Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
    Clear
  • Field of Science
  • Funder
  • Country
    Clear
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
134 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2025-2025
  • Closed Access
  • IN

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Akash K. Rathod;
    Akash K. Rathod
    ORCID
    Harvested from ORCID Public Data File

    Akash K. Rathod in OpenAIRE
    orcid Yallappa M. Somagond;
    Yallappa M. Somagond
    ORCID
    Harvested from ORCID Public Data File

    Yallappa M. Somagond in OpenAIRE
    orcid Lokesha E.;
    Lokesha E.
    ORCID
    Harvested from ORCID Public Data File

    Lokesha E. in OpenAIRE
    Amit Kumar; +4 Authors

    Climate change poses significant challenges to livestock production worldwide. Wherein, it affects communities in developing nations primarily dependent on agriculture and animal husbandry. Its direct and indirect deleterious effects on agriculture and animal husbandry includes aberrant changes in weather patterns resulting in disturbed homeorhetic mechanism of livestock vis a vis indirectly affecting nutrient composition of feed and fodder. The nutritional stress (i.e. non-availability of nutrients in the required quantity and quality for particular livestock) is the critical factor affecting livestock performance, productivity, and reproductive efficiency. Nutritional stress may arise from both macro- and micro- nutrient imbalances; however, micronutrients are of paramount importance in climate change context due to their role in various vital functions of body namely, body metabolism, production, reproduction, and health. The micronutrients, minerals and vitamins, when supplied in adequate quantity and proportion aid in mitigating the stress induced by climate change on animals. Here, we tried to discuss the impact of climate change induced stresses on milk production, reproduction, and metabolic acclimation of heat-stressed animals. Furthermore, emphasis is given on the importance of dietary micronutrients management strategies to support livestock health and resilience during changing climatic conditions. By addressing the nutritional needs of livestock, farmers can achieve sustainability and well-being in livestock production under changing climatic condition.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tropical Animal Heal...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Tropical Animal Health and Production
    Article . 2025 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tropical Animal Heal...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Tropical Animal Health and Production
      Article . 2025 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nihal Singh, Khangar; T, Mohanasundari; Muskan, Bisla; K Thomas, Felix; +1 Authors

    This study quantified the environmental impacts of residue burning of major produced and burned crops in Madhya Pradesh, central India. The environmental impacts were quantified using Life Cycle Assessment (LCA) coupled with Monte Carlo simulation of 1000 iterations. Crop wise marginal impacts of the crops have been quantified using Multivariate regression model. The results showed that sugarcane and rice have the highest emissions in key impact categories, such as particulate matter formation (PMF) and global warming potential (GWP), whereas wheat and maize exhibit comparatively lower impacts. The combustion of residues significantly increases marine eutrophication (MEUT), agricultural land use (ALU), terrestrial acidification (TEAF) and GWP. Each kilogram of burned residue results in an increase of 21% in MEUT, 0.05% in ALU, 0.046% in TEAF and 0.028% in GWP, intensifying climate change. The results underscore the immediate necessity for specialized residue management strategies for sugarcane and rice crops. It is advisable to utilize sustainable alternatives such as composting or biochar production to mitigate emissions and enhance soil health, thereby addressing environmental and human health issues.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Monito...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Monitoring and Assessment
    Article . 2025 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Monito...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Monitoring and Assessment
      Article . 2025 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Satiprasad, Sahoo; orcid Chiranjit, Singha;
    Chiranjit, Singha
    ORCID
    Harvested from ORCID Public Data File

    Chiranjit, Singha in OpenAIRE
    Ajit, Govind; Mamta, Sharma;

    Rice crop disease is critical in precision agriculture due to various influencing components and unstable environments. The current study uses machine learning (ML) models to predict rice crop disease in Eastern India based on biophysical factors for current and future scenarios. The nine biophysical parameters are precipitation (Pr), maximum temperature (Tmax), minimum temperature (Tmin), soil texture (ST), available water capacity (AWC), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), normalized difference chlorophyll index (NDCI), and normalized difference moisture index (NDMI) by Random forest (RF), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGB), Artificial Neural Net (ANN), and Support vector Machine (SVM). The multicollinearity test Boruta feature selection techniques that assessed interdependency and prioritized the factors impacting crop disease. However, climatic change scenarios were created using the most recent Climate Coupled Model Intercomparison Project Phase 6 (CMIP6) Shared Socioeconomic Pathways (SSP) 2-4.5 and SSP5-8.5 datasets. The rice crop disease validation was accomplished using 1105 field-based farmer observation recordings. According to the current findings, Purba Bardhaman district experienced a 96.72% spread of rice brown spot disease due to weather conditions. In contrast, rice blast diseases are prevalent in the north-western region of Birbhum district, affecting 72.38% of rice plants due to high temperatures, water deficits, and low soil moisture. Rice tungro disease affects 63.45% of the rice plants in Bankura district due to nitrogen and zinc deficiencies. It was discovered that the link between NDMI and NDVI is robust and positive, with values ranging from 0.8 to 1. According to SHAP analysis, Pr, Tmin, and Tmax are the top three climatic variables impacting all types of disease cases. The study's findings could have a substantial impact on precision crop protection and meeting the United Nations Sustainable Development Goals.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Monito...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Monitoring and Assessment
    Article . 2025 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Monito...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Monitoring and Assessment
      Article . 2025 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Kuber Saxena;
    Kuber Saxena
    ORCID
    Harvested from ORCID Public Data File

    Kuber Saxena in OpenAIRE
    Subhransu Ranjan Samantaray; orcid bw Sarita Nanda;
    Sarita Nanda
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Sarita Nanda in OpenAIRE
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Power Systems
    Article . 2025 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Power Systems
      Article . 2025 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Amit Kumar;
    Amit Kumar
    ORCID
    Harvested from ORCID Public Data File

    Amit Kumar in OpenAIRE
    orcid Mohanasundari Thangavel;
    Mohanasundari Thangavel
    ORCID
    Harvested from ORCID Public Data File

    Mohanasundari Thangavel in OpenAIRE

    Climate change, resulting from anthropogenic activities, poses a substantial global challenge, inducing discernible shifts in hydro-climatic variables such as temperature, precipitation, river discharge, and extreme weather events. Its implications extend to India's natural resources and agricultural sectors. This research rigorously examines the long-term spatial and temporal changes in rainfall patterns in Bihar, India, utilising high-resolution daily rainfall gridded data from the India Meteorological Department, which includes data from a total of 133 grid points. Coefficient variation analysis reveals low monsoon and annual rainfall variability but substantial variations in the pre-monsoon, post-monsoon, and winter seasons, indicating pronounced changes in Bihar's precipitation patterns. Trend analysis offers nuanced insights, using Modified Mann-Kendall (MMK) and Innovative Trend Analysis (ITA). Pre-monsoon rainfall exhibits a statistically significant increasing trend (Z = 3.252), with an annual increment of 0.748 mm. In contrast, a persistent decline characterises monsoon (Z = - 0.598), post-monsoon (Z = - 0.112), winter (Z = - 0.297), and annual (Z = - 0.219) precipitation patterns over 72 years. Change point analysis identifies pivotal shifts in 1982 (annual), 2007 (monsoon), 2012 (pre-monsoon), 1954 (post-monsoon), and 1997 (winter). Spatial-temporal analysis indicates regional shifts post-1982, with maximum annual rainfall significantly decreasing from 2769 to 2453 mm. The findings underscore the necessity to reassess water resource management, employing diverse analytical approaches for robust climate adaptation, resource planning, and disaster preparedness. This research enhances the scientific understanding of long-term climate dynamics, offering insights into sustainable practices in Bihar's agriculture and environmental ecosystems.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2025 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science and Pollution Research
      Article . 2025 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Ande Bala Naga Lingaiah;
    Ande Bala Naga Lingaiah
    ORCID
    Harvested from ORCID Public Data File

    Ande Bala Naga Lingaiah in OpenAIRE
    orcid bw Narsa Reddy Tummuru;
    Narsa Reddy Tummuru
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Narsa Reddy Tummuru in OpenAIRE
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Sustainable Energy
    Article . 2025 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Sustainable Energy
      Article . 2025 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nicola T. Case; orcid bw Sarah J. Gurr;
    Sarah J. Gurr
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Sarah J. Gurr in OpenAIRE
    orcid Matthew C. Fisher;
    Matthew C. Fisher
    ORCID
    Harvested from ORCID Public Data File

    Matthew C. Fisher in OpenAIRE
    orcid bw David S. Blehert;
    David S. Blehert
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    David S. Blehert in OpenAIRE
    +29 Authors

    Over the past billion years, the fungal kingdom has diversified to more than two million species, with over 95% still undescribed. Beyond the well-known macroscopic mushrooms and microscopic yeast, fungi are heterotrophs that feed on almost any organic carbon, recycling nutrients through the decay of dead plants and animals and sequestering carbon into Earth's ecosystems. Human-directed applications of fungi extend from leavened bread, alcoholic beverages and biofuels to pharmaceuticals, including antibiotics and psychoactive compounds. Conversely, fungal infections pose risks to ecosystems ranging from crops to wildlife to humans; these risks are driven, in part, by human and animal movement, and might be accelerating with climate change. Genomic surveys are expanding our knowledge of the true biodiversity of the fungal kingdom, and genome-editing tools make it possible to imagine harnessing these organisms to fuel the bioeconomy. Here, we examine the fungal threats facing civilization and investigate opportunities to use fungi to combat these threats.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2025 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    Nature
    Article . 2025
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2025 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      Nature
      Article . 2025
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rijaa Zaka; orcid bw Karambir Singh Dhayal;
    Karambir Singh Dhayal
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Karambir Singh Dhayal in OpenAIRE
    Tiong Ying Ying; orcid Arun Kumar Giri;
    Arun Kumar Giri
    ORCID
    Harvested from ORCID Public Data File

    Arun Kumar Giri in OpenAIRE
    +2 Authors

    The policymakers in emerging economies have accelerated their efforts to move toward sustainable development due to the associated challenges of environmental degradation and disparities in economic growth. The present study is an effort in that direction; it looks at trade-adjusted carbon emissions (TACE) to help policymakers develop a relevant policy response to mitigate climate change in the BRICST (comprising Brazil, Russia, India, China, South Africa, and Turkey) regions. The study investigates the impact of financial inclusion, green finance, and sustainable economic development on carbon emissions adjusted for trade. The study utilizes the panel dataset of the BRICST regions from 2000 to 2023 by employing the econometric methods of the Method of Moments Quantile Regression (MMQR) approach. It recommends green finance, financial inclusion, and sustainable economic development to curb TACE. The research findings indicate a noteworthy correlation between green finance, financial inclusion, sustainable economic development and TACE. The study recommends policy measures for the BRICST regions that align with the Sustainable Development Goals, focusing on green finance, financial inclusion, and sustainability. By promoting renewable energy, enhancing financial access, and encouraging international cooperation, these strategies aim to reduce TACE and foster sustainable development.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Environmentarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Environmentarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Aparna Krishna;
    Aparna Krishna
    ORCID
    Harvested from ORCID Public Data File

    Aparna Krishna in OpenAIRE
    Kulsum Parween; Mohd Irfan;

    Purpose This study aims to argue that responses in economic growth (EG) resulting from positive and negative shocks in energy consumption could be a non-linear phenomenon. Thus, the study aims to investigate the existence of non-linear long-run effects of positive and negative shocks in green and conventional energy consumption on EG for China and India. By decomposing energy consumption in positive and negative shocks, the study seeks to determine the distinct impact of positive and negative shocks in energy (conventional and green) consumption on EG of China and India. Design/methodology/approach A non-linear autoregressive distributed lag (NARDL) model based on energy-augmented environment Kuznets curve (EKC) framework is used on annual time series covering the period 1965–2021. The study uses a precise econometric methodology, starting with unit root tests to assess stationarity, moving to the estimation of the NARDL model, which resulted in the calculation of long-run coefficients and error correction terms to analyse the rate of adjustment towards equilibrium. Findings The empirical findings demonstrate that there exists a non-linear cointegrating relationship among EG, carbon emissions and green and conventional energy consumption for both economies. In the long run, a non-linear impact of green energy consumption (GEC) on EG is evident for China only, whereas non-linear impact of conventional energy consumption (CEC) on EG is visible for both countries. Practical implications While China and India prioritise energy diversification by embracing green energy to promote energy security and limit rising carbon emissions, it is interesting to investigate how positive and negative shocks in GEC and CEC have affected their EG. Second, this paper examines the trade-offs between EG and GEC/CEC in China and India, two high-carbon emitters. The disparities in trade-offs may indicate how well each country’s energy policies address increased EG with fewer energy-induced carbon emissions. Originality/value This study examines non-linear cointegration among the variables of interest, whereas most prior studies have focused on linear cointegration. The existence of non-linear cointegration may suggest that positive and negative shocks in GEC and CEC can result in non-linear reactions in EG. Thus, it establishes a basis for examining the non-linear long-term effects of GEC and CEC on EG. The research findings indicate significant consequences and necessitate prompt intervention to alleviate the detrimental impacts of shocks in GEC and CEC on EG in China and India and provide several important inputs to address the inherent challenges of energy transition goals.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Energy Sector Management
    Article . 2025 . Peer-reviewed
    License: Emerald Insight Site Policies
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Energy Sector Management
      Article . 2025 . Peer-reviewed
      License: Emerald Insight Site Policies
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Kishan Kishor, Gupta;
    Kishan Kishor, Gupta
    ORCID
    Harvested from ORCID Public Data File

    Kishan Kishor, Gupta in OpenAIRE
    Winny, Routray;

    The present review provides a comprehensive overview of cold plasma treatment and its applications in solvent activation and bioactive component extraction. The study has summarized the principles, types, uses, and mechanisms of cold plasma treatment in activating various solvents, extracting biomolecules, and affecting the characteristics of the extracted compound. This review also explores the environmental benefits of implementing this sustainable technology, highlighting the influence of key parameters such as gas type, treatment time, voltage, and plasma flow rate on the extraction process, providing insights into optimizing these conditions for maximum efficiency. In addition, future trends and research needs for advancing cold plasma-assisted extraction have also been proposed. All biomolecules exhibit specific characteristics; still, the influence of cold plasma treatment varies depending on treatment parameters and product properties, including the source material utilized in the extraction process. Most research has shown that cold plasma treatment can cause cell disruption due to reactive species generation and enhances solvent penetration; thereby, it helps in improving extraction yield with negligible effects on characteristics. With the growing demand for natural bioactive compounds in the nutraceutical, pharmaceutical, and food sectors, cold plasma offers a promising alternative to conventional thermal and chemical extraction techniques. This review concisely discusses the benefits and challenges of cold plasma treatment and the need for additional research.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Food Chemistryarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Food Chemistry
    Article . 2025 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Food Chemistryarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Food Chemistry
      Article . 2025 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph