- home
- Advanced Search
- Energy Research
- IN
- EG
- BE
- Energies
- Energy Research
- IN
- EG
- BE
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors: Flavio R. Arroyo M.; Luis J. Miguel;doi: 10.3390/en13184731
This article describes the results of a study of Ecuador’s energy status, using the system dynamics methodology to model supply, demand and CO2 emissions scenarios for the year 2030. Primary energy production increased in the different projected scenarios, with oil as the most important source of energy. The increase observed in final energy consumption was mainly associated with the transport and industry sectors. A reduction in energy intensity was projected for the different scenarios, which could be associated with the projected economic growth. The results obtained were used to build a proposal for energy policies aimed at mitigating emissions. The proposed changes to the national energy matrix could be the factors that will contribute most to the achievement of carbon emission reductions projected by the different scenarios; changes in the energy matrix are mainly associated with the development of projects to replace fossil fuels with renewable energies, mainly hydropower.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4731/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4731/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors: Flavio R. Arroyo M.; Luis J. Miguel;doi: 10.3390/en13184731
This article describes the results of a study of Ecuador’s energy status, using the system dynamics methodology to model supply, demand and CO2 emissions scenarios for the year 2030. Primary energy production increased in the different projected scenarios, with oil as the most important source of energy. The increase observed in final energy consumption was mainly associated with the transport and industry sectors. A reduction in energy intensity was projected for the different scenarios, which could be associated with the projected economic growth. The results obtained were used to build a proposal for energy policies aimed at mitigating emissions. The proposed changes to the national energy matrix could be the factors that will contribute most to the achievement of carbon emission reductions projected by the different scenarios; changes in the energy matrix are mainly associated with the development of projects to replace fossil fuels with renewable energies, mainly hydropower.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4731/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4731/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Australia, Australia, India, AustraliaPublisher:MDPI AG Authors: Badulla Liyanage Avanthi Isaka; Ranjith Pathegama Gamage; Tharaka Dilanka Rathnaweera; Mandadige Samintha Anne Perera; +2 AuthorsBadulla Liyanage Avanthi Isaka; Ranjith Pathegama Gamage; Tharaka Dilanka Rathnaweera; Mandadige Samintha Anne Perera; Dornadula Chandrasekharam; Wanniarachchige Gnamani Pabasara Kumari;doi: 10.3390/en11061338
handle: 11343/216696
The aim of this study is to characterise the changes in mechanical properties and to provide a comprehensive micro-structural analysis of Harcourt granite over different pre-heating temperatures under two cooling treatments (1) rapid and (2) slow cooling. A series of uniaxial compression tests was conducted to evaluate the mechanical properties of granite specimens subjected to pre-heating to temperatures ranging from 25–1000 °C under both cooling conditions. An acoustic emission (AE) system was incorporated to identify the fracture propagation stress thresholds. Furthermore, the effect of loading and unloading behaviour on the elastic properties of Harcourt granite was evaluated at two locations prior to failure: (1) crack initiation and (2) crack damage. Scanning electron microscopy (SEM) analyses were conducted on heat-treated thin rock slices to observe the crack/fracture patterns and to quantify the extent of micro-cracking during intense heating followed by cooling. The results revealed that the thermal field induced in the Harcourt granite pore structure during heating up to 100 °C followed by cooling causes cracks to close, resulting in increased mechanical characteristics, in particular, material stiffness and strength. Thereafter, a decline in mechanical properties occurs with the increase of pre-heating temperatures from 100 °C to 800 °C. However, the thermal deterioration under rapid cooling is much higher than that under slow cooling, because rapid cooling appears to produce a significant amount of micro-cracking due to the irreversible thermal shock induced. Multiple stages of loading and unloading prior to failure degrade the elastic properties of Harcourt granite due to the damage accumulated through the coalescence of micro-cracks induced during compression loading. However, this degradation is insignificant for pre-heating temperatures over 400 °C, since the specimens are already damaged due to excessive thermal deterioration. Moreover, unloading after crack initiation tends to cause insignificant irreversible strains, whereas significant permanent strains occur during unloading after crack damage, and this appears to increase with the increase of pre-heating temperature over 400 °C.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/6/1338/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Queensland: USQ ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research Archive of Indian Institute of Technology, Hyderabad (RAIITH)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/6/1338/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Queensland: USQ ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research Archive of Indian Institute of Technology, Hyderabad (RAIITH)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Australia, Australia, India, AustraliaPublisher:MDPI AG Authors: Badulla Liyanage Avanthi Isaka; Ranjith Pathegama Gamage; Tharaka Dilanka Rathnaweera; Mandadige Samintha Anne Perera; +2 AuthorsBadulla Liyanage Avanthi Isaka; Ranjith Pathegama Gamage; Tharaka Dilanka Rathnaweera; Mandadige Samintha Anne Perera; Dornadula Chandrasekharam; Wanniarachchige Gnamani Pabasara Kumari;doi: 10.3390/en11061338
handle: 11343/216696
The aim of this study is to characterise the changes in mechanical properties and to provide a comprehensive micro-structural analysis of Harcourt granite over different pre-heating temperatures under two cooling treatments (1) rapid and (2) slow cooling. A series of uniaxial compression tests was conducted to evaluate the mechanical properties of granite specimens subjected to pre-heating to temperatures ranging from 25–1000 °C under both cooling conditions. An acoustic emission (AE) system was incorporated to identify the fracture propagation stress thresholds. Furthermore, the effect of loading and unloading behaviour on the elastic properties of Harcourt granite was evaluated at two locations prior to failure: (1) crack initiation and (2) crack damage. Scanning electron microscopy (SEM) analyses were conducted on heat-treated thin rock slices to observe the crack/fracture patterns and to quantify the extent of micro-cracking during intense heating followed by cooling. The results revealed that the thermal field induced in the Harcourt granite pore structure during heating up to 100 °C followed by cooling causes cracks to close, resulting in increased mechanical characteristics, in particular, material stiffness and strength. Thereafter, a decline in mechanical properties occurs with the increase of pre-heating temperatures from 100 °C to 800 °C. However, the thermal deterioration under rapid cooling is much higher than that under slow cooling, because rapid cooling appears to produce a significant amount of micro-cracking due to the irreversible thermal shock induced. Multiple stages of loading and unloading prior to failure degrade the elastic properties of Harcourt granite due to the damage accumulated through the coalescence of micro-cracks induced during compression loading. However, this degradation is insignificant for pre-heating temperatures over 400 °C, since the specimens are already damaged due to excessive thermal deterioration. Moreover, unloading after crack initiation tends to cause insignificant irreversible strains, whereas significant permanent strains occur during unloading after crack damage, and this appears to increase with the increase of pre-heating temperature over 400 °C.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/6/1338/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Queensland: USQ ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research Archive of Indian Institute of Technology, Hyderabad (RAIITH)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/6/1338/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Queensland: USQ ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research Archive of Indian Institute of Technology, Hyderabad (RAIITH)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Safwan Mustafa; Adil Sarwar; Mohd Tariq; Shafiq Ahmad; Haitham A. Mahmoud;doi: 10.3390/en16114269
This article offers a novel boost inverter construction with a Nine-level quadruple voltage boosting waveform. The primary drawback of conventional MLI is the need for a high voltage DC-DC converter to increase the voltage when using renewable energy sources. Consequently, the developed method, complete with a quadruple voltage boost ability, can alleviate that shortcoming by automatically increased the incoming voltage. A single DC source, two switching capacitors, and eleven switches are all that are used in the newly presented architecture. The voltage of the capacitor automatically balances. The switched capacitor MLI is distinguished by the fewer parts that are required and the substitution of a capacitor for a DC source. The switching capacitor has to be charged and discharged properly in order to produce the nine-level output voltage waveform. The SPSC unit makes these levels attainable. To achieve voltage boosting, switched capacitors are coupled in parallel and series in the conduction channel. The quality of this proposed topology has been analyzed through different parameters based on the components count, THD, and cost; the resulting efficiency reaches 97.85%. The switching order of the proposed method has been controlled by the Nearest Level Modulation Method (NLC). MATLAB and PLECS software were used to evaluate the constructed Nine-level converter.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4269/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4269/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Safwan Mustafa; Adil Sarwar; Mohd Tariq; Shafiq Ahmad; Haitham A. Mahmoud;doi: 10.3390/en16114269
This article offers a novel boost inverter construction with a Nine-level quadruple voltage boosting waveform. The primary drawback of conventional MLI is the need for a high voltage DC-DC converter to increase the voltage when using renewable energy sources. Consequently, the developed method, complete with a quadruple voltage boost ability, can alleviate that shortcoming by automatically increased the incoming voltage. A single DC source, two switching capacitors, and eleven switches are all that are used in the newly presented architecture. The voltage of the capacitor automatically balances. The switched capacitor MLI is distinguished by the fewer parts that are required and the substitution of a capacitor for a DC source. The switching capacitor has to be charged and discharged properly in order to produce the nine-level output voltage waveform. The SPSC unit makes these levels attainable. To achieve voltage boosting, switched capacitors are coupled in parallel and series in the conduction channel. The quality of this proposed topology has been analyzed through different parameters based on the components count, THD, and cost; the resulting efficiency reaches 97.85%. The switching order of the proposed method has been controlled by the Nearest Level Modulation Method (NLC). MATLAB and PLECS software were used to evaluate the constructed Nine-level converter.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4269/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4269/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Chandan Swaroop Meena; Binju P Raj; Lohit Saini; Nehul Agarwal; Aritra Ghosh;doi: 10.3390/en14123534
The use of solar energy in water heating applications, such as in solar-assisted heat pump systems, has great benefits, such as reductions in heat transfer losses, control over incident solar heat, and generation of environmentally benign water heat. In the present study, we performed parametric optimization based on an experimental model of a solar-assisted heat pump system for water heating (SAHPSWH) in the context of colder climatic regions receiving minimal solar radiation. Various parameters were investigated, such as the different glazing arrangements, the distances between fluid-circulating tubes, and the absorber sheet arrangement. The results showed that double glazing was more efficient than single glazing, with average COP values of 3.37 and 2.69, respectively, and with similar heat gain rates. When the evaporator tube was soldered below the absorber plate, the COP was 1.19 times greater than when the tube was soldered above the absorber plate. We also analyzed whether the collector efficiency factor F′ has an inverse relationship with the tube distance and a direct relationship with the absorber plate thickness. Through this experimental study, we verified that the SAHPSWH is reliable if designed judiciously. This promising energy-saving system is particularly suitable for areas abundant in solar radiation, such as in India, where the needs for space conditioning and water heating are constant.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3534/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3534/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Chandan Swaroop Meena; Binju P Raj; Lohit Saini; Nehul Agarwal; Aritra Ghosh;doi: 10.3390/en14123534
The use of solar energy in water heating applications, such as in solar-assisted heat pump systems, has great benefits, such as reductions in heat transfer losses, control over incident solar heat, and generation of environmentally benign water heat. In the present study, we performed parametric optimization based on an experimental model of a solar-assisted heat pump system for water heating (SAHPSWH) in the context of colder climatic regions receiving minimal solar radiation. Various parameters were investigated, such as the different glazing arrangements, the distances between fluid-circulating tubes, and the absorber sheet arrangement. The results showed that double glazing was more efficient than single glazing, with average COP values of 3.37 and 2.69, respectively, and with similar heat gain rates. When the evaporator tube was soldered below the absorber plate, the COP was 1.19 times greater than when the tube was soldered above the absorber plate. We also analyzed whether the collector efficiency factor F′ has an inverse relationship with the tube distance and a direct relationship with the absorber plate thickness. Through this experimental study, we verified that the SAHPSWH is reliable if designed judiciously. This promising energy-saving system is particularly suitable for areas abundant in solar radiation, such as in India, where the needs for space conditioning and water heating are constant.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3534/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3534/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 BelgiumPublisher:MDPI AG Authors: Tobias Erhart; Jürgen Gölz; Ursula Eicker; Martijn Van den Broek;doi: 10.3390/en9060422
handle: 1854/LU-7238678
The results in this work show the influence of long-term operation on the decomposition of working fluids in eight different organic rankine cycle (ORC) power plants (both heat-led and electricity-led) in a range of 900 kW el to 2 MW el . All case study plants are using octamethyltrisiloxane (MDM) as a working fluid; the facilities are between six to 12 years old. Detailed analyses, including the fluid distribution throughout the cycle, are conducted on one system. All presented fluid samples are analyzed via head space gas chromatography mass spectrometry (HS-GC-MS). Besides the siloxane composition, the influence of contaminants, such as mineral oil-based lubricants (and their components), is examined. In most cases, the original working fluid degrades to fractions of siloxanes with a lower boiling point (low boilers) and fractions with a higher boiling point (high boilers). As a consequence of the analyses, a new fluid recycling and management system was designed and tested in one case study plant (Case Study #8). Pre-post comparisons of fluid samples prove the effectiveness of the applied methods. The results show that the recovery of used working fluid offers an alternative to the purchase of fresh fluid, since operating costs can be significantly reduced. For large facilities, the prices for new fluid range from € 15 per liter (in 2006) to € 22 per liter (in 2013), which is a large reinvestment, especially in light of filling volumes of 4000 liters to 7000 liters per unit. Using the aforementioned method, a price of € 8 per liter of recovered MDM can be achieved.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/422/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2016Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/422/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2016Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 BelgiumPublisher:MDPI AG Authors: Tobias Erhart; Jürgen Gölz; Ursula Eicker; Martijn Van den Broek;doi: 10.3390/en9060422
handle: 1854/LU-7238678
The results in this work show the influence of long-term operation on the decomposition of working fluids in eight different organic rankine cycle (ORC) power plants (both heat-led and electricity-led) in a range of 900 kW el to 2 MW el . All case study plants are using octamethyltrisiloxane (MDM) as a working fluid; the facilities are between six to 12 years old. Detailed analyses, including the fluid distribution throughout the cycle, are conducted on one system. All presented fluid samples are analyzed via head space gas chromatography mass spectrometry (HS-GC-MS). Besides the siloxane composition, the influence of contaminants, such as mineral oil-based lubricants (and their components), is examined. In most cases, the original working fluid degrades to fractions of siloxanes with a lower boiling point (low boilers) and fractions with a higher boiling point (high boilers). As a consequence of the analyses, a new fluid recycling and management system was designed and tested in one case study plant (Case Study #8). Pre-post comparisons of fluid samples prove the effectiveness of the applied methods. The results show that the recovery of used working fluid offers an alternative to the purchase of fresh fluid, since operating costs can be significantly reduced. For large facilities, the prices for new fluid range from € 15 per liter (in 2006) to € 22 per liter (in 2013), which is a large reinvestment, especially in light of filling volumes of 4000 liters to 7000 liters per unit. Using the aforementioned method, a price of € 8 per liter of recovered MDM can be achieved.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/422/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2016Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/422/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2016Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Abhinav Kumar; Sanjay Kumar; Umesh Kumar Sinha; Aashish Kumar Bohre; Akshay Kumar Saha;doi: 10.3390/en17184572
Electric power is crucial for economic growth and the overall development of any country. The efficient planning of distribution system is necessary because all the consumers mainly rely on the distribution network to access the power. This paper focuses on addressing distribution system challenges and meeting consumers’ fundamental needs, such as achieving an improved voltage profile and minimizing costs within an environmentally sustainable framework. This work addressed the gap in the existing research by analysing the performance of both balanced and unbalanced systems within the same framework, specifically using the IEEE 33-bus and IEEE 118-bus test systems. Unlike prior studies that focused solely on either balanced or unbalanced systems, this work redistributed balanced loads into three-phase unequal unbalanced loads to create a more challenging unbalanced distribution network. The primary objective is to compare the effects of balanced and unbalanced loads on system the performances and to identify strategies for mitigating unbalanced load issues in each phase. Six optimization methods (PSO, TLBO, JAYA, SCA, RAO, and HBO) were employed to minimize losses, voltage variations, and other multi-objective function factors. Additionally, the study compared the cost of energy loss (CEL), emission factors, costs associated with distributed clean energy resources (DCER), and active and reactive power losses. Phase angle distortions due to unbalanced loads were also analysed. The results showed that among the optimization techniques tested (PSO, TLBO, JAYA, SCA, RAO, and HBO), the HBO method proved to be the most effective for the optimal allocation of distributed clean energy resources, yielding the lowest PFMO values and favourable outcomes across the technical, economic, and environmental parameters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17184572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17184572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Abhinav Kumar; Sanjay Kumar; Umesh Kumar Sinha; Aashish Kumar Bohre; Akshay Kumar Saha;doi: 10.3390/en17184572
Electric power is crucial for economic growth and the overall development of any country. The efficient planning of distribution system is necessary because all the consumers mainly rely on the distribution network to access the power. This paper focuses on addressing distribution system challenges and meeting consumers’ fundamental needs, such as achieving an improved voltage profile and minimizing costs within an environmentally sustainable framework. This work addressed the gap in the existing research by analysing the performance of both balanced and unbalanced systems within the same framework, specifically using the IEEE 33-bus and IEEE 118-bus test systems. Unlike prior studies that focused solely on either balanced or unbalanced systems, this work redistributed balanced loads into three-phase unequal unbalanced loads to create a more challenging unbalanced distribution network. The primary objective is to compare the effects of balanced and unbalanced loads on system the performances and to identify strategies for mitigating unbalanced load issues in each phase. Six optimization methods (PSO, TLBO, JAYA, SCA, RAO, and HBO) were employed to minimize losses, voltage variations, and other multi-objective function factors. Additionally, the study compared the cost of energy loss (CEL), emission factors, costs associated with distributed clean energy resources (DCER), and active and reactive power losses. Phase angle distortions due to unbalanced loads were also analysed. The results showed that among the optimization techniques tested (PSO, TLBO, JAYA, SCA, RAO, and HBO), the HBO method proved to be the most effective for the optimal allocation of distributed clean energy resources, yielding the lowest PFMO values and favourable outcomes across the technical, economic, and environmental parameters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17184572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17184572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Manish Kumar Singla; Jyoti Gupta; Parag Nijhawan; Amandeep Singh Oberoi; Mohammed H. Alsharif; Abu Jahid;doi: 10.3390/en16155761
This manuscript presents a thorough review of unitized regenerative fuel cells (URFCs) and their importance in Remote Area Power Supply (RAPS). In RAPS systems that utilize solar and hydrogen power, which typically include photovoltaic modules, a proton exchange membrane (PEM) electrolyzer, hydrogen gas storage, and PEM fuel cells, the cost of these systems is currently higher compared to conventional RAPS systems that employ diesel generators or batteries. URFCs offer a potential solution to reduce the expenses of solar hydrogen renewable energy systems in RAPS by combining the functionalities of the electrolyzer and fuel cell into a single unit, thereby eliminating the need to purchase separate and costly electrolyzer and fuel cell units. URFCs are particularly well-suited for RAPS applications because the electrolyzer and fuel cell do not need to operate simultaneously. In electrolyzer mode, URFCs function similarly to stand-alone electrolyzers. However, in fuel cell mode, the performance of URFCs is inferior to that of stand-alone fuel cells. The presented review summarizes the past, present, and future of URFCs with details on the operating modes of URFCs, limitations and technical challenges, and applications. Solar hydrogen renewable energy applications in RAPS and challenges facing solar hydrogen renewable energy in the RAPS is discussed in detail.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155761&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155761&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Manish Kumar Singla; Jyoti Gupta; Parag Nijhawan; Amandeep Singh Oberoi; Mohammed H. Alsharif; Abu Jahid;doi: 10.3390/en16155761
This manuscript presents a thorough review of unitized regenerative fuel cells (URFCs) and their importance in Remote Area Power Supply (RAPS). In RAPS systems that utilize solar and hydrogen power, which typically include photovoltaic modules, a proton exchange membrane (PEM) electrolyzer, hydrogen gas storage, and PEM fuel cells, the cost of these systems is currently higher compared to conventional RAPS systems that employ diesel generators or batteries. URFCs offer a potential solution to reduce the expenses of solar hydrogen renewable energy systems in RAPS by combining the functionalities of the electrolyzer and fuel cell into a single unit, thereby eliminating the need to purchase separate and costly electrolyzer and fuel cell units. URFCs are particularly well-suited for RAPS applications because the electrolyzer and fuel cell do not need to operate simultaneously. In electrolyzer mode, URFCs function similarly to stand-alone electrolyzers. However, in fuel cell mode, the performance of URFCs is inferior to that of stand-alone fuel cells. The presented review summarizes the past, present, and future of URFCs with details on the operating modes of URFCs, limitations and technical challenges, and applications. Solar hydrogen renewable energy applications in RAPS and challenges facing solar hydrogen renewable energy in the RAPS is discussed in detail.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155761&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155761&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Mohamed G. Hussien; Wei Xu; Yi Liu; Said M. Allam;doi: 10.3390/en12193613
The aim of paper is to investigate an efficient sensorless control method with vector-control technique for the induction motor (IM) drive systems. The proposed technique relies on the indirect rotor-field orientation control scheme (IRFOC). All sensorless control techniques are greatly affected by the observation of the speed estimation procedure. So, an efficacy new algorithm for estimating the rotor speed of the adopted machine is proposed. In addition, a simple effective method to estimate the machine rotor currents is suggested. The adopted rotor-speed observer is based on the concept of IRFOC method and the phase-axis relationships of IM. To ensure the capability of the proposed sensorless speed-control system, a simulation model is developed in the MATLAB/Simulink software environment. The robustness of the new control method is analyzed under parameter uncertainty issue. Furthermore, comprehensive experimental results are obtained. The whole obtained results confirm the validity of the proposed observer for sensorless speed control capability. The given results also verify the effectiveness of the suggested sensorless control system-based IRFOC for speed-control drive systems of IM. Moreover, the results assure that the presented rotor-speed observer is effectively robust via any parameter changes.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/19/3613/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12193613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/19/3613/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12193613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Mohamed G. Hussien; Wei Xu; Yi Liu; Said M. Allam;doi: 10.3390/en12193613
The aim of paper is to investigate an efficient sensorless control method with vector-control technique for the induction motor (IM) drive systems. The proposed technique relies on the indirect rotor-field orientation control scheme (IRFOC). All sensorless control techniques are greatly affected by the observation of the speed estimation procedure. So, an efficacy new algorithm for estimating the rotor speed of the adopted machine is proposed. In addition, a simple effective method to estimate the machine rotor currents is suggested. The adopted rotor-speed observer is based on the concept of IRFOC method and the phase-axis relationships of IM. To ensure the capability of the proposed sensorless speed-control system, a simulation model is developed in the MATLAB/Simulink software environment. The robustness of the new control method is analyzed under parameter uncertainty issue. Furthermore, comprehensive experimental results are obtained. The whole obtained results confirm the validity of the proposed observer for sensorless speed control capability. The given results also verify the effectiveness of the suggested sensorless control system-based IRFOC for speed-control drive systems of IM. Moreover, the results assure that the presented rotor-speed observer is effectively robust via any parameter changes.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/19/3613/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12193613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/19/3613/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12193613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 BelgiumPublisher:MDPI AG Authors: Manu Lahariya; Dries F. Benoit; Chris Develder;doi: 10.3390/en13164211
handle: 1854/LU-8674927
Electric vehicle (EV) charging stations have become prominent in electricity grids in the past few years. Their increased penetration introduces both challenges and opportunities; they contribute to increased load, but also offer flexibility potential, e.g., in deferring the load in time. To analyze such scenarios, realistic EV data are required, which are hard to come by. Therefore, in this article we define a synthetic data generator (SDG) for EV charging sessions based on a large real-world dataset. Arrival times of EVs are modeled assuming that the inter-arrival times of EVs follow an exponential distribution. Connection time for EVs is dependent on the arrival time of EV, and can be described using a conditional probability distribution. This distribution is estimated using Gaussian mixture models, and departure times can calculated by sampling connection times for EV arrivals from this distribution. Our SDG is based on a novel method for the temporal modeling of EV sessions, and jointly models the arrival and departure times of EVs for a large number of charging stations. Our SDG was trained using real-world EV sessions, and used to generate synthetic samples of session data, which were statistically indistinguishable from the real-world data. We provide both (i) source code to train SDG models from new data, and (ii) trained models that reflect real-world datasets.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/16/4211/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13164211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/16/4211/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13164211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 BelgiumPublisher:MDPI AG Authors: Manu Lahariya; Dries F. Benoit; Chris Develder;doi: 10.3390/en13164211
handle: 1854/LU-8674927
Electric vehicle (EV) charging stations have become prominent in electricity grids in the past few years. Their increased penetration introduces both challenges and opportunities; they contribute to increased load, but also offer flexibility potential, e.g., in deferring the load in time. To analyze such scenarios, realistic EV data are required, which are hard to come by. Therefore, in this article we define a synthetic data generator (SDG) for EV charging sessions based on a large real-world dataset. Arrival times of EVs are modeled assuming that the inter-arrival times of EVs follow an exponential distribution. Connection time for EVs is dependent on the arrival time of EV, and can be described using a conditional probability distribution. This distribution is estimated using Gaussian mixture models, and departure times can calculated by sampling connection times for EV arrivals from this distribution. Our SDG is based on a novel method for the temporal modeling of EV sessions, and jointly models the arrival and departure times of EVs for a large number of charging stations. Our SDG was trained using real-world EV sessions, and used to generate synthetic samples of session data, which were statistically indistinguishable from the real-world data. We provide both (i) source code to train SDG models from new data, and (ii) trained models that reflect real-world datasets.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/16/4211/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13164211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/16/4211/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13164211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 ItalyPublisher:MDPI AG BONFIGLIO, ANDREA; BRIGNONE, MASSIMO; DELFINO, FEDERICO; NILBERTO, ALESSANDRO; PROCOPIO, RENATO;doi: 10.3390/en9110914
handle: 11567/861949
The present paper aims at defining a simplified but effective model of a thermal network that links the thermal power generation with the resulting temperature time profile in a heated or refrigerated environment. For this purpose, an equivalent electric circuit is proposed together with an experimental procedure to evaluate its input parameters. The paper also highlights the simplicity of implementation of the proposed model into a microgrid Energy Management System. This allows the optimal operation of the thermal network to be achieved on the basis of available data (desired temperature profile) instead of a less realistic basis (such as the desired thermal power profile). The validation of the proposed model is performed on the Savona Campus Smart Polygeneration Microgrid (SPM) with the following steps: (i) identification of the parameters involved in the equivalent circuit (performed by minimizing the difference between the temperature profile, as calculated with the proposed model, and the measured one in a set of training days); (ii) test of the model accuracy on a set of testing days (comparing the measured temperature profiles with the calculated ones); (iii) implementation of the model into an Energy Management System in order to optimize the thermal generation starting from a desired temperature hourly profile.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/11/914/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9110914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 6 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/11/914/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9110914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 ItalyPublisher:MDPI AG BONFIGLIO, ANDREA; BRIGNONE, MASSIMO; DELFINO, FEDERICO; NILBERTO, ALESSANDRO; PROCOPIO, RENATO;doi: 10.3390/en9110914
handle: 11567/861949
The present paper aims at defining a simplified but effective model of a thermal network that links the thermal power generation with the resulting temperature time profile in a heated or refrigerated environment. For this purpose, an equivalent electric circuit is proposed together with an experimental procedure to evaluate its input parameters. The paper also highlights the simplicity of implementation of the proposed model into a microgrid Energy Management System. This allows the optimal operation of the thermal network to be achieved on the basis of available data (desired temperature profile) instead of a less realistic basis (such as the desired thermal power profile). The validation of the proposed model is performed on the Savona Campus Smart Polygeneration Microgrid (SPM) with the following steps: (i) identification of the parameters involved in the equivalent circuit (performed by minimizing the difference between the temperature profile, as calculated with the proposed model, and the measured one in a set of training days); (ii) test of the model accuracy on a set of testing days (comparing the measured temperature profiles with the calculated ones); (iii) implementation of the model into an Energy Management System in order to optimize the thermal generation starting from a desired temperature hourly profile.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/11/914/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9110914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 6 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/11/914/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9110914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors: Flavio R. Arroyo M.; Luis J. Miguel;doi: 10.3390/en13184731
This article describes the results of a study of Ecuador’s energy status, using the system dynamics methodology to model supply, demand and CO2 emissions scenarios for the year 2030. Primary energy production increased in the different projected scenarios, with oil as the most important source of energy. The increase observed in final energy consumption was mainly associated with the transport and industry sectors. A reduction in energy intensity was projected for the different scenarios, which could be associated with the projected economic growth. The results obtained were used to build a proposal for energy policies aimed at mitigating emissions. The proposed changes to the national energy matrix could be the factors that will contribute most to the achievement of carbon emission reductions projected by the different scenarios; changes in the energy matrix are mainly associated with the development of projects to replace fossil fuels with renewable energies, mainly hydropower.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4731/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4731/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors: Flavio R. Arroyo M.; Luis J. Miguel;doi: 10.3390/en13184731
This article describes the results of a study of Ecuador’s energy status, using the system dynamics methodology to model supply, demand and CO2 emissions scenarios for the year 2030. Primary energy production increased in the different projected scenarios, with oil as the most important source of energy. The increase observed in final energy consumption was mainly associated with the transport and industry sectors. A reduction in energy intensity was projected for the different scenarios, which could be associated with the projected economic growth. The results obtained were used to build a proposal for energy policies aimed at mitigating emissions. The proposed changes to the national energy matrix could be the factors that will contribute most to the achievement of carbon emission reductions projected by the different scenarios; changes in the energy matrix are mainly associated with the development of projects to replace fossil fuels with renewable energies, mainly hydropower.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4731/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4731/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Australia, Australia, India, AustraliaPublisher:MDPI AG Authors: Badulla Liyanage Avanthi Isaka; Ranjith Pathegama Gamage; Tharaka Dilanka Rathnaweera; Mandadige Samintha Anne Perera; +2 AuthorsBadulla Liyanage Avanthi Isaka; Ranjith Pathegama Gamage; Tharaka Dilanka Rathnaweera; Mandadige Samintha Anne Perera; Dornadula Chandrasekharam; Wanniarachchige Gnamani Pabasara Kumari;doi: 10.3390/en11061338
handle: 11343/216696
The aim of this study is to characterise the changes in mechanical properties and to provide a comprehensive micro-structural analysis of Harcourt granite over different pre-heating temperatures under two cooling treatments (1) rapid and (2) slow cooling. A series of uniaxial compression tests was conducted to evaluate the mechanical properties of granite specimens subjected to pre-heating to temperatures ranging from 25–1000 °C under both cooling conditions. An acoustic emission (AE) system was incorporated to identify the fracture propagation stress thresholds. Furthermore, the effect of loading and unloading behaviour on the elastic properties of Harcourt granite was evaluated at two locations prior to failure: (1) crack initiation and (2) crack damage. Scanning electron microscopy (SEM) analyses were conducted on heat-treated thin rock slices to observe the crack/fracture patterns and to quantify the extent of micro-cracking during intense heating followed by cooling. The results revealed that the thermal field induced in the Harcourt granite pore structure during heating up to 100 °C followed by cooling causes cracks to close, resulting in increased mechanical characteristics, in particular, material stiffness and strength. Thereafter, a decline in mechanical properties occurs with the increase of pre-heating temperatures from 100 °C to 800 °C. However, the thermal deterioration under rapid cooling is much higher than that under slow cooling, because rapid cooling appears to produce a significant amount of micro-cracking due to the irreversible thermal shock induced. Multiple stages of loading and unloading prior to failure degrade the elastic properties of Harcourt granite due to the damage accumulated through the coalescence of micro-cracks induced during compression loading. However, this degradation is insignificant for pre-heating temperatures over 400 °C, since the specimens are already damaged due to excessive thermal deterioration. Moreover, unloading after crack initiation tends to cause insignificant irreversible strains, whereas significant permanent strains occur during unloading after crack damage, and this appears to increase with the increase of pre-heating temperature over 400 °C.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/6/1338/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Queensland: USQ ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research Archive of Indian Institute of Technology, Hyderabad (RAIITH)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/6/1338/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Queensland: USQ ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research Archive of Indian Institute of Technology, Hyderabad (RAIITH)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Australia, Australia, India, AustraliaPublisher:MDPI AG Authors: Badulla Liyanage Avanthi Isaka; Ranjith Pathegama Gamage; Tharaka Dilanka Rathnaweera; Mandadige Samintha Anne Perera; +2 AuthorsBadulla Liyanage Avanthi Isaka; Ranjith Pathegama Gamage; Tharaka Dilanka Rathnaweera; Mandadige Samintha Anne Perera; Dornadula Chandrasekharam; Wanniarachchige Gnamani Pabasara Kumari;doi: 10.3390/en11061338
handle: 11343/216696
The aim of this study is to characterise the changes in mechanical properties and to provide a comprehensive micro-structural analysis of Harcourt granite over different pre-heating temperatures under two cooling treatments (1) rapid and (2) slow cooling. A series of uniaxial compression tests was conducted to evaluate the mechanical properties of granite specimens subjected to pre-heating to temperatures ranging from 25–1000 °C under both cooling conditions. An acoustic emission (AE) system was incorporated to identify the fracture propagation stress thresholds. Furthermore, the effect of loading and unloading behaviour on the elastic properties of Harcourt granite was evaluated at two locations prior to failure: (1) crack initiation and (2) crack damage. Scanning electron microscopy (SEM) analyses were conducted on heat-treated thin rock slices to observe the crack/fracture patterns and to quantify the extent of micro-cracking during intense heating followed by cooling. The results revealed that the thermal field induced in the Harcourt granite pore structure during heating up to 100 °C followed by cooling causes cracks to close, resulting in increased mechanical characteristics, in particular, material stiffness and strength. Thereafter, a decline in mechanical properties occurs with the increase of pre-heating temperatures from 100 °C to 800 °C. However, the thermal deterioration under rapid cooling is much higher than that under slow cooling, because rapid cooling appears to produce a significant amount of micro-cracking due to the irreversible thermal shock induced. Multiple stages of loading and unloading prior to failure degrade the elastic properties of Harcourt granite due to the damage accumulated through the coalescence of micro-cracks induced during compression loading. However, this degradation is insignificant for pre-heating temperatures over 400 °C, since the specimens are already damaged due to excessive thermal deterioration. Moreover, unloading after crack initiation tends to cause insignificant irreversible strains, whereas significant permanent strains occur during unloading after crack damage, and this appears to increase with the increase of pre-heating temperature over 400 °C.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/6/1338/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Queensland: USQ ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research Archive of Indian Institute of Technology, Hyderabad (RAIITH)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/6/1338/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Queensland: USQ ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research Archive of Indian Institute of Technology, Hyderabad (RAIITH)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Safwan Mustafa; Adil Sarwar; Mohd Tariq; Shafiq Ahmad; Haitham A. Mahmoud;doi: 10.3390/en16114269
This article offers a novel boost inverter construction with a Nine-level quadruple voltage boosting waveform. The primary drawback of conventional MLI is the need for a high voltage DC-DC converter to increase the voltage when using renewable energy sources. Consequently, the developed method, complete with a quadruple voltage boost ability, can alleviate that shortcoming by automatically increased the incoming voltage. A single DC source, two switching capacitors, and eleven switches are all that are used in the newly presented architecture. The voltage of the capacitor automatically balances. The switched capacitor MLI is distinguished by the fewer parts that are required and the substitution of a capacitor for a DC source. The switching capacitor has to be charged and discharged properly in order to produce the nine-level output voltage waveform. The SPSC unit makes these levels attainable. To achieve voltage boosting, switched capacitors are coupled in parallel and series in the conduction channel. The quality of this proposed topology has been analyzed through different parameters based on the components count, THD, and cost; the resulting efficiency reaches 97.85%. The switching order of the proposed method has been controlled by the Nearest Level Modulation Method (NLC). MATLAB and PLECS software were used to evaluate the constructed Nine-level converter.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4269/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4269/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Safwan Mustafa; Adil Sarwar; Mohd Tariq; Shafiq Ahmad; Haitham A. Mahmoud;doi: 10.3390/en16114269
This article offers a novel boost inverter construction with a Nine-level quadruple voltage boosting waveform. The primary drawback of conventional MLI is the need for a high voltage DC-DC converter to increase the voltage when using renewable energy sources. Consequently, the developed method, complete with a quadruple voltage boost ability, can alleviate that shortcoming by automatically increased the incoming voltage. A single DC source, two switching capacitors, and eleven switches are all that are used in the newly presented architecture. The voltage of the capacitor automatically balances. The switched capacitor MLI is distinguished by the fewer parts that are required and the substitution of a capacitor for a DC source. The switching capacitor has to be charged and discharged properly in order to produce the nine-level output voltage waveform. The SPSC unit makes these levels attainable. To achieve voltage boosting, switched capacitors are coupled in parallel and series in the conduction channel. The quality of this proposed topology has been analyzed through different parameters based on the components count, THD, and cost; the resulting efficiency reaches 97.85%. The switching order of the proposed method has been controlled by the Nearest Level Modulation Method (NLC). MATLAB and PLECS software were used to evaluate the constructed Nine-level converter.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4269/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4269/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Chandan Swaroop Meena; Binju P Raj; Lohit Saini; Nehul Agarwal; Aritra Ghosh;doi: 10.3390/en14123534
The use of solar energy in water heating applications, such as in solar-assisted heat pump systems, has great benefits, such as reductions in heat transfer losses, control over incident solar heat, and generation of environmentally benign water heat. In the present study, we performed parametric optimization based on an experimental model of a solar-assisted heat pump system for water heating (SAHPSWH) in the context of colder climatic regions receiving minimal solar radiation. Various parameters were investigated, such as the different glazing arrangements, the distances between fluid-circulating tubes, and the absorber sheet arrangement. The results showed that double glazing was more efficient than single glazing, with average COP values of 3.37 and 2.69, respectively, and with similar heat gain rates. When the evaporator tube was soldered below the absorber plate, the COP was 1.19 times greater than when the tube was soldered above the absorber plate. We also analyzed whether the collector efficiency factor F′ has an inverse relationship with the tube distance and a direct relationship with the absorber plate thickness. Through this experimental study, we verified that the SAHPSWH is reliable if designed judiciously. This promising energy-saving system is particularly suitable for areas abundant in solar radiation, such as in India, where the needs for space conditioning and water heating are constant.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3534/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3534/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Chandan Swaroop Meena; Binju P Raj; Lohit Saini; Nehul Agarwal; Aritra Ghosh;doi: 10.3390/en14123534
The use of solar energy in water heating applications, such as in solar-assisted heat pump systems, has great benefits, such as reductions in heat transfer losses, control over incident solar heat, and generation of environmentally benign water heat. In the present study, we performed parametric optimization based on an experimental model of a solar-assisted heat pump system for water heating (SAHPSWH) in the context of colder climatic regions receiving minimal solar radiation. Various parameters were investigated, such as the different glazing arrangements, the distances between fluid-circulating tubes, and the absorber sheet arrangement. The results showed that double glazing was more efficient than single glazing, with average COP values of 3.37 and 2.69, respectively, and with similar heat gain rates. When the evaporator tube was soldered below the absorber plate, the COP was 1.19 times greater than when the tube was soldered above the absorber plate. We also analyzed whether the collector efficiency factor F′ has an inverse relationship with the tube distance and a direct relationship with the absorber plate thickness. Through this experimental study, we verified that the SAHPSWH is reliable if designed judiciously. This promising energy-saving system is particularly suitable for areas abundant in solar radiation, such as in India, where the needs for space conditioning and water heating are constant.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3534/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3534/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 BelgiumPublisher:MDPI AG Authors: Tobias Erhart; Jürgen Gölz; Ursula Eicker; Martijn Van den Broek;doi: 10.3390/en9060422
handle: 1854/LU-7238678
The results in this work show the influence of long-term operation on the decomposition of working fluids in eight different organic rankine cycle (ORC) power plants (both heat-led and electricity-led) in a range of 900 kW el to 2 MW el . All case study plants are using octamethyltrisiloxane (MDM) as a working fluid; the facilities are between six to 12 years old. Detailed analyses, including the fluid distribution throughout the cycle, are conducted on one system. All presented fluid samples are analyzed via head space gas chromatography mass spectrometry (HS-GC-MS). Besides the siloxane composition, the influence of contaminants, such as mineral oil-based lubricants (and their components), is examined. In most cases, the original working fluid degrades to fractions of siloxanes with a lower boiling point (low boilers) and fractions with a higher boiling point (high boilers). As a consequence of the analyses, a new fluid recycling and management system was designed and tested in one case study plant (Case Study #8). Pre-post comparisons of fluid samples prove the effectiveness of the applied methods. The results show that the recovery of used working fluid offers an alternative to the purchase of fresh fluid, since operating costs can be significantly reduced. For large facilities, the prices for new fluid range from € 15 per liter (in 2006) to € 22 per liter (in 2013), which is a large reinvestment, especially in light of filling volumes of 4000 liters to 7000 liters per unit. Using the aforementioned method, a price of € 8 per liter of recovered MDM can be achieved.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/422/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2016Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/422/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2016Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 BelgiumPublisher:MDPI AG Authors: Tobias Erhart; Jürgen Gölz; Ursula Eicker; Martijn Van den Broek;doi: 10.3390/en9060422
handle: 1854/LU-7238678
The results in this work show the influence of long-term operation on the decomposition of working fluids in eight different organic rankine cycle (ORC) power plants (both heat-led and electricity-led) in a range of 900 kW el to 2 MW el . All case study plants are using octamethyltrisiloxane (MDM) as a working fluid; the facilities are between six to 12 years old. Detailed analyses, including the fluid distribution throughout the cycle, are conducted on one system. All presented fluid samples are analyzed via head space gas chromatography mass spectrometry (HS-GC-MS). Besides the siloxane composition, the influence of contaminants, such as mineral oil-based lubricants (and their components), is examined. In most cases, the original working fluid degrades to fractions of siloxanes with a lower boiling point (low boilers) and fractions with a higher boiling point (high boilers). As a consequence of the analyses, a new fluid recycling and management system was designed and tested in one case study plant (Case Study #8). Pre-post comparisons of fluid samples prove the effectiveness of the applied methods. The results show that the recovery of used working fluid offers an alternative to the purchase of fresh fluid, since operating costs can be significantly reduced. For large facilities, the prices for new fluid range from € 15 per liter (in 2006) to € 22 per liter (in 2013), which is a large reinvestment, especially in light of filling volumes of 4000 liters to 7000 liters per unit. Using the aforementioned method, a price of € 8 per liter of recovered MDM can be achieved.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/422/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2016Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/422/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2016Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Abhinav Kumar; Sanjay Kumar; Umesh Kumar Sinha; Aashish Kumar Bohre; Akshay Kumar Saha;doi: 10.3390/en17184572
Electric power is crucial for economic growth and the overall development of any country. The efficient planning of distribution system is necessary because all the consumers mainly rely on the distribution network to access the power. This paper focuses on addressing distribution system challenges and meeting consumers’ fundamental needs, such as achieving an improved voltage profile and minimizing costs within an environmentally sustainable framework. This work addressed the gap in the existing research by analysing the performance of both balanced and unbalanced systems within the same framework, specifically using the IEEE 33-bus and IEEE 118-bus test systems. Unlike prior studies that focused solely on either balanced or unbalanced systems, this work redistributed balanced loads into three-phase unequal unbalanced loads to create a more challenging unbalanced distribution network. The primary objective is to compare the effects of balanced and unbalanced loads on system the performances and to identify strategies for mitigating unbalanced load issues in each phase. Six optimization methods (PSO, TLBO, JAYA, SCA, RAO, and HBO) were employed to minimize losses, voltage variations, and other multi-objective function factors. Additionally, the study compared the cost of energy loss (CEL), emission factors, costs associated with distributed clean energy resources (DCER), and active and reactive power losses. Phase angle distortions due to unbalanced loads were also analysed. The results showed that among the optimization techniques tested (PSO, TLBO, JAYA, SCA, RAO, and HBO), the HBO method proved to be the most effective for the optimal allocation of distributed clean energy resources, yielding the lowest PFMO values and favourable outcomes across the technical, economic, and environmental parameters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17184572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17184572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Abhinav Kumar; Sanjay Kumar; Umesh Kumar Sinha; Aashish Kumar Bohre; Akshay Kumar Saha;doi: 10.3390/en17184572
Electric power is crucial for economic growth and the overall development of any country. The efficient planning of distribution system is necessary because all the consumers mainly rely on the distribution network to access the power. This paper focuses on addressing distribution system challenges and meeting consumers’ fundamental needs, such as achieving an improved voltage profile and minimizing costs within an environmentally sustainable framework. This work addressed the gap in the existing research by analysing the performance of both balanced and unbalanced systems within the same framework, specifically using the IEEE 33-bus and IEEE 118-bus test systems. Unlike prior studies that focused solely on either balanced or unbalanced systems, this work redistributed balanced loads into three-phase unequal unbalanced loads to create a more challenging unbalanced distribution network. The primary objective is to compare the effects of balanced and unbalanced loads on system the performances and to identify strategies for mitigating unbalanced load issues in each phase. Six optimization methods (PSO, TLBO, JAYA, SCA, RAO, and HBO) were employed to minimize losses, voltage variations, and other multi-objective function factors. Additionally, the study compared the cost of energy loss (CEL), emission factors, costs associated with distributed clean energy resources (DCER), and active and reactive power losses. Phase angle distortions due to unbalanced loads were also analysed. The results showed that among the optimization techniques tested (PSO, TLBO, JAYA, SCA, RAO, and HBO), the HBO method proved to be the most effective for the optimal allocation of distributed clean energy resources, yielding the lowest PFMO values and favourable outcomes across the technical, economic, and environmental parameters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17184572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17184572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Manish Kumar Singla; Jyoti Gupta; Parag Nijhawan; Amandeep Singh Oberoi; Mohammed H. Alsharif; Abu Jahid;doi: 10.3390/en16155761
This manuscript presents a thorough review of unitized regenerative fuel cells (URFCs) and their importance in Remote Area Power Supply (RAPS). In RAPS systems that utilize solar and hydrogen power, which typically include photovoltaic modules, a proton exchange membrane (PEM) electrolyzer, hydrogen gas storage, and PEM fuel cells, the cost of these systems is currently higher compared to conventional RAPS systems that employ diesel generators or batteries. URFCs offer a potential solution to reduce the expenses of solar hydrogen renewable energy systems in RAPS by combining the functionalities of the electrolyzer and fuel cell into a single unit, thereby eliminating the need to purchase separate and costly electrolyzer and fuel cell units. URFCs are particularly well-suited for RAPS applications because the electrolyzer and fuel cell do not need to operate simultaneously. In electrolyzer mode, URFCs function similarly to stand-alone electrolyzers. However, in fuel cell mode, the performance of URFCs is inferior to that of stand-alone fuel cells. The presented review summarizes the past, present, and future of URFCs with details on the operating modes of URFCs, limitations and technical challenges, and applications. Solar hydrogen renewable energy applications in RAPS and challenges facing solar hydrogen renewable energy in the RAPS is discussed in detail.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155761&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155761&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Manish Kumar Singla; Jyoti Gupta; Parag Nijhawan; Amandeep Singh Oberoi; Mohammed H. Alsharif; Abu Jahid;doi: 10.3390/en16155761
This manuscript presents a thorough review of unitized regenerative fuel cells (URFCs) and their importance in Remote Area Power Supply (RAPS). In RAPS systems that utilize solar and hydrogen power, which typically include photovoltaic modules, a proton exchange membrane (PEM) electrolyzer, hydrogen gas storage, and PEM fuel cells, the cost of these systems is currently higher compared to conventional RAPS systems that employ diesel generators or batteries. URFCs offer a potential solution to reduce the expenses of solar hydrogen renewable energy systems in RAPS by combining the functionalities of the electrolyzer and fuel cell into a single unit, thereby eliminating the need to purchase separate and costly electrolyzer and fuel cell units. URFCs are particularly well-suited for RAPS applications because the electrolyzer and fuel cell do not need to operate simultaneously. In electrolyzer mode, URFCs function similarly to stand-alone electrolyzers. However, in fuel cell mode, the performance of URFCs is inferior to that of stand-alone fuel cells. The presented review summarizes the past, present, and future of URFCs with details on the operating modes of URFCs, limitations and technical challenges, and applications. Solar hydrogen renewable energy applications in RAPS and challenges facing solar hydrogen renewable energy in the RAPS is discussed in detail.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155761&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155761&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Mohamed G. Hussien; Wei Xu; Yi Liu; Said M. Allam;doi: 10.3390/en12193613
The aim of paper is to investigate an efficient sensorless control method with vector-control technique for the induction motor (IM) drive systems. The proposed technique relies on the indirect rotor-field orientation control scheme (IRFOC). All sensorless control techniques are greatly affected by the observation of the speed estimation procedure. So, an efficacy new algorithm for estimating the rotor speed of the adopted machine is proposed. In addition, a simple effective method to estimate the machine rotor currents is suggested. The adopted rotor-speed observer is based on the concept of IRFOC method and the phase-axis relationships of IM. To ensure the capability of the proposed sensorless speed-control system, a simulation model is developed in the MATLAB/Simulink software environment. The robustness of the new control method is analyzed under parameter uncertainty issue. Furthermore, comprehensive experimental results are obtained. The whole obtained results confirm the validity of the proposed observer for sensorless speed control capability. The given results also verify the effectiveness of the suggested sensorless control system-based IRFOC for speed-control drive systems of IM. Moreover, the results assure that the presented rotor-speed observer is effectively robust via any parameter changes.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/19/3613/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12193613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/19/3613/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12193613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Mohamed G. Hussien; Wei Xu; Yi Liu; Said M. Allam;doi: 10.3390/en12193613
The aim of paper is to investigate an efficient sensorless control method with vector-control technique for the induction motor (IM) drive systems. The proposed technique relies on the indirect rotor-field orientation control scheme (IRFOC). All sensorless control techniques are greatly affected by the observation of the speed estimation procedure. So, an efficacy new algorithm for estimating the rotor speed of the adopted machine is proposed. In addition, a simple effective method to estimate the machine rotor currents is suggested. The adopted rotor-speed observer is based on the concept of IRFOC method and the phase-axis relationships of IM. To ensure the capability of the proposed sensorless speed-control system, a simulation model is developed in the MATLAB/Simulink software environment. The robustness of the new control method is analyzed under parameter uncertainty issue. Furthermore, comprehensive experimental results are obtained. The whole obtained results confirm the validity of the proposed observer for sensorless speed control capability. The given results also verify the effectiveness of the suggested sensorless control system-based IRFOC for speed-control drive systems of IM. Moreover, the results assure that the presented rotor-speed observer is effectively robust via any parameter changes.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/19/3613/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12193613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/19/3613/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12193613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 BelgiumPublisher:MDPI AG Authors: Manu Lahariya; Dries F. Benoit; Chris Develder;doi: 10.3390/en13164211
handle: 1854/LU-8674927
Electric vehicle (EV) charging stations have become prominent in electricity grids in the past few years. Their increased penetration introduces both challenges and opportunities; they contribute to increased load, but also offer flexibility potential, e.g., in deferring the load in time. To analyze such scenarios, realistic EV data are required, which are hard to come by. Therefore, in this article we define a synthetic data generator (SDG) for EV charging sessions based on a large real-world dataset. Arrival times of EVs are modeled assuming that the inter-arrival times of EVs follow an exponential distribution. Connection time for EVs is dependent on the arrival time of EV, and can be described using a conditional probability distribution. This distribution is estimated using Gaussian mixture models, and departure times can calculated by sampling connection times for EV arrivals from this distribution. Our SDG is based on a novel method for the temporal modeling of EV sessions, and jointly models the arrival and departure times of EVs for a large number of charging stations. Our SDG was trained using real-world EV sessions, and used to generate synthetic samples of session data, which were statistically indistinguishable from the real-world data. We provide both (i) source code to train SDG models from new data, and (ii) trained models that reflect real-world datasets.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/16/4211/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13164211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/16/4211/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13164211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 BelgiumPublisher:MDPI AG Authors: Manu Lahariya; Dries F. Benoit; Chris Develder;doi: 10.3390/en13164211
handle: 1854/LU-8674927
Electric vehicle (EV) charging stations have become prominent in electricity grids in the past few years. Their increased penetration introduces both challenges and opportunities; they contribute to increased load, but also offer flexibility potential, e.g., in deferring the load in time. To analyze such scenarios, realistic EV data are required, which are hard to come by. Therefore, in this article we define a synthetic data generator (SDG) for EV charging sessions based on a large real-world dataset. Arrival times of EVs are modeled assuming that the inter-arrival times of EVs follow an exponential distribution. Connection time for EVs is dependent on the arrival time of EV, and can be described using a conditional probability distribution. This distribution is estimated using Gaussian mixture models, and departure times can calculated by sampling connection times for EV arrivals from this distribution. Our SDG is based on a novel method for the temporal modeling of EV sessions, and jointly models the arrival and departure times of EVs for a large number of charging stations. Our SDG was trained using real-world EV sessions, and used to generate synthetic samples of session data, which were statistically indistinguishable from the real-world data. We provide both (i) source code to train SDG models from new data, and (ii) trained models that reflect real-world datasets.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/16/4211/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13164211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/16/4211/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13164211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 ItalyPublisher:MDPI AG BONFIGLIO, ANDREA; BRIGNONE, MASSIMO; DELFINO, FEDERICO; NILBERTO, ALESSANDRO; PROCOPIO, RENATO;doi: 10.3390/en9110914
handle: 11567/861949
The present paper aims at defining a simplified but effective model of a thermal network that links the thermal power generation with the resulting temperature time profile in a heated or refrigerated environment. For this purpose, an equivalent electric circuit is proposed together with an experimental procedure to evaluate its input parameters. The paper also highlights the simplicity of implementation of the proposed model into a microgrid Energy Management System. This allows the optimal operation of the thermal network to be achieved on the basis of available data (desired temperature profile) instead of a less realistic basis (such as the desired thermal power profile). The validation of the proposed model is performed on the Savona Campus Smart Polygeneration Microgrid (SPM) with the following steps: (i) identification of the parameters involved in the equivalent circuit (performed by minimizing the difference between the temperature profile, as calculated with the proposed model, and the measured one in a set of training days); (ii) test of the model accuracy on a set of testing days (comparing the measured temperature profiles with the calculated ones); (iii) implementation of the model into an Energy Management System in order to optimize the thermal generation starting from a desired temperature hourly profile.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/11/914/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9110914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 6 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/11/914/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9110914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 ItalyPublisher:MDPI AG BONFIGLIO, ANDREA; BRIGNONE, MASSIMO; DELFINO, FEDERICO; NILBERTO, ALESSANDRO; PROCOPIO, RENATO;doi: 10.3390/en9110914
handle: 11567/861949
The present paper aims at defining a simplified but effective model of a thermal network that links the thermal power generation with the resulting temperature time profile in a heated or refrigerated environment. For this purpose, an equivalent electric circuit is proposed together with an experimental procedure to evaluate its input parameters. The paper also highlights the simplicity of implementation of the proposed model into a microgrid Energy Management System. This allows the optimal operation of the thermal network to be achieved on the basis of available data (desired temperature profile) instead of a less realistic basis (such as the desired thermal power profile). The validation of the proposed model is performed on the Savona Campus Smart Polygeneration Microgrid (SPM) with the following steps: (i) identification of the parameters involved in the equivalent circuit (performed by minimizing the difference between the temperature profile, as calculated with the proposed model, and the measured one in a set of training days); (ii) test of the model accuracy on a set of testing days (comparing the measured temperature profiles with the calculated ones); (iii) implementation of the model into an Energy Management System in order to optimize the thermal generation starting from a desired temperature hourly profile.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/11/914/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9110914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 6 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/11/914/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9110914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu