- home
- Advanced Search
Filters
Clear All- Energy Research
- GB
- Finnish
- Energy Research
- GB
- Finnish
description Publicationkeyboard_double_arrow_right Report 2017 United KingdomPublisher:IEEE Authors: Espley-Jones, RJ; Tong, KF; Dalley, JEJ; Langley, JDS;This paper demonstrates the possible implementation of a low temperature organic dense dielectric patch antenna (DDPA). Instead of using deionised water for the patch material, a mixture of ethanol and methanol was the material of choice as it remains liquid below 0°C. The freezing points of ethanol and methanol are -114.1°C and -97.6°C respectively. The mixture was 80% ethanol, 20% methanol. Reasonable reflection coefficients, efficiencies and gains can be achieved. The maximum gain over the band of interest is 5.62 dB at 1.31 GHz.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::9f1501ece1803c250e2ca02b480221c4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::9f1501ece1803c250e2ca02b480221c4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Report 2017 United KingdomPublisher:IEEE Authors: Espley-Jones, RJ; Tong, KF; Dalley, JEJ; Langley, JDS;This paper demonstrates the possible implementation of a low temperature organic dense dielectric patch antenna (DDPA). Instead of using deionised water for the patch material, a mixture of ethanol and methanol was the material of choice as it remains liquid below 0°C. The freezing points of ethanol and methanol are -114.1°C and -97.6°C respectively. The mixture was 80% ethanol, 20% methanol. Reasonable reflection coefficients, efficiencies and gains can be achieved. The maximum gain over the band of interest is 5.62 dB at 1.31 GHz.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::9f1501ece1803c250e2ca02b480221c4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::9f1501ece1803c250e2ca02b480221c4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu