- home
- Advanced Search
- Energy Research
- 13. Climate action
- 12. Responsible consumption
- IN
- SA
- Energy Research
- 13. Climate action
- 12. Responsible consumption
- IN
- SA
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesSilvio Marta; Roberto Sergio Azzoni; Davide Fugazza; Levan Tielidze; Pritam Chand; Katrin Sieron; Peter Almond; Roberto Ambrosini; Fabien Anthelme; Pablo Alviz Gazitúa; Rakesh Bhambri; Aurélie Bonin; Marco Caccianiga; Sophie Cauvy-Fraunié; Jorge Luis Ceballos Lievano; John Clague; Justiniano Alejo Cochachín Rapre; Olivier Dangles; Philip Deline; Andre Eger; Rolando Cruz Encarnación; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Alessia Guerrieri; Sigmund Hågvar; Norine Khedim; Rahab Kinyanjui; Erwan Messager; Marco Aurelio Morales-Martínez; Gwendolyn Peyre; Francesca Pittino; Jerome Poulenard; Roberto Seppi; Milap Chand Sharma; Nurai Urseitova; Blake Weissling; Yan Yang; Vitalii Zaginaev; Anaïs Zimmer; Guglielmina Adele Diolaiuti; Antoine Rabatel; Gentile Francesco Ficetola;doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Hamed H. Saber; Ali E. Hajiah; Saleh A. Alshehri;doi: 10.3390/su132212522
The heat generation from recent advanced computer chips is increasing rapidly. This creates a challenge in cooling the chips while maintaining their temperatures below the threshold values. Another challenge is that the heat generation in the chip is not uniform where some chip components generate more heat than other components. This would create a large temperature gradient across the chip, resulting in inducing thermal stresses inside the chip that may lead to a high probability to damage the chip. The locations in the chip with heat rates that correspond to high heat fluxes are known as hotspots. This research study focuses on using thermoelectric modules (TEMs) for cooling chip hotspots of different heat fluxes. When a TEM is used for cooling a chip hotspot, it is called a thermoelectric cooler (TEC), which requires electrical power. Additionally, when a TEM is used for converting a chip’s wasted heat to electrical power, it is called a thermoelectric generator (TEG). In this study, the TEMs are used for cooling the hotspots of computer chips, and a TEC is attached to the hotspot to reduce its temperature to an acceptable value. On the other hand, the other cold surfaces of the chip are attached to TEGs for harvesting electrical power from the chip’s wasted heat. Thereafter, this harvested electrical power (HEP) is then used to run the TEC attached to the hotspot. Since no external electrical power is needed for cooling the hotspot to an acceptable temperature, this technique is called a sustainable self-cooling framework (SSCF). In this paper, the operation principles of the SSCF to cool the hotspot, subjected to different operating conditions, are discussed. As well, considerations are given to investigate the effect of the TEM geometrical parameters, such as the P-/N-leg height and spacing between the legs in both operations of the TEC mode and TEG mode on the SSCF performance.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:MDPI AG Authors: Hisham Alabduljabbar; Ghasan Fahim Huseien; Abdul Rahman Mohd Sam; Rayed Alyouef; +2 AuthorsHisham Alabduljabbar; Ghasan Fahim Huseien; Abdul Rahman Mohd Sam; Rayed Alyouef; Hassan Amer Algaifi; Abdulaziz Alaskar;Alkali activated concretes have emerged as a prospective alternative to conventional concrete wherein diverse waste materials have been converted as valuable spin-offs. This paper presents a wide experimental study on the sustainability of employing waste sawdust as a fine/coarse aggregate replacement incorporating fly ash (FA) and granulated blast furnace slag (GBFS) to make high-performance cement-free lightweight concretes. Waste sawdust was replaced with aggregate at 0, 25, 50, 75, and 100 vol% incorporating alkali binder, including 70% FA and 30% GBFS. The blend was activated using a low sodium hydroxide concentration (2 M). The acoustic, thermal, and predicted engineering properties of concretes were evaluated, and the life cycle of various mixtures were calculated to investigate the sustainability of concrete. Besides this, by using the available experimental test database, an optimized Artificial Neural Network (ANN) was developed to estimate the mechanical properties of the designed alkali-activated mortar mixes depending on each sawdust volume percentage. Based on the findings, it was found that the sound absorption and reduction in thermal conductivity were enhanced with increasing sawdust contents. The compressive strengths of the specimens were found to be influenced by the sawdust content and the strength dropped from 65 to 48 MPa with the corresponding increase in the sawdust levels from 0% up to 100%. The results also showed that the emissions of carbon dioxide, energy utilization, and outlay tended to drop with an increase in the amount of sawdust and show more the lightweight concrete to be more sustainable for construction applications.
Materials arrow_drop_down MaterialsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1944/13/23/5490/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma13235490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Materials arrow_drop_down MaterialsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1944/13/23/5490/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma13235490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Khushbu Kumari; Raushan Kumar; Nirmali Bordoloi; Tatiana Minkina; Chetan Keswani; Kuldeep Bauddh;Considerable interest is being shown in using biochar production from waste biomass with a variety of disciplines to address the most pressing environmental challenges. Biochar produced by the thermal decomposition of biomass under oxygen-limited conditions is gaining popularity as a low-cost amendment for agro-ecosystems. The efficiency of biochar formation is affected by temperature, heating rate, feedstock type, particle size and reactor conditions. Properties such as pH, surface area and ash content of produced biochar increases with increasing temperatures. Biochar produced at lower heating rates may have high porosity and be beneficial for morphological changes in the soil. Biochar can help to enhance soil health and fertility as well as improve agricultural yield. As a result, biochar can assist in increasing food security by promoting sustainable agricultural systems and preserving an eco-friendly environment. Biochar is also widely being used as a sorbent for organic and inorganic pollutants, owing to its large surface area, allowing it to be immobilized from soil with ease. The functional groups and charges present on the surface of biochar play an important role in pollutants removal. This review focuses on the mechanisms of biochar production using different waste materials as a feed stock, factors that influence biochar quality as well as application of biochar in agricultural soil and their reclamation as well. This article also discusses knowledge gaps and future perspectives in the field of biochar-based toxic-pollution remediation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture13030512&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture13030512&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Surya Pratap Singh; Meena Kumari Sharma; Shatrudhan Pandey; S. M. Mozammil Hasnain; +2 AuthorsSurya Pratap Singh; Meena Kumari Sharma; Shatrudhan Pandey; S. M. Mozammil Hasnain; Fahad M. Alqahtani; Faisal M. Alessa;doi: 10.3390/su151612220
The growing population and increasing urbanization have led to a surge in domestic wastewater generation, posing significant challenges for effective and sustainable treatment. The present study demonstrates a novel and sustainable approach for the onsite treatment of domestic wastewater using an integrated settler-based biofilm reactor (ISBR) with efficient biogas generation. The ISBR provides an optimized environment for the growth of biofilm, facilitating the removal of organic pollutants and pathogens. Moreover, the ISBR enables the recovery of a valuable resource in the form of biogas, thus enhancing the overall utility of the treatment process. The performance of the ISBR was comprehensively evaluated at laboratory scale through treating the actual domestic wastewater generated from the hostel of Manipal University Jaipur. The ISBR system was operated under an ambient environment at a hydraulic retention time (HRT) of 24 h. The results demonstrated remarkable efficiency in terms of chemical oxygen demand (COD), total suspended solids (TSS), and coliforms removal, with average removal efficiency being more than 90%. According to the COD mass balance analysis, 48.2% of the influent COD was recovered as bioenergy. The chromatogram revealed a high percentage of methane gas in the collected biogas sample. The field emission scanning electron microscope (FESEM) analysis of the accumulated sludge in the ISBR system depicted the morphology of methanogenic bacteria. Both the experimental and theoretical results confirmed the feasibility and sustainability of the ISBR system at the onsite level.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institution of Engineering and Technology (IET) Authors: Jayati Vaish; Anil Kumar Tiwari; Khadim Moin Siddiqui;doi: 10.1049/rpg2.12699
AbstractRecently, modern power systems depend heavily on MicroGrids (MGs), which can accommodate Distributed Energy Resources (DERs) economically and with high flexibility. MGs integrated with DERs can assist in enhancing energy security, significant cost savings, and reduction in emission of greenhouse gases. In this paper, the assessment of operating performance of proposed MG system with DERs is employed to investigate the multi‐objective problems of cost optimization and economic scheduling. A grid‐connected Micro‐grid (MG) combined with solar photovoltaic (PV), wind turbine (WT), fuel cell (FC), and Battery Energy Storage System (BESS) is implemented to model the problem. This proposed model is considered as a test system for cost optimization and battery charging/discharging optimization. The developed framework is presented as multi‐objective function with constraints that can be tackled using an effective optimization technique. The above stochastic multi‐objective problem is optimized using various commonly used Physics based Meta‐heuristic techniques such as Simulated Annealing (SA), Harmony Search (HS), Slime Mold Algorithm (SMA), Gravitational Search Algorithm (GSA), Black Hole Optimization (BHO), Sine Cosine Algorithm (SCA), Multiverse optimization (MVO) and Lightning Search Algorithm (LSA). The assessment of the aforementioned physics‐based optimization techniques used on the proposed MG test system is compared using the results. According to the analysis, Black Hole Optimization (BHO) and Lightning Search Algorithm (LSA) both provide greater cost savings overall and for battery charging, respectively. The suggested optimization methods will take the BESS charging/discharging pattern and total cost savings into account.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United States, United States, AustraliaPublisher:MDPI AG John B. Gaughan; A. M. Lees; A. M. Lees; Cameron C. Steel; Andrea L. Wallage; Veerasamy Sejian; Terry L. Mader; J. C. Lees;Heat stress and cold stress have a negative influence on cattle welfare and productivity. There have been some studies investigating the influence of cold stress on cattle, however the emphasis within this review is the influence of heat stress on cattle. The impact of hot weather on cattle is of increasing importance due to the changing global environment. Heat stress is a worldwide phenomenon that is associated with reduced animal productivity and welfare, particularly during the summer months. Animal responses to their thermal environment are extremely varied, however, it is clear that the thermal environment influences the health, productivity, and welfare of cattle. Whilst knowledge continues to be developed, managing livestock to reduce the negative impact of hot climatic conditions remains somewhat challenging. This review provides an overview of the impact of heat stress on production and reproduction in bovines.
Animals arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ani9060322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 168 citations 168 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Animals arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ani9060322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:Springer Science and Business Media LLC Shaktiman Singh; Atar Singh; Ramesh Kumar; Rajesh Kumar; Rajesh Kumar; Shruti Singh; Surjeet Singh Randhawa;AbstractIn the present study, we analyze a field-based seven-year data series of surface mass-balance measurements collected during 2011/12 to 2017/18 on Naradu Glacier, western Himalaya, India. The average annual specific mass balance for the said period is − 0.85 m w.e. with the maximum ablation of − 1.15 m w.e. The analysis shows that the topographic features, south and southeast aspects and slopes between 7 to 24 degrees are the reasons behind the maximum ablation from a particular zone. The causes of surface mass balance variability have been analyzed through multiple linear regression analyses (MLRA) by taking temperature and precipitation as predictors. The MLRA demonstrates that 71% of the observed surface mass balance variance can be explained by temperature and precipitation. It clearly illustrates the importance of summer temperature, which alone explains 64% variance of surface mass balance. The seasonal analysis shows that most of the surface mass balance variability is described by summer temperature and winter precipitation as two predictor variables. Among monthly combinations, surface mass balance variance is best characterized by June temperature and September precipitation.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16790Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-91348-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16790Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-91348-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Ayyadurai, Saravanakumar; Pradeshwaran, Vijayakumar; Anh Tuan, Hoang; Eilhann E, Kwon; +1 AuthorsAyyadurai, Saravanakumar; Pradeshwaran, Vijayakumar; Anh Tuan, Hoang; Eilhann E, Kwon; Wei-Hsin, Chen;pmid: 36587772
Large-size woody biomass is a valuable renewable resource to replace fossil fuels in biorefinery processes. The preprocessing of wood chips and briquettes is challenging to manage, especially in an industrial setting, as it generates a significant amount of dust and noise and occasionally causes unexpected accidents. As a result, a substantial amount of resources, energy, labor, and space are needed. The thermochemical conversion behavior of large-size woody biomass was studied to reduce energy consumption for chipping. Large-size wood was 1.5 m in length, 0.1 m in breadth, and stacked 90 cm in height. This strategy has many benefits, including increased effectiveness and reduced CO2 emissions. The target of this paper presents the thermochemical process, and large-size wood was chosen because it provides high-quality product gas while reducing the preprocessing fuel cost. This review examines the benefits of thermochemical conversion technologies for assessing the likelihood of carbon neutrality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesSilvio Marta; Roberto Sergio Azzoni; Davide Fugazza; Levan Tielidze; Pritam Chand; Katrin Sieron; Peter Almond; Roberto Ambrosini; Fabien Anthelme; Pablo Alviz Gazitúa; Rakesh Bhambri; Aurélie Bonin; Marco Caccianiga; Sophie Cauvy-Fraunié; Jorge Luis Ceballos Lievano; John Clague; Justiniano Alejo Cochachín Rapre; Olivier Dangles; Philip Deline; Andre Eger; Rolando Cruz Encarnación; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Alessia Guerrieri; Sigmund Hågvar; Norine Khedim; Rahab Kinyanjui; Erwan Messager; Marco Aurelio Morales-Martínez; Gwendolyn Peyre; Francesca Pittino; Jerome Poulenard; Roberto Seppi; Milap Chand Sharma; Nurai Urseitova; Blake Weissling; Yan Yang; Vitalii Zaginaev; Anaïs Zimmer; Guglielmina Adele Diolaiuti; Antoine Rabatel; Gentile Francesco Ficetola;doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Hamed H. Saber; Ali E. Hajiah; Saleh A. Alshehri;doi: 10.3390/su132212522
The heat generation from recent advanced computer chips is increasing rapidly. This creates a challenge in cooling the chips while maintaining their temperatures below the threshold values. Another challenge is that the heat generation in the chip is not uniform where some chip components generate more heat than other components. This would create a large temperature gradient across the chip, resulting in inducing thermal stresses inside the chip that may lead to a high probability to damage the chip. The locations in the chip with heat rates that correspond to high heat fluxes are known as hotspots. This research study focuses on using thermoelectric modules (TEMs) for cooling chip hotspots of different heat fluxes. When a TEM is used for cooling a chip hotspot, it is called a thermoelectric cooler (TEC), which requires electrical power. Additionally, when a TEM is used for converting a chip’s wasted heat to electrical power, it is called a thermoelectric generator (TEG). In this study, the TEMs are used for cooling the hotspots of computer chips, and a TEC is attached to the hotspot to reduce its temperature to an acceptable value. On the other hand, the other cold surfaces of the chip are attached to TEGs for harvesting electrical power from the chip’s wasted heat. Thereafter, this harvested electrical power (HEP) is then used to run the TEC attached to the hotspot. Since no external electrical power is needed for cooling the hotspot to an acceptable temperature, this technique is called a sustainable self-cooling framework (SSCF). In this paper, the operation principles of the SSCF to cool the hotspot, subjected to different operating conditions, are discussed. As well, considerations are given to investigate the effect of the TEM geometrical parameters, such as the P-/N-leg height and spacing between the legs in both operations of the TEC mode and TEG mode on the SSCF performance.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:MDPI AG Authors: Hisham Alabduljabbar; Ghasan Fahim Huseien; Abdul Rahman Mohd Sam; Rayed Alyouef; +2 AuthorsHisham Alabduljabbar; Ghasan Fahim Huseien; Abdul Rahman Mohd Sam; Rayed Alyouef; Hassan Amer Algaifi; Abdulaziz Alaskar;Alkali activated concretes have emerged as a prospective alternative to conventional concrete wherein diverse waste materials have been converted as valuable spin-offs. This paper presents a wide experimental study on the sustainability of employing waste sawdust as a fine/coarse aggregate replacement incorporating fly ash (FA) and granulated blast furnace slag (GBFS) to make high-performance cement-free lightweight concretes. Waste sawdust was replaced with aggregate at 0, 25, 50, 75, and 100 vol% incorporating alkali binder, including 70% FA and 30% GBFS. The blend was activated using a low sodium hydroxide concentration (2 M). The acoustic, thermal, and predicted engineering properties of concretes were evaluated, and the life cycle of various mixtures were calculated to investigate the sustainability of concrete. Besides this, by using the available experimental test database, an optimized Artificial Neural Network (ANN) was developed to estimate the mechanical properties of the designed alkali-activated mortar mixes depending on each sawdust volume percentage. Based on the findings, it was found that the sound absorption and reduction in thermal conductivity were enhanced with increasing sawdust contents. The compressive strengths of the specimens were found to be influenced by the sawdust content and the strength dropped from 65 to 48 MPa with the corresponding increase in the sawdust levels from 0% up to 100%. The results also showed that the emissions of carbon dioxide, energy utilization, and outlay tended to drop with an increase in the amount of sawdust and show more the lightweight concrete to be more sustainable for construction applications.
Materials arrow_drop_down MaterialsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1944/13/23/5490/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma13235490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Materials arrow_drop_down MaterialsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1944/13/23/5490/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma13235490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Khushbu Kumari; Raushan Kumar; Nirmali Bordoloi; Tatiana Minkina; Chetan Keswani; Kuldeep Bauddh;Considerable interest is being shown in using biochar production from waste biomass with a variety of disciplines to address the most pressing environmental challenges. Biochar produced by the thermal decomposition of biomass under oxygen-limited conditions is gaining popularity as a low-cost amendment for agro-ecosystems. The efficiency of biochar formation is affected by temperature, heating rate, feedstock type, particle size and reactor conditions. Properties such as pH, surface area and ash content of produced biochar increases with increasing temperatures. Biochar produced at lower heating rates may have high porosity and be beneficial for morphological changes in the soil. Biochar can help to enhance soil health and fertility as well as improve agricultural yield. As a result, biochar can assist in increasing food security by promoting sustainable agricultural systems and preserving an eco-friendly environment. Biochar is also widely being used as a sorbent for organic and inorganic pollutants, owing to its large surface area, allowing it to be immobilized from soil with ease. The functional groups and charges present on the surface of biochar play an important role in pollutants removal. This review focuses on the mechanisms of biochar production using different waste materials as a feed stock, factors that influence biochar quality as well as application of biochar in agricultural soil and their reclamation as well. This article also discusses knowledge gaps and future perspectives in the field of biochar-based toxic-pollution remediation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture13030512&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture13030512&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Surya Pratap Singh; Meena Kumari Sharma; Shatrudhan Pandey; S. M. Mozammil Hasnain; +2 AuthorsSurya Pratap Singh; Meena Kumari Sharma; Shatrudhan Pandey; S. M. Mozammil Hasnain; Fahad M. Alqahtani; Faisal M. Alessa;doi: 10.3390/su151612220
The growing population and increasing urbanization have led to a surge in domestic wastewater generation, posing significant challenges for effective and sustainable treatment. The present study demonstrates a novel and sustainable approach for the onsite treatment of domestic wastewater using an integrated settler-based biofilm reactor (ISBR) with efficient biogas generation. The ISBR provides an optimized environment for the growth of biofilm, facilitating the removal of organic pollutants and pathogens. Moreover, the ISBR enables the recovery of a valuable resource in the form of biogas, thus enhancing the overall utility of the treatment process. The performance of the ISBR was comprehensively evaluated at laboratory scale through treating the actual domestic wastewater generated from the hostel of Manipal University Jaipur. The ISBR system was operated under an ambient environment at a hydraulic retention time (HRT) of 24 h. The results demonstrated remarkable efficiency in terms of chemical oxygen demand (COD), total suspended solids (TSS), and coliforms removal, with average removal efficiency being more than 90%. According to the COD mass balance analysis, 48.2% of the influent COD was recovered as bioenergy. The chromatogram revealed a high percentage of methane gas in the collected biogas sample. The field emission scanning electron microscope (FESEM) analysis of the accumulated sludge in the ISBR system depicted the morphology of methanogenic bacteria. Both the experimental and theoretical results confirmed the feasibility and sustainability of the ISBR system at the onsite level.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institution of Engineering and Technology (IET) Authors: Jayati Vaish; Anil Kumar Tiwari; Khadim Moin Siddiqui;doi: 10.1049/rpg2.12699
AbstractRecently, modern power systems depend heavily on MicroGrids (MGs), which can accommodate Distributed Energy Resources (DERs) economically and with high flexibility. MGs integrated with DERs can assist in enhancing energy security, significant cost savings, and reduction in emission of greenhouse gases. In this paper, the assessment of operating performance of proposed MG system with DERs is employed to investigate the multi‐objective problems of cost optimization and economic scheduling. A grid‐connected Micro‐grid (MG) combined with solar photovoltaic (PV), wind turbine (WT), fuel cell (FC), and Battery Energy Storage System (BESS) is implemented to model the problem. This proposed model is considered as a test system for cost optimization and battery charging/discharging optimization. The developed framework is presented as multi‐objective function with constraints that can be tackled using an effective optimization technique. The above stochastic multi‐objective problem is optimized using various commonly used Physics based Meta‐heuristic techniques such as Simulated Annealing (SA), Harmony Search (HS), Slime Mold Algorithm (SMA), Gravitational Search Algorithm (GSA), Black Hole Optimization (BHO), Sine Cosine Algorithm (SCA), Multiverse optimization (MVO) and Lightning Search Algorithm (LSA). The assessment of the aforementioned physics‐based optimization techniques used on the proposed MG test system is compared using the results. According to the analysis, Black Hole Optimization (BHO) and Lightning Search Algorithm (LSA) both provide greater cost savings overall and for battery charging, respectively. The suggested optimization methods will take the BESS charging/discharging pattern and total cost savings into account.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United States, United States, AustraliaPublisher:MDPI AG John B. Gaughan; A. M. Lees; A. M. Lees; Cameron C. Steel; Andrea L. Wallage; Veerasamy Sejian; Terry L. Mader; J. C. Lees;Heat stress and cold stress have a negative influence on cattle welfare and productivity. There have been some studies investigating the influence of cold stress on cattle, however the emphasis within this review is the influence of heat stress on cattle. The impact of hot weather on cattle is of increasing importance due to the changing global environment. Heat stress is a worldwide phenomenon that is associated with reduced animal productivity and welfare, particularly during the summer months. Animal responses to their thermal environment are extremely varied, however, it is clear that the thermal environment influences the health, productivity, and welfare of cattle. Whilst knowledge continues to be developed, managing livestock to reduce the negative impact of hot climatic conditions remains somewhat challenging. This review provides an overview of the impact of heat stress on production and reproduction in bovines.
Animals arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ani9060322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 168 citations 168 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Animals arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ani9060322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:Springer Science and Business Media LLC Shaktiman Singh; Atar Singh; Ramesh Kumar; Rajesh Kumar; Rajesh Kumar; Shruti Singh; Surjeet Singh Randhawa;AbstractIn the present study, we analyze a field-based seven-year data series of surface mass-balance measurements collected during 2011/12 to 2017/18 on Naradu Glacier, western Himalaya, India. The average annual specific mass balance for the said period is − 0.85 m w.e. with the maximum ablation of − 1.15 m w.e. The analysis shows that the topographic features, south and southeast aspects and slopes between 7 to 24 degrees are the reasons behind the maximum ablation from a particular zone. The causes of surface mass balance variability have been analyzed through multiple linear regression analyses (MLRA) by taking temperature and precipitation as predictors. The MLRA demonstrates that 71% of the observed surface mass balance variance can be explained by temperature and precipitation. It clearly illustrates the importance of summer temperature, which alone explains 64% variance of surface mass balance. The seasonal analysis shows that most of the surface mass balance variability is described by summer temperature and winter precipitation as two predictor variables. Among monthly combinations, surface mass balance variance is best characterized by June temperature and September precipitation.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16790Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-91348-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16790Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-91348-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Ayyadurai, Saravanakumar; Pradeshwaran, Vijayakumar; Anh Tuan, Hoang; Eilhann E, Kwon; +1 AuthorsAyyadurai, Saravanakumar; Pradeshwaran, Vijayakumar; Anh Tuan, Hoang; Eilhann E, Kwon; Wei-Hsin, Chen;pmid: 36587772
Large-size woody biomass is a valuable renewable resource to replace fossil fuels in biorefinery processes. The preprocessing of wood chips and briquettes is challenging to manage, especially in an industrial setting, as it generates a significant amount of dust and noise and occasionally causes unexpected accidents. As a result, a substantial amount of resources, energy, labor, and space are needed. The thermochemical conversion behavior of large-size woody biomass was studied to reduce energy consumption for chipping. Large-size wood was 1.5 m in length, 0.1 m in breadth, and stacked 90 cm in height. This strategy has many benefits, including increased effectiveness and reduced CO2 emissions. The target of this paper presents the thermochemical process, and large-size wood was chosen because it provides high-quality product gas while reducing the preprocessing fuel cost. This review examines the benefits of thermochemical conversion technologies for assessing the likelihood of carbon neutrality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu