher taxonomic levels may contain NA values if there are none applicable for a genus. 5. Specialized formats or other abbreviations used: \######################################################################### DATA-SPECIFIC INFORMATION FOR: pbdbdata_code.Rmd pbdbdata_code.Rmd is based on Kocsis et al. (2019) it can be used to download a dataset from the Paleobiology database (PBDB), and process and clean the data using the methods used in this manuscript. The code filters out occurrences which cannot be assigned to a stage and assigns up to date stages, filters out taxa which are not included in Generic_bodysize_data_monarrezetal2021.csv, and vets the occurrences for spatial duplicates and data without coordinates. \######################################################################### DATA-SPECIFIC INFORMATION FOR: Geographic_range_code.Rmd and Climate_based_variable_code.Rmd Geographic_range_code.Rmd and Climate_based_variable_code.Rmd are used to calculate geographic range size, absolute realized thermal preference, realized thermal niche breadth, and absolute change in occupied temperature. These R-markdown files rely on the raw_extracted_climatemodeldata.csv file and We provide code to calculate these variables for both jackknife and bootstrap subsampling methods. The geographic range code is adapted from Casey et al. (2021). The output from these files is provided as intrinsic_and_extrinsic_variables.csv and is used as the input for our statistical models, which can be made using figures_code.Rmd. \######################################################################### DATA-SPECIFIC INFORMATION FOR: figures_code.Rmd figures_code.Rmd can be used and modified to reproduce the main text and supplementary tables and figures. The code initially runs all model combinations for our 5 predictors using a generalized linear mixed effect model. Then we use the output from the best model total.glmer2 to make the marginal effects plots seen in figure 2, the supplementary conditional mode plots, and the AIC tables seen in the supplemental materials and methods. Lastly, we provide the code to produce figure 1. \######################################################################### Anthropogenic climate change is increasing rapidly and already impacting biodiversity. Despite the importance for future projections, understanding of the underlying mechanisms by which climate mediates extinction remains limited. We present an integrated approach examining the role of intrinsic traits vs. extrinsic climate change in mediating extinction risk for marine invertebrates over the past 485 million years. We found that a combination of physiological traits and the magnitude of climate change are necessary to explain marine invertebrate extinction patterns. Our results suggest that taxa previously identified as extinction resistant may still succumb to extinction if the magnitude of climate change is great enough.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1ns1rn91g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1ns1rn91g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2024Embargo end date: 16 Jan 2024Publisher:Dryad Authors: Pérez-Navarro, María Ángeles;This repository contains a series of .csv files developed for the study titled "Plant canopies promote climatic disequilibrium in Mediterranean recruit communities", authored by: Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcántara JM and Verdú M. The author of these files is Perez-Navarro MA. These files are used to characterize species niches, estimate climatic disequilibrium for recruit communities growing under plant canopies and open spaces, and conduct statistical analyses. Variables description of each table is compiled in the METADATA.txt file. Please visit Github readme () to correctly place these files in the folder tree and check for the corresponding scripts where they are required. Please notice that although alternative approaches were calibrated to estimate species niche (accordingly producing multiple niche, distances and disequilibrium dataframes), only niche centroid calibrated discarding 95 percentile of lowest niche density was used for paper results and figures. Also, in case of univariate analyses only bio01, bio06 and bio12 were used in analyses, though species niche and further niche and community estimations were obtained for all 19 variables. This is version 2 (v2) and include extra intermediate .csv required to run all the R scripts included in the abovementioned Github repository. NAs or empty cells present in the .csv files of this repository means no data and do not contribute to the analyses. Visit METADATA.txt file for variables description. These data are under CC0 license. It is possible to share, copy and redistribute the material in any medium or format, and adapt, remix, transform, and build upon the material for any purpose. Studies using R scripts or any data files from these study should cite the abovementioned paper (Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcantara JM, Verdu M. (2024). Plant canopies promote climatic disequilibrium in Mediterranean recruit communities). Please contact m.angeles582@gmail.com in case of having doubts or problems with the existing files and scripts. Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyze differences in climatic disequilibrium between understory and open ground woody plant recruits in 28 localities, covering more than 100,000 m2, across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favor warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh18932dg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh18932dg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2016Embargo end date: 01 Apr 2017Publisher:Dryad Russell, Debbie J. F.; Hastie, Gordon D.; Thompson, David; Janik, Vincent M.; Hammond, Philip S.; Scott-Hayward, Lindesay A. S.; Matthiopoulos, Jason; Jones, Esther L.; McConnell, Bernie J.; Russell, Debbie J.F.;doi: 10.5061/dryad.9r0gv
As part of global efforts to reduce dependence on carbon-based energy sources there has been a rapid increase in the installation of renewable energy devices. The installation and operation of these devices can result in conflicts with wildlife. In the marine environment, mammals may avoid wind farms that are under construction or operating. Such avoidance may lead to more time spent travelling or displacement from key habitats. A paucity of data on at-sea movements of marine mammals around wind farms limits our understanding of the nature of their potential impacts. Here, we present the results of a telemetry study on harbour seals Phoca vitulina in The Wash, south-east England, an area where wind farms are being constructed using impact pile driving. We investigated whether seals avoid wind farms during operation, construction in its entirety, or during piling activity. The study was carried out using historical telemetry data collected prior to any wind farm development and telemetry data collected in 2012 during the construction of one wind farm and the operation of another. Within an operational wind farm, there was a close-to-significant increase in seal usage compared to prior to wind farm development. However, the wind farm was at the edge of a large area of increased usage, so the presence of the wind farm was unlikely to be the cause. There was no significant displacement during construction as a whole. However, during piling, seal usage (abundance) was significantly reduced up to 25 km from the piling activity; within 25 km of the centre of the wind farm, there was a 19 to 83% (95% confidence intervals) decrease in usage compared to during breaks in piling, equating to a mean estimated displacement of 440 individuals. This amounts to significant displacement starting from predicted received levels of between 166 and 178 dB re 1 μPa(p-p). Displacement was limited to piling activity; within 2 h of cessation of pile driving, seals were distributed as per the non-piling scenario. Synthesis and applications. Our spatial and temporal quantification of avoidance of wind farms by harbour seals is critical to reduce uncertainty and increase robustness in environmental impact assessments of future developments. Specifically, the results will allow policymakers to produce industry guidance on the likelihood of displacement of seals in response to pile driving; the relationship between sound levels and avoidance rates; and the duration of any avoidance, thus allowing far more accurate environmental assessments to be carried out during the consenting process. Further, our results can be used to inform mitigation strategies in terms of both the sound levels likely to cause displacement and what temporal patterns of piling would minimize the magnitude of the energetic impacts of displacement. Wash_diagWash_diag.xlsx is the historic location data (pre windfarm construction) for the 19 individuals used in the analysis described in Russell et al.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9r0gv&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 13 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9r0gv&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Jan 2022Publisher:Dryad Authors: Barreaux, Antoine; Higginson, Andrew; Bonsall, Michael; English, Sinead;Here, we investigate how stochasticity and age-dependence in energy dynamics influence maternal allocation in iteroparous females. We develop a state-dependent model to calculate the optimal maternal allocation strategy with respect to maternal age and energy reserves, focusing on allocation in a single offspring at a time. We introduce stochasticity in energetic costs– in terms of the amount of energy required to forage successfully and individual differences in metabolism – and in feeding success. We systematically assess how allocation is influenced by age-dependence in energetic costs, feeding success, energy intake per successful feeding attempt, and environmentally-driven mortality. First, using stochastic dynamic programming, we calculate the optimal amount of reserves M that mothers allocate to each offspring depending on their own reserves R and age A. The optimal life history strategy is then the set of allocation decisions M(R, A) over the whole lifespan which maximizes the total reproductive success of distant descendants. Second, we simulated the life histories of 1000 mothers following the optimisation strategy and the reserves at the start of adulthood R1, the distribution of which was determined, the distribution of which was determined using an iterative procedure as described . For each individual, we calculated maternal allocation Mt, maternal reserves Rt, and relative allocation Mt⁄Rt at each time period t. The relative allocation helps us to understand how resources are partitioned between mother and offspring. Third, we consider how the optimal strategy varies when there is age-dependence in resource acquisition, energetic costs and survival. Specifically, we include varying scenarios with an age-dependent increase or a decrease with age in energetic costs (c_t), feeding success (q_t), energy intake per successful feeding attempt (y_t), and environmentally-driven extrinsic mortality rate (d_t) (Table 2). We consider the age-dependence of parameters one at a time or in pairs, altering the slope, intercept, or asymptote of the age-dependence (linear or asymptotic function). Our aim is to identify whether the observed reproductive senescence can arise from optimal maternal allocation. As such, we do not impose a decline in selection in later life as all offspring are equally valuable at all ages (for a given maternal allocation), and there are no mutations. For each scenario, we run the backward iteration process with these age-dependent functions, obtain the allocation strategy, and simulate the life history of 1000 individuals based on the novel strategy. We then fit quadratic and linear models to the reproduction of these 1000 individuals using the lme function, nlme package in R. For these models, the response variable is the maternal allocation Mt and explanatory variables are the time period t and t2 (for the quadratic fit only), with individual identity as a random term. We use likelihood ratio tests to compare linear and quadratic models using the anova function (package nlme) with the maximum-likelihood method. If the comparison is significant (p-value <0.05), we considered the quadratic model to have a better fit, otherwise the linear model is considered more parsimonious. We were particularly interested in identifying scenarios where the fit was quadratic with a negative quadratic term. For each scenario, the pseudo R2 conditional value (proportion of variance explained by the fixed and random terms, accounting for individual identity) is calculated to assess the goodness-of-fit of the lme model, on a scale from 0 to 1, using the “r.squared” function, package gabtool. All calculations and coding are done in R. Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Optimal allocation varies across age, and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This non-linear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake, and environmentally-driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation: when energetic costs and energy intake increase with age; and also when energy intake decreases, and energetic costs increase or decrease. Feeding success and mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of non-linear maternal allocation across diverse taxonomic groups.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 47visibility views 47 download downloads 60 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 11 Oct 2023Publisher:Dryad Ding, Fangyu; Ge, Honghan; Ma, Tian; Wang, Qian; Hao, Mengmeng; Li, Hao; Zhang, Xiao-Ai; Maude, Richard James; Wang, Liping; Jiang, Dong; Fang, Li-Qun; Liu, Wei;# Data on: Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China [https://doi.org/10.5061/dryad.vdncjsz1z](https://doi.org/10.5061/dryad.vdncjsz1z) This dataset is the data used in the paper of Global change biology entitled "Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China". We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in the mainland of China. ## Description of the data and file structure The predicted annual incidence of national SFTS cases with or without human population reduction under four RCPs under different climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the 2030s, 2050s, and 2080s. The value represents the annual incidence, and the unit is 105/year. The Dataset-1 file includes the predicted annual incidence of national SFTS cases with a fixed future human population under different climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the 2030s, 2050s, and 2080s. The Dataset-2 file includes the predicted annual incidence of national SFTS cases in the 2030s, 2050s, and 2080s with human population reduction (SSP2) under four RCPs. ## Sharing/Access information Data was derived from the following sources: * https://doi.org/10.1111/gcb.16969 This dataset is the data used in the paper of Global change biology entitled "Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China". We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in the mainland of China. The SFTS incidence in three time periods (2030-2039, 2050-2059, 2080-2089) is predicted to be increased as compared to the 2010s in the context of various RCPs. The projected spatiotemporal dynamics of SFTS will be heterogeneous across provinces. Notably, we predict possible outbreaks in Xinjiang and Yunnan in the future, where only sporadic cases have been reported previously. These findings highlight the need for population awareness of SFTS in endemic regions, and enhanced monitoring in potential risk areas. See the Materials and methods section in the original paper. The code used in the statistical analyses are present in the paper and/or the Supplementary Materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsz1z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsz1z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 11 Oct 2021Publisher:Dryad Authors: Lempidakis, Emmanouil; Ross, Andrew; Börger, Luca; Shepard, Emily;Variable list for files: SW wind - Section table on Skomer (Standardised).csv / NW wind - Section table on Skomer (Standardised).csv / SE wind - Section table on Skomer (Standardised).csv /NE wind - Section table on Skomer (Standardised).csv and SW wind - Sections on Skokholm (Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) X_Centre: X coordinate of the central point of each section Y_Centre: Y coordinate of the central point of each section Sector: Section ID MeanUMedian; MeanUIQR, MeanUSkewness, MeanUCV: Median, interquartile range,skewness and coefficient of variation of mean wind speed per section HorizontalMedian;HorizontalIQR,HorizontalSkewness,HorizontalCV: Median, interquartile range,skewness and coefficient of variation of horizontal wind speed per section PMedian;PIQR,PSkewness,PCV: Median, interquartile range,skewness and coefficient of variation of preessure per section TKEMedian;TKEIQR,TKESkewness,TKECV: Median, interquartile range,skewness and coefficient of variation of turbulent kinetic energy per section TIMedian;TIIQR,TISkewness,TICV: Median, interquartile range,skewness and coefficient of variation of turbulence intensity per section U_2Median;lU_2IQR;U_2Skewness;U_2CV: Median, interquartile range,skewness and coefficient of variation of vertical wind speed per section EpsilonMedian;EpsilonIQR,EpsilonSkewness,EpsilonCV: Median, interquartile range,skewness and coefficient of variation of turbulent dissipation rate per section NutMedian;NutIQR,NutSkewness,NutCV: Median, interquartile range,skewness and coefficient of variation of kinematic viscosity per section GustsMedian;GustsIQR,GustsSkewness,GustsCV: Median, interquartile range,skewness and coefficient of variation of instataneous gusts per section MeanSectorSlope: Mean slope per section ColPresence: Binomial variable, indicating whether a section has birds or not. This variable varies with classification, based on either the count of birds or the density per section Variable list for file: Section table on Skomer - with Mean cliff orientation and Slope (NOT-Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) X_Centre: X coordinate of the central point of each section Y_Centre: Y coordinate of the central point of each section Sector: Section ID MeanSectorSlope: Mean slope per section MeanSectorAspectCircular: Mean cliff orientation per section ApsectClass: Factor indicating whether the mean cliff orientation is lee- or windward to the SW wind ColPresence: Binomial variable, indicating whether a section has birds or not. This variable varies with classification, based on either the count of birds or the density per section Variable list for file: SW wind - Sections on Skokholm to predict colonies using cliff orientation and slope model from Skomer (NON - Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) Sector: Section ID MeanSectorSlope: Mean slope per section MeanSectorAspectCircular: Mean cliff orientation per section Wind is fundamentally related to shelter and flight performance: two factors that are critical for birds at their nest sites. Despite this, airflows have never been fully integrated into models of breeding habitat selection, even for well-studied seabirds. Here we use computational fluid dynamics to provide the first assessment of whether flow characteristics (including wind speed and turbulence) predict the distribution of seabird colonies, taking common guillemots (Uria aalge) breeding on Skomer island as our study system. This demonstrates that occupancy is driven by the need to shelter from both wind and rain/ wave action, rather than airflow characteristics alone. Models of airflows and cliff orientation both performed well in predicting high quality habitat in our study site, identifying 80% of colonies and 93% of avoided sites, as well as 73% of the largest colonies on a neighbouring island. This suggests generality in the mechanisms driving breeding distributions, and provides an approach for identifying habitat for seabird reintroductions considering current and projected wind speeds and directions. Methods detailed in manuscript: https://doi.org/10.1111/ecog.05733.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.h9w0vt4jk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 33visibility views 33 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.h9w0vt4jk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 07 Dec 2022Publisher:Dryad Shao, Junjiong; Zhou, Xuhui; van Groenigen, Kees; Zhou, Guiyao; Zhou, Huimin; Zhou, Lingyan; Lu, Meng; Xia, Jianyang; Jiang, Lin; Hungate, Bruce; Luo, Yiqi; He, Fangliang; Thakur, Madhav;Aim: Climate warming and biodiversity loss both alter plant productivity, yet we lack an understanding of how biodiversity regulates the responses of ecosystems to warming. In this study, we examine how plant diversity regulates the responses of grassland productivity to experimental warming using meta-analytic techniques. Location: Global Major taxa studied: Grassland ecosystems Methods: Our meta-analysis is based on warming responses of 40 different plant communities obtained from 20 independent studies on grasslands across five continents. Results: Our results show that plant diversity and its responses to warming were the most important factors regulating the warming effects on plant productivity, among all the factors considered (plant diversity, climate and experimental settings). Specifically, warming increased plant productivity when plant diversity (indicated by effective number of species) in grasslands was lesser than 10, whereas warming decreased plant productivity when plant diversity was greater than 10. Moreover, the structural equation modelling showed that the magnitude of warming enhanced plant productivity by increasing the performance of dominant plant species in grasslands of diversity lesser than 10. The negative effects of warming on productivity in grasslands with plant diversity greater than 10 were partly explained by diversity-induced decline in plant dominance. Main Conclusions: Our findings suggest that the positive or negative effect of warming on grassland productivity depends on how biodiverse a grassland is. This could mainly owe to differences in how warming may affect plant dominance and subsequent shifts in interspecific interactions in grasslands of different plant diversity levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Embargo end date: 04 Jun 2015Publisher:Dryad Piper, Adam T.; Manes, Costantino; Siniscalchi, Fabio; Marion, Andrea; Wright, Rosalind M.; Kemp, Paul S.;doi: 10.5061/dryad.c77jn
Anthropogenic structures (e.g. weirs and dams) fragment river networks and restrict the movement of migratory fish. Poor understanding of behavioural response to hydrodynamic cues at structures currently limits the development of effective barrier mitigation measures. This study aimed to assess the effect of flow constriction and associated flow patterns on eel behaviour during downstream migration. In a field experiment, we tracked the movements of 40 tagged adult European eels (Anguilla anguilla) through the forebay of a redundant hydropower intake under two manipulated hydrodynamic treatments. Interrogation of fish trajectories in relation to measured and modelled water velocities provided new insights into behaviour, fundamental for developing passage technologies for this endangered species. Eels rarely followed direct routes through the site. Initially, fish aligned with streamlines near the channel banks and approached the intake semi-passively. A switch to more energetically costly avoidance behaviours occurred on encountering constricted flow, prior to physical contact with structures. Under high water velocity gradients, fish then tended to escape rapidly back upstream, whereas exploratory ‘search’ behaviour was common when acceleration was low. This study highlights the importance of hydrodynamics in informing eel behaviour. This offers potential to develop behavioural guidance, improve fish passage solutions and enhance traditional physical screening. Fish_detections_UL_CHFish positions derived from acoustic telemetry contained within excel file with 5 columns. 'Record' denotes tag detection numbered consecutively in sequence; 'tag_number' denotes the fish identification number; ‘PosX’ denotes fish x coordinate in UTM; ‘PosY’ denotes fish y coordinate in UTM, ‘Treatment’ denotes experimental treatment
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.c77jn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 25visibility views 25 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.c77jn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 31 Aug 2022Publisher:Dryad Chen, Bingzhang; Montagnes, David; Wang, Qing; Liu, Hongbin; Menden-Deuer, Susanne;Conventional analyses suggest the metabolism of heterotrophs is thermally more sensitive than that of autotrophs, implying that warming leads to pronounced trophodynamic imbalances. However, these analyses inappropriately combine within- and across-taxa trends. We present a novel mathematic framework to separate these, revealing that the higher temperature sensitivity of heterotrophs is mainly caused by within-taxa responses which account for 92% of the difference between autotrophic and heterotrophic protists. This dataset contains both the datasets and R codes of per capita growth rates of autotrophic and heterotrophic protists as well as heterotrophic bacteria and insects. The datasets of per capita growth rates against temperature were compiled from the literature. Experimental data were included if they met the following criteria: at least 3 data points with positive growth rate (µ) and at least 2 unique temperatures at which positive µ were measured. To calculate apparent activation energy, we also removed data points with nonpositive µ and those with temperatures above the optimal growth temperature (defined as the temperature corresponding to the maximal µ). We use the free software R (version 4.2.0) with R packages (foreach, nlme, plyr, dplyr) to analyse these datasets. R codes are also provided.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.dr7sqvb1v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.dr7sqvb1v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 06 Jul 2024Publisher:Dryad Zimova, Marketa; Newey, Scott; Denny, Becks; Pedersen, Simen; Mills, Scott;# Scottish mountain hares do not respond behaviorally to increased camouflage mismatch [https://doi.org/10.5061/dryad.hqbzkh1rc](https://doi.org/10.5061/dryad.hqbzkh1rc) **Abstract** Climate change has resulted in myriad stressors to wild organisms. Phenotypic plasticity, including behavioral plasticity, is hypothesized to play a key role in allowing animals to cope with rapid climate change and mitigate its negative fitness consequences. Camouflage mismatch resulting from decreasing duration of snow cover presents a stressor to species that undergo coat color molts to maintain camouflage against seasonally changing backgrounds. Winter white animals appear highly conspicuous against dark, snowless background and experience increased predation-induced mortality. Here, we evaluate the potential of behavioral plasticity to buffer against camouflage mismatch in mountain hares (*Lepus timidus*) in Scotland. We carried out field surveys in three populations over two years and found no evidence that hares modify their behaviors in response to increasing camouflage mismatch. Hares did not prefer to rest closer to light-colored rocks or farther from conspecifics with increasing color contrast. Furthermore, whiter hares did not seek to rest closer to snowy backgrounds; rather, hares preferred to sit farther from snow. These results suggest that behavioral plasticity might not be a universal, rapid mechanism facilitating adaptation to climate change. ## Description of the data and file structure This dataset contains the following variables: * Date: Date of stationary hare observation. * Area: Area where the observation was taken. * Dist_Rock: The distance a stationary hare was to the closest light-colored rock in meters. Measurements are in 1 m increments between 0 and 20 m. >20 marks occasions when a hare was farther than 20 m from the closest rock. 0 indicates occasions when a resting hare was immediately adjacent to a rock. 'n/a's signify that data was not collected. * Dist_Snow: The distance a stationary hare was to the closest snow field/patch in meters. Measurements are in 1 m increments between 0 and 20 m. >20 marks occasions when a hare was farther than 20 m from the closest snow field/patch. 0 indicates occasions when a hare was resting on snow field/patch. 'n/a's signify that data was not collected. * Dist_Hare: The distance a stationary hare was to the closest conspecific. Measurements are in 1 m increments between 1 and 20 m. >20 marks occasions when a hare was farther than 20 m from another hare. 'n/a's signify that data was not collected. * Snow_5m: The percent snow cover within 5-m radius circle centered at the hare's resting site. Estimated in 25% increments. 'n/a's signify that data was not collected. * Snow_10m: The percent snow cover within 10-m radius circle centered at the hare's resting site. Estimated in 25% increments. 'n/a's signify that data was not collected. * Hare_White: Hare's coat color measured in percent white in four categories ; 0% (completely dark), 25% (mostly dark), 50% (half-dark and half-white), 75% (mostly white) or 100% white (completely white). For detailed description of categories see Zimova et al. 2020 ProcB. 'n/a's signify that data was not collected. Study Sites Field surveys were carried out at three sites (Lecht [57.193 ̊ N, −3.240 ̊ W], Findhorn High [57.235 ̊ N, −4.136 ̊ W], Findhorn Low [57.206 ̊ N, −4.102 ̊ W]) in the northeast and central highlands of Scotland, UK. All sites were located between 430-730 m a.s.l. and dominated by dwarf heath and subalpine plant communities. The Lecht site included areas of eroded peat, and both sites were scatted with occasional white/pale, sometimes lichen covered, hare-sized rocks. Field Surveys We surveyed mountain hares twice a month in fall (October–January) and spring (March–June) seasons during 2015 and 2016 for a total of 5–11 surveys per season (Zimova et al. 2020b). During each survey, one surveyor walked along a predetermined route (ca 3–6 km long) and observed hares as they were either flushed (moved from their resting site in response to disturbance), or less frequently, detected by the surveyor during the frequent and thorough binoculars scans of the landscape. Hares are largely inactive during the day when they sit at a resting site above ground. We only used observations during which the observer had a clear view that allowed coat color to be assessed and was confident of the hare’s original resting location. For all hares detected within 200 m of the observer, we photographed the hare and recorded coat color following (Watson 1963). Coat color was ranked into four categories ; 0% (completely dark), 25% (mostly dark), 50% (half-dark and half-white), 75% (mostly white) or 100% white (completely white) (for detailed description of categories see Zimova et al. 2020b). For observations accompanied by photographs (> 80% of all observations) field estimates of molt were later verified by one of us (MZ). Finally, for each hare’s original resting site, we visually estimated the minimum distance a hare was to 1) any light-colored rocks of equal or larger size than the size of a resting hare, 2) another hare, and 3) snow. All distances between 0 and 20 m were estimated in 1 m increments; all other distances were recorded as ‘>20 m’ as we were not able to accurately estimate distances beyond 20 m. Climate change has resulted in myriad stressors to wild organisms. Phenotypic plasticity, including behavioral plasticity, is hypothesized to play a key role in allowing animals to cope with rapid climate change and mitigate its negative fitness consequences. Camouflage mismatch resulting from decreasing duration of snow cover presents a stressor to species that undergo coat color molts to maintain camouflage against seasonally changing backgrounds. Winter white animals appear highly conspicuous against dark, snowless background and experience increased predation-induced mortality. Here, we evaluate the potential of behavioral plasticity to buffer against camouflage mismatch in mountain hares (Lepus timidus) in Scotland. We carried out field surveys in three populations over two years and found no evidence that hares modify their behaviors in response to increasing camouflage mismatch. Hares did not prefer to rest closer to light-colored rocks or farther from conspecifics with increasing color contrast. Furthermore, whiter hares did not seek to rest closer to snowy backgrounds; rather, hares preferred to sit farther from snow. These results suggest that behavioral plasticity might not be a universal, rapid mechanism facilitating adaptation to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.hqbzkh1rc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.hqbzkh1rc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 01 Aug 2024Publisher:Dryad Malanoski, Cooper; Lunt, Daniel; Farnsworth, Alex; Valdes, Paul; Saupe, Erin;This README file was generated on [25/02/2024] by [Cooper Malanoski]. GENERAL INFORMATION 1. Title of Dataset: Climate change is an important predictor of extinction risk on macroevolutionary timescales 2. Author Information A. Principal Investigator Contact Information Name: [Cooper Malanoski] Institution: [Oxford University] Address: [Department of Earth Sciences, Oxford University, South Parks Road, Oxford, OX1 3AN, UK.] Email: [] B. Associate or Co-investigator Contact Information Name: [Dr. Erin Saupe] Institution: [Oxford University] Address: [1Department of Earth Sciences, Oxford University, South Parks Road, Oxford, OX1 3AN, UK.] Email: [] 3. Date of data collection: [NA] 4. Geographic location of data collection: [NA] 5. Information about funding sources: [National science research council (NERC), Award: NE/V011405/1 Leverhulme Prize Chinese Academy of Sciences Visiting Professorship for Senior International Scientists, Award: 2021FSE0001] SHARING/ACCESS INFORMATION 1. Licenses/restrictions placed on the data: [Copyright © 2024 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. reuse] 2. Links to publications that cite or use the data: Malanoski et al. (2024). [Climate change is an important predictor of extinction risk on macroevolutionary timescales]. [Science]. 3. Links to other publicly accessible locations of the data: [NA] 4. Links/relationships to ancillary data sets: [Monarrez et al. (2021) was used to source the Generic_bodysize_data_monarrezetal2021.csv file] 5. Was data derived from another source? [Yes] A. If yes, list source(s): [Monarrez et al. (2021) was used to source the Generic_bodysize_data_monarrezetal2021.csv file] 6. Recommended citation for this dataset: Malanoski et al. (2024). Data from: Climate change is an important predictor of extinction risk on macroevolutionary timescales. Dryad Digital Repository. [doi:10.5061/dryad.1ns1rn91g] DATA & FILE OVERVIEW 1. File List: A) pbdbdata_code.Rmd B) Generic_bodysize_data_monarrezetal2021.csv C) raw_extracted_climatemodeldata.csv D) Geographic_range_code.Rmd E) Climate_based_variable_code.Rmd F) figures_code.Rmd G) intrinsic_and_extrinsic_variables.csv 2. Relationship between files: The utility of each dataset and code file is detailed below. 3. Additional related data collected that was not included in the current data package: [NA] 4. Are there multiple versions of the dataset? [No] A. If yes, name of file(s) that was updated: [NA] i. Why was the file updated? [NA] ii. When was the file updated? [NA] DATA-SPECIFIC INFORMATION \######################################################################### DATA-SPECIFIC INFORMATION FOR: Generic_bodysize_data_monarrezetal2021.csv includes the genera, log body volume and log body size estimates provided in Monarrez et al. (2021). For our analyses we use logvol, but logsize is retained for future studies. We removed bony fish from the original dataset, and the reasoning is provided in the Supplementary methods and materials. We join the log volume with our data based on the genus level. Higher taxonomic ranking revisions which Monarrez et al. (2021) revised were applied to our data using code found in Geographic_range_code.Rmd. 1. Number of variables: 7 2. Number of cases/rows: 9,461 3. Variable List: * genus: all invertebrate genera with body size information in Monarrez et al. (2021), except for Bony fish genera. * class: Linnean Class * logsize: log body size data from Monarrez et al. (2021) calculated from the treatise images in mm-squared. * logvol: log body volume data from Monarrez et al. (2021) calculated from the treatise images in mm-cubed. * phylum: Linnean Phylum * order: Linnean Order * family: Linnean Family 4. Missing data: Some Na's are present if a higher taxonomic ranking was not available for a genus. 5. Specialized formats or other abbreviations used: None \######################################################################### DATA-SPECIFIC INFORMATION FOR: raw_extracted_climatemodeldata.csv 1. Number of variables: 12 2. Number of cases/rows: 462,855 3. Variable List: * collection_no: Collection number of occurrence in the PBDB * stage: Geologic stage * Age: Age in millions of years before present * phylum: Linnean phylum * class: Linnean class * order: linnean order * family: linnean family * genus: linnean genus * paleolng: Paleolatitude coordinates * paleolat: Paleolongitude coordinates * Localized temperature: The temperature extracted for each occurrence in degrees Celsius * Localized change in temperature: Change in temperature between stages for each occurrence in degrees Celsius. 4. Missing data codes: Some Na's are present if a higher taxonomic ranking was not available for a genus. 5. Specialized formats or other abbreviations used: None \######################################################################### DATA-SPECIFIC INFORMATION FOR: intrinsic_and_extrinsic_variables.csv includes the climate model data for each occurrence in the PBDB data that can be sourced from pbdbdata_code.Rmd. This includes the localized temperatures and climate change estimates necessary to carry out future studies, and all analyses in Malanoski et al. (2024) 1. Number of variables: 17 2. Number of cases/rows: 22,222 3. Variable List: * ext: Binary extinction variable based on range through methods. A value of 0 indicates that the genus survived into subsequent stages and 1 indicates that the genus went extinct and is absent from subsequent stages. * Genus: Linnean genus * Stage: Geologic stage * Phylum: Linnean phylum * Class: Linnean class * Order: Linnean order * Family: Linnean family * Realized_thermal_niche_breadth: Realized thermal niche breadth calculated as the difference between the maximum and minimum occuppied temperatures for each genus. This variable is based on the median of all subsampled ranges for a genus. * Absolute_realized_thermal_preference: Realized thermal preference is calculated as the absolute value of the deviation in median occuppied temperature for a genus from the median for all occurrences within a stage. This variable is based on the median of all subsampled preferences for a genus. * Geographic_range_size: Geographic range size is calculated using the log convex hull area (km-squared). This variable is based on the median of all subsampled areas for a genus. * Body_size: Body size is calculated as the log body volume (mm-cubed) for each genus, derived from Monarrez et al. (2021). * Absolute_temperature_change: Change in temperature or climate change is calculated as the absolute change in temperature from stage n to n+1. This variable is based on the median of all subsampled ranges for a genus. * Realized_thermal_niche_breadth_std: Standardized realized thermal niche breadth * Realized_thermal_preference_std: Standardized realized thermal preference * Geographic_range_size_std: Standardized geographic range size * Body_size_std: Standardized body size * Absolute_temperature_change_std: Standardized absolute temperature change 4. Missing data codes: NA (data not applicable). Higher taxonomic levels may contain NA values if there are none applicable for a genus. 5. Specialized formats or other abbreviations used: \######################################################################### DATA-SPECIFIC INFORMATION FOR: pbdbdata_code.Rmd pbdbdata_code.Rmd is based on Kocsis et al. (2019) it can be used to download a dataset from the Paleobiology database (PBDB), and process and clean the data using the methods used in this manuscript. The code filters out occurrences which cannot be assigned to a stage and assigns up to date stages, filters out taxa which are not included in Generic_bodysize_data_monarrezetal2021.csv, and vets the occurrences for spatial duplicates and data without coordinates. \######################################################################### DATA-SPECIFIC INFORMATION FOR: Geographic_range_code.Rmd and Climate_based_variable_code.Rmd Geographic_range_code.Rmd and Climate_based_variable_code.Rmd are used to calculate geographic range size, absolute realized thermal preference, realized thermal niche breadth, and absolute change in occupied temperature. These R-markdown files rely on the raw_extracted_climatemodeldata.csv file and We provide code to calculate these variables for both jackknife and bootstrap subsampling methods. The geographic range code is adapted from Casey et al. (2021). The output from these files is provided as intrinsic_and_extrinsic_variables.csv and is used as the input for our statistical models, which can be made using figures_code.Rmd. \######################################################################### DATA-SPECIFIC INFORMATION FOR: figures_code.Rmd figures_code.Rmd can be used and modified to reproduce the main text and supplementary tables and figures. The code initially runs all model combinations for our 5 predictors using a generalized linear mixed effect model. Then we use the output from the best model total.glmer2 to make the marginal effects plots seen in figure 2, the supplementary conditional mode plots, and the AIC tables seen in the supplemental materials and methods. Lastly, we provide the code to produce figure 1. \######################################################################### Anthropogenic climate change is increasing rapidly and already impacting biodiversity. Despite the importance for future projections, understanding of the underlying mechanisms by which climate mediates extinction remains limited. We present an integrated approach examining the role of intrinsic traits vs. extrinsic climate change in mediating extinction risk for marine invertebrates over the past 485 million years. We found that a combination of physiological traits and the magnitude of climate change are necessary to explain marine invertebrate extinction patterns. Our results suggest that taxa previously identified as extinction resistant may still succumb to extinction if the magnitude of climate change is great enough.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1ns1rn91g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1ns1rn91g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu