- home
- Advanced Search
- Energy Research
- Closed Access
- Open Source
- 7. Clean energy
- 13. Climate action
- 14. Life underwater
- IN
- Energy Research
- Closed Access
- Open Source
- 7. Clean energy
- 13. Climate action
- 14. Life underwater
- IN
description Publicationkeyboard_double_arrow_right Article , Journal 1987Publisher:Elsevier BV Authors: B.C. Raychaudhuri; Ram Chandra; V.K. Goel;Abstract The reverse flat-plate collector is a non-concentrating collector. It can collect solar heat at high temperatures which cannot be achieved by conventional non-concentrating collectors. In this paper, the authors have proposed a number of modified versions of the originally proposed reverse flat-plate collector. The new designs are of single, as well as double, absorber type. The thermal performance of these modified reverse flat-plate collectors is compared with that of a single absorber reverse flat-plate collector, as well as with the corresponding normal flat-plate collector. It is found that the new design having two absorbers gives the best thermal performance as compared with other configurations. The analytical models presented in this paper very well describe the experimental results.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(87)90109-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(87)90109-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Senthilkumar Pachamuthu; Terese Løvås; Johan E. Hustad; Dhandapani Kannan; Md. Nurun Nabi;Abstract In this work addition of ethanol to high viscosity jatropha methyl ester (JME) through port injection is investigated in order to determine its effect fuel viscosity reduction on diesel engine performance. In addition to viscosity alteration, the impact of ethanol addition on combustion characteristics such as combustion duration, ignition delay and emissions levels from diesel engines fuelled with blends of ethanol, diesel and JME is studied in particular. It is found that blending of oxygenated fuels with diesel modifies the chemical structure and physical properties which again alter the engine operating conditions, combustion parameters and emissions levels. However, the injection of only 5% ethanol through port injection allows for a total of 25% blending of biofuels into diesel yet keeping the fuel characteristics close to that of conventional diesel. However, both experimental and numerical results show that ethanol addition in JME blended diesel results in a slight increase in fuel consumption and thermal efficiency for the same power outputs as that of conventional diesel fuel. Also, the combustion characteristics with ethanol addition include improved maximum in-cylinder peak pressure, cumulative heat release (CHR) rate of heat release (ROHR), in-cylinder peak temperature and combustion duration. Regarding emission characteristics the experimental results show significant reduction in smoke, carbon monoxide (CO) and total hydrocarbon (THC) emissions with extended oxygen mass percentage in the fuel at higher engine loads. However, oxides of nitrogen (NOx) emissions are found to increase at high loads although the common tradeoff between smoke and NOx is found to be more prominent for the oxygenated fuels.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu116 citations 116 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | MefCO2EC| MefCO2Authors: Bellotti, D.; Rivarolo, M.; Magistri, L.; Massardo, A. F.;handle: 11567/893436
Abstract This paper aims to present a feasibility study of the innovative plant for methanol synthesis from carbon dioxide-sequestered by fossil fuel power plant and hydrogen, which is produced by water electrolyzer employing the over-production on the electrical grid. The thermo-economic analysis is performed in the framework of the MefCO2 H2020 EU project and it is referred to the German economic scenario, properly taking into account the real market costs and cost functions for different components of the plant. Three different plant capacities for methanol production (4000 10,000 and 50,000 ton/year) have been investigated, assuming an average cost for electrical energy to feed electrolysers and analyzing the influence of the most significant parameters (oxygen selling option, methanol selling price and electrolysers’ capital cost) on the profitability of the plant. The analysis has been performed in W-ECoMP, software for the thermo-economic analysis and plant optimization developed by the University of Genoa.
Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2017.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu181 citations 181 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2017.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV A. James; Simon Jayaraj; Murugesan Mohanraj; Arun K. Raj; M. Srinivas;Abstract The present work attempts to devise an efficient method utilizing an on-grid photovoltaic-thermal heat pump water heater (PV-THPWH) integrated with a real-time variable frequency controller to achieve the goal of energy-efficient buildings. The prime focus is to reduce the grid's dependence on the compressor's energy-intensive operation by employing a feedback-controlled variable frequency drive (VFD). Additionally, the possibilities involved with addressing the electrical and thermal energy requirements of an energy-efficient building was investigated utilizing the proposed system. R-32 refrigerant in the photovoltaic-thermal (PV-T) evaporator coils of the heat pump assembly help to cool the photovoltaic (PV) panel while delivering the absorbed heat in the condenser to heat water contained inside the storage tank. Outdoor experiments and theoretical investigations of the combined system were carried out to appraise the dynamic behavior under varying solar irradiation and ambient temperature conditions. The observations conveyed that the PV-THPWH system succeeded in reducing the PV panel operating temperature by 25%, which resulted in a 20% increment in PV power output. Also, the performance indicators, such as the instantaneous energy efficiency and instantaneous PV efficiency, were found to increase by 15% and 34%, respectively, resulting in an average coefficient of performance of 6.4. For a clear sky day, the recorded total PV energy output was 4.67 units, while the VFD compressor consumption was 3.42 units, and the surplus 1.25 units were sent to the grid. Furthermore, the economic analysis reported a payback period of 2.3 years for the developed PV-THPWH system.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Sanjay Kumar; Vipin Sharma; Nikhil Chander; Manas R. Samantaray;Abstract Gold nanoparticles (Au-NPs) seeded plasmonic nanofluids (PNFs) have shown promising results in overall performance enhancement of direct absorption solar collector (DASC) due to localized surface plasmon resonance (LSPR) effect. For the work presented here, Au-NPs were synthesized by the wet chemical method and were utilized to prepare plasmonic nanofluid. The surface plasmon resonance peak of Au-NPs was observed at 531 nm using UV–Visible spectrophotometer study. The testing for performance enhancement of gold plasmonic nanofluid (GPNF) laden DASC so far is limited to laboratory scale setups or simulation studies. Considering the dearth of outdoor experimental studies, an attempt has been made in the present study to evaluate the thermal performance of Au-NPs (∼40 nm) based nanofluid (∼0.0002 wt%) in full scale DASC. The experiments have been performed at different flow rates under clear sky outdoor conditions in winter season at Jalandhar, India. The maximum collector outlet temperature was measured to be 55 °C with GPNF which is about 7 °C higher than the maximum outlet temperature obtained with de-ionized water as working fluid. Thermal efficiency with GPNF is about 33% higher than de-ionized water at the optimal flow rate of 0.030 kg/s.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Arunjyoti Sarkar; Parikshit Kundu; Vishwanath Nagarajan;Abstract Designing a high-performance hydrofoil is a fundamental challenge for the current turbine blade designers. In this paper, the performance of S1210 hydrofoil, commonly used in the tidal current turbine blades, in presence of (i) Vortex Generators (VGs), and (ii) modified trailing edge is numerically studied. The results show that attaching counter-rotating VGs near the trailing edge of the foil can increase the lift coefficient by 17% and delay the stall angle from 10° to 12°. Constructing a rounded and thicker trailing edge can help to improve the hydrodynamic performance by increasing the lift coefficient by 13.5%. The combination of VGs (located near the trailing edge) and rounded trailing edge can increase the glide ratio significantly. These observations have been explained by plotting the pressure coefficients and velocity profiles at different locations on the foil surface. The findings will be useful to manufacture a stronger blade profile and extract more power from the current turbines that operate at wide current speed variation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.04.148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.04.148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Koushik Ghosh; Achintya Mukhopadhyay; Swarnendu Sen; Rajeswar Chatterjee; Antarip Poddar;Longitudinal flow through central subchannel structures in an array of fuel rods in a nuclear reactor plays an important role in removing the heat generated inside the fuel rods. In this paper, an entropy generation analysis has been carried out for assessment of the performance of an infinite triangular as well as a square subchannel for single-phase forced turbulent flow. The performance is evaluated with the objective function being the overall entropy generation in a central subchannel. Various constraints such as dimensionless flow area subtended by the array of rods, pitch to diameter ratio for the configuration of rod bundles and volumetric heat generation to power density ratio of the subchannel imposed by power restrictions have been considered. The parameters include the dimensionless wall heat flux, duty parameter, length to diameter ratio for fuel rods, Reynolds number etc. It has been observed that for a pitch to diameter ratio constraint the square subchannel generates lesser amount of entropy and thus more acceptable compared to triangular structure. For the same constraint the optimum Reynolds number shifts towards higher value compared to triangular one. For dimensionless flow area constraint, on the other hand, the analysis reveals completely reverse phenomenon.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.04.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.04.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: S.C. Kaushik; Dibakar Rakshit; Rupinder Pal Singh;Abstract Thermal energy storage systems based on Phase change materials (PCM) are an attractive option to bridge the temporal and spatial gap between the energy demand and supply. But, these systems possess poor thermal conductivity causing reduced rate of heat transfer. The objective of the present study is to numerically analyze the melting process in an optimized finned latent heat storage system dispersed with varying volume fraction of Graphene nano plates (GNP). The individual effect of incorporating fins, GNP and a combination of both at different volume fraction has been studied. Effective thermal conductivity of nano-composite PCM has been theoretically evaluated including the effect of aspect ratio, interfacial thermal resistance, anisotropy, non-linear effects as well as concentration for the dispersed GNP. In this work, Dynamic differential scanning calorimetry tests are performed to evaluate the phase change temperature, latent heat and specific heat of the sugar alcohol (d- mannitol). Transient variation of liquid fraction, average temperature and radial/longitudinal temperature differentials are presented which would be useful for designing medium temperature (160–200 °C) storage systems for various applications. Fin height is varied to obtain an optimum fin size such that natural convection currents are not impeded. Various heat transfer models (including natural convection) are analysed using the actual plant data of a double effect solar absorption system at different arrangements of fins and GNP. Effect of Reynolds number and inlet temperature of HTF on the system performance have also been studied. A reduction of 68% in total melting time is observed in finned LHSS with 5% GNP as compared to a conventional system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.02.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu117 citations 117 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.02.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Aklilu Tesfamichael Baheta; Mior A. Said; Alina Adriana Minea; K.V. Sharma; Suleiman Akilu;Abstract Hybrid nanofluids are a novel class of colloidal fluids which have drawn significant attention due to potential tailoring of their thermo-physical properties for heat transfer enhancement by a combination of more than one nano-additive to meet specific requirements of an application. In the present work, ceramic copper oxide/carbon (SiO2-CuO/C) nanoparticles in 80:20 (wt%) composition were prepared by ultrasonic-assisted wet mixing technique. The hybrid nanofluid was formulated by dispersing the nanoparticles into a base fluid mixture of 60:40 (% by mass) glycerol and ethylene glycol (G/EG) using the two-steps method. The influence of nanoparticles on the augmentation of specific heat, thermal conductivity and viscosity was examined in the volume concentration range of 0.5–2.0% in the temperature range of 303.15–353.15 K. The results demonstrate that the synthesized SiO2-CuO/C hybrid nanoparticles enhanced the thermo-physical properties of the base fluid mixture which is higher than using SiO2 alone. In the case of SiO2–G/EG nanofluid, the specific heat capacity decremented by a maximum value of 5.7% whereas the thermal conductivity and viscosity incremented by 6.9% and 1.33-times as compared with G/EG at maximum volume concentration of 2.0% at a temperature of 353.15 K. Comparatively, a reinforcement of 80% SiO2 with 20% CuO/C in G/EG mixture led to thermal conductivity and viscosity enhancement by 26.9% and 1.15-times, respectively with a significant reduction of specific heat by 21.1%. New empirical correlations were proposed based on the experimental data for evaluation of thermophysical properties.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu126 citations 126 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Pradip Roul; Harshita Madduri; K. Obaidurrahman;Abstract It is well known that Espinosa-parades et al. (Espinosa-Paredes et al., 2011) proposed a fractional neutron point kinetic (FNPK) model with multi-group of delayed neutrons to describe dynamic behavior in a nuclear reactor. In (Aboanber and Nahla, 2016b), Aboanber and Nahla presented an extension of Espinosa-parades et al. FNPK model. This new model is called as the corrected fractional neutron point kinetic (CFNPK) model. The present study is concerned with the numerical solution of the CFNPK model (Aboanber and Nahla, 2016b) with six groups of delayed neutron precursors. The fractional derivative is described in the sense of Grunwald-Letnikov. An implicit finite difference method (FDM) is constructed for the solution of CFNPK model. The stability analysis of the method is carried out. We analyze the results of neutron density for different values of anomalous diffusion order, reactivity function, relaxation time and time step size. In addition, we compare the results corresponding to CFNPK model (Aboanber and Nahla, 2016b) with the results corresponding to the FNPK model proposed by Espinosa-parades et al. (Espinosa-Paredes et al., 2011). It is shown that as anomalous diffusion order decreases or simulation time increases the difference between the values of neutron density increases. We have investigated the effects of each term of the CFNPK.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2019.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2019.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 1987Publisher:Elsevier BV Authors: B.C. Raychaudhuri; Ram Chandra; V.K. Goel;Abstract The reverse flat-plate collector is a non-concentrating collector. It can collect solar heat at high temperatures which cannot be achieved by conventional non-concentrating collectors. In this paper, the authors have proposed a number of modified versions of the originally proposed reverse flat-plate collector. The new designs are of single, as well as double, absorber type. The thermal performance of these modified reverse flat-plate collectors is compared with that of a single absorber reverse flat-plate collector, as well as with the corresponding normal flat-plate collector. It is found that the new design having two absorbers gives the best thermal performance as compared with other configurations. The analytical models presented in this paper very well describe the experimental results.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(87)90109-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(87)90109-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Senthilkumar Pachamuthu; Terese Løvås; Johan E. Hustad; Dhandapani Kannan; Md. Nurun Nabi;Abstract In this work addition of ethanol to high viscosity jatropha methyl ester (JME) through port injection is investigated in order to determine its effect fuel viscosity reduction on diesel engine performance. In addition to viscosity alteration, the impact of ethanol addition on combustion characteristics such as combustion duration, ignition delay and emissions levels from diesel engines fuelled with blends of ethanol, diesel and JME is studied in particular. It is found that blending of oxygenated fuels with diesel modifies the chemical structure and physical properties which again alter the engine operating conditions, combustion parameters and emissions levels. However, the injection of only 5% ethanol through port injection allows for a total of 25% blending of biofuels into diesel yet keeping the fuel characteristics close to that of conventional diesel. However, both experimental and numerical results show that ethanol addition in JME blended diesel results in a slight increase in fuel consumption and thermal efficiency for the same power outputs as that of conventional diesel fuel. Also, the combustion characteristics with ethanol addition include improved maximum in-cylinder peak pressure, cumulative heat release (CHR) rate of heat release (ROHR), in-cylinder peak temperature and combustion duration. Regarding emission characteristics the experimental results show significant reduction in smoke, carbon monoxide (CO) and total hydrocarbon (THC) emissions with extended oxygen mass percentage in the fuel at higher engine loads. However, oxides of nitrogen (NOx) emissions are found to increase at high loads although the common tradeoff between smoke and NOx is found to be more prominent for the oxygenated fuels.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu116 citations 116 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | MefCO2EC| MefCO2Authors: Bellotti, D.; Rivarolo, M.; Magistri, L.; Massardo, A. F.;handle: 11567/893436
Abstract This paper aims to present a feasibility study of the innovative plant for methanol synthesis from carbon dioxide-sequestered by fossil fuel power plant and hydrogen, which is produced by water electrolyzer employing the over-production on the electrical grid. The thermo-economic analysis is performed in the framework of the MefCO2 H2020 EU project and it is referred to the German economic scenario, properly taking into account the real market costs and cost functions for different components of the plant. Three different plant capacities for methanol production (4000 10,000 and 50,000 ton/year) have been investigated, assuming an average cost for electrical energy to feed electrolysers and analyzing the influence of the most significant parameters (oxygen selling option, methanol selling price and electrolysers’ capital cost) on the profitability of the plant. The analysis has been performed in W-ECoMP, software for the thermo-economic analysis and plant optimization developed by the University of Genoa.
Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2017.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu181 citations 181 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2017.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV A. James; Simon Jayaraj; Murugesan Mohanraj; Arun K. Raj; M. Srinivas;Abstract The present work attempts to devise an efficient method utilizing an on-grid photovoltaic-thermal heat pump water heater (PV-THPWH) integrated with a real-time variable frequency controller to achieve the goal of energy-efficient buildings. The prime focus is to reduce the grid's dependence on the compressor's energy-intensive operation by employing a feedback-controlled variable frequency drive (VFD). Additionally, the possibilities involved with addressing the electrical and thermal energy requirements of an energy-efficient building was investigated utilizing the proposed system. R-32 refrigerant in the photovoltaic-thermal (PV-T) evaporator coils of the heat pump assembly help to cool the photovoltaic (PV) panel while delivering the absorbed heat in the condenser to heat water contained inside the storage tank. Outdoor experiments and theoretical investigations of the combined system were carried out to appraise the dynamic behavior under varying solar irradiation and ambient temperature conditions. The observations conveyed that the PV-THPWH system succeeded in reducing the PV panel operating temperature by 25%, which resulted in a 20% increment in PV power output. Also, the performance indicators, such as the instantaneous energy efficiency and instantaneous PV efficiency, were found to increase by 15% and 34%, respectively, resulting in an average coefficient of performance of 6.4. For a clear sky day, the recorded total PV energy output was 4.67 units, while the VFD compressor consumption was 3.42 units, and the surplus 1.25 units were sent to the grid. Furthermore, the economic analysis reported a payback period of 2.3 years for the developed PV-THPWH system.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Sanjay Kumar; Vipin Sharma; Nikhil Chander; Manas R. Samantaray;Abstract Gold nanoparticles (Au-NPs) seeded plasmonic nanofluids (PNFs) have shown promising results in overall performance enhancement of direct absorption solar collector (DASC) due to localized surface plasmon resonance (LSPR) effect. For the work presented here, Au-NPs were synthesized by the wet chemical method and were utilized to prepare plasmonic nanofluid. The surface plasmon resonance peak of Au-NPs was observed at 531 nm using UV–Visible spectrophotometer study. The testing for performance enhancement of gold plasmonic nanofluid (GPNF) laden DASC so far is limited to laboratory scale setups or simulation studies. Considering the dearth of outdoor experimental studies, an attempt has been made in the present study to evaluate the thermal performance of Au-NPs (∼40 nm) based nanofluid (∼0.0002 wt%) in full scale DASC. The experiments have been performed at different flow rates under clear sky outdoor conditions in winter season at Jalandhar, India. The maximum collector outlet temperature was measured to be 55 °C with GPNF which is about 7 °C higher than the maximum outlet temperature obtained with de-ionized water as working fluid. Thermal efficiency with GPNF is about 33% higher than de-ionized water at the optimal flow rate of 0.030 kg/s.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Arunjyoti Sarkar; Parikshit Kundu; Vishwanath Nagarajan;Abstract Designing a high-performance hydrofoil is a fundamental challenge for the current turbine blade designers. In this paper, the performance of S1210 hydrofoil, commonly used in the tidal current turbine blades, in presence of (i) Vortex Generators (VGs), and (ii) modified trailing edge is numerically studied. The results show that attaching counter-rotating VGs near the trailing edge of the foil can increase the lift coefficient by 17% and delay the stall angle from 10° to 12°. Constructing a rounded and thicker trailing edge can help to improve the hydrodynamic performance by increasing the lift coefficient by 13.5%. The combination of VGs (located near the trailing edge) and rounded trailing edge can increase the glide ratio significantly. These observations have been explained by plotting the pressure coefficients and velocity profiles at different locations on the foil surface. The findings will be useful to manufacture a stronger blade profile and extract more power from the current turbines that operate at wide current speed variation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.04.148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.04.148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Koushik Ghosh; Achintya Mukhopadhyay; Swarnendu Sen; Rajeswar Chatterjee; Antarip Poddar;Longitudinal flow through central subchannel structures in an array of fuel rods in a nuclear reactor plays an important role in removing the heat generated inside the fuel rods. In this paper, an entropy generation analysis has been carried out for assessment of the performance of an infinite triangular as well as a square subchannel for single-phase forced turbulent flow. The performance is evaluated with the objective function being the overall entropy generation in a central subchannel. Various constraints such as dimensionless flow area subtended by the array of rods, pitch to diameter ratio for the configuration of rod bundles and volumetric heat generation to power density ratio of the subchannel imposed by power restrictions have been considered. The parameters include the dimensionless wall heat flux, duty parameter, length to diameter ratio for fuel rods, Reynolds number etc. It has been observed that for a pitch to diameter ratio constraint the square subchannel generates lesser amount of entropy and thus more acceptable compared to triangular structure. For the same constraint the optimum Reynolds number shifts towards higher value compared to triangular one. For dimensionless flow area constraint, on the other hand, the analysis reveals completely reverse phenomenon.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.04.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.04.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: S.C. Kaushik; Dibakar Rakshit; Rupinder Pal Singh;Abstract Thermal energy storage systems based on Phase change materials (PCM) are an attractive option to bridge the temporal and spatial gap between the energy demand and supply. But, these systems possess poor thermal conductivity causing reduced rate of heat transfer. The objective of the present study is to numerically analyze the melting process in an optimized finned latent heat storage system dispersed with varying volume fraction of Graphene nano plates (GNP). The individual effect of incorporating fins, GNP and a combination of both at different volume fraction has been studied. Effective thermal conductivity of nano-composite PCM has been theoretically evaluated including the effect of aspect ratio, interfacial thermal resistance, anisotropy, non-linear effects as well as concentration for the dispersed GNP. In this work, Dynamic differential scanning calorimetry tests are performed to evaluate the phase change temperature, latent heat and specific heat of the sugar alcohol (d- mannitol). Transient variation of liquid fraction, average temperature and radial/longitudinal temperature differentials are presented which would be useful for designing medium temperature (160–200 °C) storage systems for various applications. Fin height is varied to obtain an optimum fin size such that natural convection currents are not impeded. Various heat transfer models (including natural convection) are analysed using the actual plant data of a double effect solar absorption system at different arrangements of fins and GNP. Effect of Reynolds number and inlet temperature of HTF on the system performance have also been studied. A reduction of 68% in total melting time is observed in finned LHSS with 5% GNP as compared to a conventional system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.02.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu117 citations 117 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.02.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Aklilu Tesfamichael Baheta; Mior A. Said; Alina Adriana Minea; K.V. Sharma; Suleiman Akilu;Abstract Hybrid nanofluids are a novel class of colloidal fluids which have drawn significant attention due to potential tailoring of their thermo-physical properties for heat transfer enhancement by a combination of more than one nano-additive to meet specific requirements of an application. In the present work, ceramic copper oxide/carbon (SiO2-CuO/C) nanoparticles in 80:20 (wt%) composition were prepared by ultrasonic-assisted wet mixing technique. The hybrid nanofluid was formulated by dispersing the nanoparticles into a base fluid mixture of 60:40 (% by mass) glycerol and ethylene glycol (G/EG) using the two-steps method. The influence of nanoparticles on the augmentation of specific heat, thermal conductivity and viscosity was examined in the volume concentration range of 0.5–2.0% in the temperature range of 303.15–353.15 K. The results demonstrate that the synthesized SiO2-CuO/C hybrid nanoparticles enhanced the thermo-physical properties of the base fluid mixture which is higher than using SiO2 alone. In the case of SiO2–G/EG nanofluid, the specific heat capacity decremented by a maximum value of 5.7% whereas the thermal conductivity and viscosity incremented by 6.9% and 1.33-times as compared with G/EG at maximum volume concentration of 2.0% at a temperature of 353.15 K. Comparatively, a reinforcement of 80% SiO2 with 20% CuO/C in G/EG mixture led to thermal conductivity and viscosity enhancement by 26.9% and 1.15-times, respectively with a significant reduction of specific heat by 21.1%. New empirical correlations were proposed based on the experimental data for evaluation of thermophysical properties.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu126 citations 126 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Pradip Roul; Harshita Madduri; K. Obaidurrahman;Abstract It is well known that Espinosa-parades et al. (Espinosa-Paredes et al., 2011) proposed a fractional neutron point kinetic (FNPK) model with multi-group of delayed neutrons to describe dynamic behavior in a nuclear reactor. In (Aboanber and Nahla, 2016b), Aboanber and Nahla presented an extension of Espinosa-parades et al. FNPK model. This new model is called as the corrected fractional neutron point kinetic (CFNPK) model. The present study is concerned with the numerical solution of the CFNPK model (Aboanber and Nahla, 2016b) with six groups of delayed neutron precursors. The fractional derivative is described in the sense of Grunwald-Letnikov. An implicit finite difference method (FDM) is constructed for the solution of CFNPK model. The stability analysis of the method is carried out. We analyze the results of neutron density for different values of anomalous diffusion order, reactivity function, relaxation time and time step size. In addition, we compare the results corresponding to CFNPK model (Aboanber and Nahla, 2016b) with the results corresponding to the FNPK model proposed by Espinosa-parades et al. (Espinosa-Paredes et al., 2011). It is shown that as anomalous diffusion order decreases or simulation time increases the difference between the values of neutron density increases. We have investigated the effects of each term of the CFNPK.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2019.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2019.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu