- home
- Advanced Search
- Energy Research
- IE
- University College Dublin
- Energy Research
- IE
- University College Dublin
Research data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors:O'Callaghan, Derek;
O'Callaghan, Derek
O'Callaghan, Derek in OpenAIREMcBreen, Sheila;
McBreen, Sheila
McBreen, Sheila in OpenAIREEOOffshore is a Sustainable Energy Authority of Ireland (SEAI) funded project, which commenced in June 2020 in the School of Physics in University College Dublin (UCD). It presents a case study that demonstrates the utility of the Pangeo software ecosystem in the development of offshore wind speed and power density estimates, increasing wind measurement coverage of offshore renewable energy assessment areas in the Irish Continental Shelf (ICS) region. It has involved the creation of a new wind data catalog for this region, consisting of a collection of analysis-ready, cloud-optimized (ARCO) datasets featuring up to 21 years of available in situ, reanalysis, and satellite observation wind data products. The Copernicus Marine Service (CMS), or Copernicus Marine Environment Monitoring Service (CMEMS), is the marine component of the European Union Copernicus Earth Observation (EO) programme. It provides free, regular and systematic ocean data products on a global and regional scale. The CMS Surface Wind Thematic Assembly Center (Wind TAC) is responsible for the collection, processing, qualification and distribution of surface winds data products derived from scatterometer satellite missions, including near-real time (NRT) and delayed mode (REP) processing of global wind observations. These catalog data sets contain CMS wind speed and direction data products generated using the Advanced SCATterometer (ASCAT) instruments deployed on the Metop satellites. eooffshore_ics_cmems_WIND_GLO_WIND_L3_REP_OBSERVATIONS_012_005_MetOp_ASCAT.zarr.tar.gz 2007-2021 data products from the Global Ocean Daily Gridded Reprocessed (REP) Level-3 Sea Surface Winds from Scatterometer data set. eooffshore_ics_cmems_WIND_GLO_WIND_L3_NRT_OBSERVATIONS_012_002_MetOp_ASCAT.zarr.tar.gz 2016-2021 data products from the Global Ocean Daily Gridded Near Real Time (NRT) Level-3 Sea Surface Winds from Scatterometer data set. The products feature 0.125 degree grids, based on 12.5 km scatterometer swath observations, for all combinations of Metop A/B (REP) and Metop A/B/C (NRT) satellites and ASCending, DEScending passes. These ASCAT data sets were used in the EOOffshore project outputs presented (Scalable Offshore Wind Analysis With Pangeo) at the Meeting Exascale Computing Challenges with Compression and Pangeo 2022 EGU General Assembly session. Description and example usage of the ASCAT data sets in EOOffshore: ASCAT Wind Data for Irish Continental Shelf region Offshore Wind in Irish Areas Of Interest Comparison of Offshore Wind Speed Extrapolation and Power Density Estimation As requested by the Copernicus Marine Service Service Commitments and Licence, these Zarr stores were: Generated using E.U. Copernicus Marine Service Information; https://doi.org/10.48670/moi-00182; https://doi.org/10.48670/moi-00183;
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6976298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6976298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Mendeley Data Authors: Eslamirad, Nasim; Gholam Nia, Mehdi; Sajadi, Payam; Pilla, Francesco;Central to our investigation is the Building Energy Rating (BER) dataset of Ireland, sourced from GeoDirectory data. This dataset provides a foundational resource, encompassing a comprehensive range of building-scale parameters such as detailed addresses, geocode data (latitude and longitude), area, height, number of floors, roof type, construction age, radon emission, HVAC system details, and bedroom and bathroom counts. To enrich this dataset, we incorporated additional features from the Digital Landscape Models (DLM) Core Data from Tailte Éireann Surveying (PRIME2 Dataset). These enhancements include metrics such as nearest neighbor buildings, the density of the built environment surrounding each building, and district attributes like the ratio of green area to non-green area in the urban vicinity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/kvbgzr6dn8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/kvbgzr6dn8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Publicly fundedFunded by:IRCIRCAuthors: Edgar Galván-López;Tom Curran;
James McDermott;Tom Curran
Tom Curran in OpenAIREPaula Carroll;
Paula Carroll
Paula Carroll in OpenAIREDemand-Side Management systems aim to modulate energy consumption at the customer side of the meter using price incentives. Current incentive schemes allow consumers to reduce their costs, and from the point of view of the supplier play a role in load balancing, but do not lead to optimal demand patterns. In the context of charging fleets of electric vehicles, we propose a centralised method for setting overnight charging schedules. This method uses evolutionary algorithms to automatically search for optimal plans, representing both the charging schedule and the energy drawn from the grid at each time-step. In successive experiments, we optimise for increased state of charge, reduced peak demand, and reduced consumer costs. In simulations, the centralised method achieves improvements in performance relative to simple models of non-centralised consumer behaviour.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neucom.2015.03.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neucom.2015.03.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017Publisher:Public Library of Science (PLoS) Publicly fundedAuthors:Lijuan Miao;
Lijuan Miao
Lijuan Miao in OpenAIREDaniel Müller;
Xuefeng Cui; Meihong Ma;Daniel Müller
Daniel Müller in OpenAIREClimate change affects the timing of phenological events, such as the start, end, and length of the growing season of vegetation. A better understanding of how the phenology responded to climatic determinants is important in order to better anticipate future climate-ecosystem interactions. We examined the changes of three phenological events for the Mongolian Plateau and their climatic determinants. To do so, we derived three phenological metrics from remotely sensed vegetation indices and associated these with climate data for the period of 1982 to 2011. The results suggested that the start of the growing season advanced by 0.10 days yr-1, the end was delayed by 0.11 days yr-1, and the length of the growing season expanded by 6.3 days during the period from 1982 to 2011. The delayed end and extended length of the growing season were observed consistently in grassland, forest, and shrubland, while the earlier start was only observed in grassland. Partial correlation analysis between the phenological events and the climate variables revealed that higher temperature was associated with an earlier start of the growing season, and both temperature and precipitation contributed to the later ending. Overall, our findings suggest that climate change will substantially alter the vegetation phenology in the grasslands of the Mongolian Plateau, and likely also in biomes with similar environmental conditions, such as other semi-arid steppe regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0190313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0190313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Sahar Ghasemipour;Mohammad Sameti;
Mohammad Sameti
Mohammad Sameti in OpenAIREManoj Kumar Sharma;
Manoj Kumar Sharma
Manoj Kumar Sharma in OpenAIREInternational Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2024.100651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2024.100651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors:Frisk, Carl A.;
Xistris-Songpanya, Georgianna; Osborne, Matthieu; Biswas, Yastika; +2 AuthorsFrisk, Carl A.
Frisk, Carl A. in OpenAIREFrisk, Carl A.;
Xistris-Songpanya, Georgianna; Osborne, Matthieu; Biswas, Yastika;Frisk, Carl A.
Frisk, Carl A. in OpenAIREMelzer, Rainer;
Melzer, Rainer
Melzer, Rainer in OpenAIREYearsley, Jon M.;
Yearsley, Jon M.
Yearsley, Jon M. in OpenAIREExperimental data supporting the findings of the manuscript 'Phenotypic Variation from Waterlogging in Multiple Perennial Ryegrass Varieties under Climate Change Conditions'. This dataset will be made publicly available when the manuscript has been accepted for journal publication unless exceptional conditions become apparent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6334191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6334191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors:O'Callaghan, Derek;
O'Callaghan, Derek
O'Callaghan, Derek in OpenAIREMcBreen, Sheila;
McBreen, Sheila
McBreen, Sheila in OpenAIREEOOffshore is a Sustainable Energy Authority of Ireland (SEAI) funded project, which commenced in June 2020 in the School of Physics in University College Dublin (UCD). It presents a case study that demonstrates the utility of the Pangeo software ecosystem in the development of offshore wind speed and power density estimates, increasing wind measurement coverage of offshore renewable energy assessment areas in the Irish Continental Shelf (ICS) region. It has involved the creation of a new wind data catalog for this region, consisting of a collection of analysis-ready, cloud-optimized (ARCO) datasets featuring up to 21 years of available in situ, reanalysis, and satellite observation wind data products. ERA5 is the fifth generation global reanalysis data set produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). It is a component of the Copernicus Climate Change Service (C3S), where data products are publicly available in the C3S Climate Data Store. This particular catalog data set (eooffshore_ics_era5_single_level_hourly_wind.zarr.tar.gz) contains 2001-2021 products for the ICS region from the ERA5 hourly data on single levels from 1979 to present data set, which provides hourly data from 1979 to the present day, at single levels (atmospheric, ocean-wave and land surface quantities). Wind speed and direction have been calculated from the uX and vX variables, where X = 10 m and 100 m above sea level. This ERA5 data set was used in the EOOffshore project outputs presented (Scalable Offshore Wind Analysis With Pangeo) at the Meeting Exascale Computing Challenges with Compression and Pangeo 2022 EGU General Assembly session. Description and example usage of the ERA5 data set in EOOffshore: ERA5 Wind Data for Irish Continental Shelf region Offshore Wind in Irish Areas Of Interest Comparison of Offshore Wind Speed Extrapolation and Power Density Estimation As requested by the ECMWF - Licence to Use Copernicus Products, this Zarr store was: Generated using Copernicus Climate Change Service information [2001 - 2021]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6974217&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6974217&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors:O'Callaghan, Derek;
O'Callaghan, Derek
O'Callaghan, Derek in OpenAIREMcBreen, Sheila;
McBreen, Sheila
McBreen, Sheila in OpenAIREEOOffshore is a Sustainable Energy Authority of Ireland (SEAI) funded project, which commenced in June 2020 in the School of Physics in University College Dublin (UCD). It presents a case study that demonstrates the utility of the Pangeo software ecosystem in the development of offshore wind speed and power density estimates, increasing wind measurement coverage of offshore renewable energy assessment areas in the Irish Continental Shelf (ICS) region. It has involved the creation of a new wind data catalog for this region, consisting of a collection of analysis-ready, cloud-optimized (ARCO) datasets featuring up to 21 years of available in situ, reanalysis, and satellite observation wind data products. The European Union Copernicus Earth Observation (EO) programme and services are based on data collected from EO satellites, in particular, the Sentinel satellite missions. This includes the Sentinel-1 mission, which consists of C-band Synthetic Aperture Radar (SAR) imaging satellites in polar orbit. One of its main objectives is the provision of ocean monitoring services, where its Level-2 Ocean (OCN) products include an Ocean WInd field (OWI) component. This provides gridded estimates of wind speed and direction at 10 m above the surface, with a typical spatial resolution of 1 km. This particular catalog data set (eooffshore_ics_level3_sentinel1_ocn.zarr.tar.gz) contains 2015-2021 OCN wind products for the ICS region, which were retrieved from the Copernicus Open Access Hub (COAH) and the Alaska Satellite Facility (ASF). The data set was used in the EOOffshore project outputs presented (Scalable Offshore Wind Analysis With Pangeo) at the Meeting Exascale Computing Challenges with Compression and Pangeo 2022 EGU General Assembly session. Description and example usage of the Sentinel-1 data set in EOOffshore: Sentinel-1 Wind Data for Irish Continental Shelf region Offshore Wind in Irish Areas Of Interest Comparison of Offshore Wind Speed Extrapolation and Power Density Estimation As requested by the Legal Notice on the use of Copernicus Sentinel Data and Service Information, this data set: Contains modified Copernicus Sentinel data [2015 - 2021]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6967056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6967056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Institute of Electrical and Electronics Engineers (IEEE) Publicly fundedAuthors: Michael Milligan;Aidan Tuohy;
Vahan Gevorgian; Erik Ela; +2 AuthorsAidan Tuohy
Aidan Tuohy in OpenAIREMichael Milligan;Aidan Tuohy;
Vahan Gevorgian; Erik Ela;Aidan Tuohy
Aidan Tuohy in OpenAIREMark O'Malley;
Brendan Kirby;Mark O'Malley
Mark O'Malley in OpenAIREThe first part of this two-paper series discusses the motivation of implementing a primary frequency response (PFR) market in restructured pool-based power markets, as well as the market design that would create the right incentives to provide the response reliably. PFR is the immediate, autonomous response of generation and demand to system frequency deviations. It is the critical response required to avoid triggering under- and over- frequency relays or instability that could lead to machine damage, load-shedding, and in the extreme case, blackouts. Currently, in many restructured power systems throughout the world, ancillary services markets have been developed to incent technologies to provide the services to support power system reliability. However, few ancillary services markets include a market explicitly incentivizing the provision of PFR. Historically, PFR was an inherent feature available in conventional generating technologies, and in most systems, more was available than needed. Yet, recent trends in declining frequency response, the introduction of emerging technologies, and market behavior may soon require innovative market designs to incent resources to provide this valuable service.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2013.2264942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 147 citations 147 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2013.2264942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 IrelandPublisher:Elsevier BV Publicly fundedFunded by:University College DublinUniversity College DublinAuthors:Usman Ali;
Usman Ali
Usman Ali in OpenAIREMohammad Haris Shamsi;
Mark Bohacek; Karl Purcell; +3 AuthorsMohammad Haris Shamsi
Mohammad Haris Shamsi in OpenAIREUsman Ali;
Usman Ali
Usman Ali in OpenAIREMohammad Haris Shamsi;
Mark Bohacek; Karl Purcell; Cathal Hoare; Eleni Mangina; James O’Donnell;Mohammad Haris Shamsi
Mohammad Haris Shamsi in OpenAIREhandle: 10197/12265
Abstract Urban planners, local authorities, and energy policymakers often develop strategic sustainable energy plans for the urban building stock in order to minimize overall energy consumption and emissions. Planning at such scales could be informed by building stock modeling using existing building data and Geographic Information System-based mapping. However, implementing these processes involves several issues, namely, data availability, data inconsistency, data scalability, data integration, geocoding, and data privacy. This research addresses the aforementioned information challenges by proposing a generalized integrated methodology that implements bottom-up, data-driven, and spatial modeling approaches for multi-scale Geographic Information System mapping of building energy modeling. This study uses the Irish building stock to map building energy performance at multiple scales. The generalized data-driven methodology uses approximately 650,000 Irish Energy Performance Certificates buildings data to predict more than 2 million buildings’ energy performance. In this case, the approach delivers a prediction accuracy of 88% using deep learning algorithms. These prediction results are then used for spatial modeling at multiple scales from the individual building level to a national level. Furthermore, these maps are coupled with available spatial resources (social, economic, or environmental data) for energy planning, analysis, and support decision-making. The modeling results identify clusters of buildings that have a significant potential for energy savings within any specific region. Geographic Information System-based modeling aids stakeholders in identifying priority areas for implementing energy efficiency measures. Furthermore, the stakeholders could target local communities for retrofit campaigns, which would enhance the implementation of sustainable energy policy decisions.
University College D... arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12265Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University College D... arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12265Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu