- home
- Advanced Search
- Energy Research
- Closed Access
- 13. Climate action
- 11. Sustainability
- 15. Life on land
- 2. Zero hunger
- CA
- IT
- Energy Research
- Closed Access
- 13. Climate action
- 11. Sustainability
- 15. Life on land
- 2. Zero hunger
- CA
- IT
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: V. Ismet Ugursal;S. Rasoul Asaee;
Ian Beausoleil-Morrison;S. Rasoul Asaee
S. Rasoul Asaee in OpenAIREAbstract Canada has numerous climatic and geographical regions and the Canadian housing stock (CHS) is diversified in terms of vintage, geometry, construction materials, envelope, occupancy, energy sources and heating, ventilation and air conditioning system and equipment. Therefore, strategies to achieve net zero energy (NZE) status with the current stock of houses need to be devised considering the unique characteristics of the housing stock, the economic conditions and energy mix available in each region. Identifying and assessing pathways for converting existing houses to NZE buildings at the housing stock level is a complex and multifaceted problem and requires extensive analysis on the impact of energy efficiency and renewable/alternative energy technology retrofits on the energy use and GHG emissions of households. A techno-economic analysis of retrofitting renewable/alternative energy technologies in the CHS to reduce energy consumption and GHG emissions was conducted to develop strategies to achieve or approach NZE status for Canadian houses. The results indicate that substantial energy savings and GHG emission reductions are techno-economically feasible for the CHS through careful selection of retrofit options. While achieving large scale conversion of existing houses to NZEB is not feasible, approaching NZE status is a realistic goal for a large percentage of Canadian houses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.10.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.10.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Elsevier BV Authors:FABBRI, DANIELE;
Bevoni V.; Notari M.; Rivetti F.;FABBRI, DANIELE
FABBRI, DANIELE in OpenAIREhandle: 11585/35123
Biodiesel is a fuel generally consisting of a mixture of fatty acid methyl esters (FAMEs) which is used in alternative or in combination with petroleum diesel for its environmental benefits. Biodiesel is conveniently manufactured from vegetable oils by transesterification of triglycerides with methanol. However, the process brings about the concurrent formation of glycerol, which may become an oversupplied chemical if biodiesel production keeps growing. A novel biodiesel-like material (abbreviated as DMC-BioD) was developed by reacting soybean oil with dimethyl carbonate (DMC), which avoided the co-production of glycerol. The main difference between DMC-BioD and biodiesel produced from vegetable oil and methanol (MeOH-biodiesel) was the presence of fatty acid glycerol carbonate monoesters (FAGCs) in addition to FAMEs. In the following study, details regarding synthesis and composition of DMC-BioD are provided along with physical properties relevant for its use as a fuel. In addition, the production of potential pyrogenic contaminants was investigated by analytical pyrolysis and compared with those from MeOH-biodiesel, and the model compounds tristearin, triolein, trilinolein and oleic acid glycerol carbonate ester (OAGC). The presence of FAGCs influenced both fuel and flow properties, while the distribution of main pyrogenic compounds, including polycyclic aromatic hydrocarbons (PAHs), was little affected. Benefits and drawbacks of DMC as a candidate transmethylating reagent for producing biofuel from renewable resources and alternative co-products (glycerol carbonate and glycerol dicarbonate) are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2006.09.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2006.09.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2018 ItalyPublisher:IEEE Authors:Cameretti, Maria Cristina;
Cameretti, Maria Cristina
Cameretti, Maria Cristina in OpenAIREPizzo, Andrea Del;
Pizzo, Andrea Del
Pizzo, Andrea Del in OpenAIRENoia, Luigi Pio Di;
Ferrara, Michele;Noia, Luigi Pio Di
Noia, Luigi Pio Di in OpenAIREhandle: 11588/728570
Aeroengine manufacturers must continuously develop new high-performance engines, in terms of both specific fuel consumption and pollutant emissions. During the combustion of kerosene, CO 2 and lower amounts of SO 2 , CO, NO x and hydrocarbons are produced; those gases are directly or indirectly responsible for greenhouse effect. Large emission of NO x is produced by engines during the aircraft operation in airport. In the near future, the target in Europe for the aviation sector provides a reduction of SO% of NO x and 50% of CO 2 . For this reason, the hybrid-electric propulsion systems (HEPS) are becoming a viable alternative propulsion technology in the field of aviation, useful to guarantee a massive reduction of pollution. In the paper, the authors analyze and simulate a hybrid turbine/electric engine for a passengers regional aircraft, comparing the results in terms of pollutant and fuel consumption with the conventional thermal engine ones.
Archivio della ricer... arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2018Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/aeit.2018.8577292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Archivio della ricer... arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2018Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/aeit.2018.8577292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Hesham A. Ibrahim; Wael H. Ahmed;Sherif Abdou;
Sherif Abdou
Sherif Abdou in OpenAIREVoislav Blagojevic;
Voislav Blagojevic
Voislav Blagojevic in OpenAIREAbstract The need for improved fuel economy, while meeting more stringent global vehicle emission standards, continues to grow with the increasing demand for environmental protection and rising fuel prices. A new generation of catalytic converters, designed and patented by Vida Fresh Air Corp., offers emissions reduction while improving fuel economy. In this design, a thin layer of insulating material is placed inside the ceramic honeycomb channels, creating a multi-chamber catalytic converter. The improvement in performance of the catalytic converter is attributed to the change in both the flow distribution and the controlled heat diffusion from the inner to the outer chambers. On engine performance tests have shown significant improvements in both fuel economy and emissions, however, the theory of operation of this design needs to be validated for potential design improvements to achieve an optimum performance. In this study both experimental and numerical investigations are carried out in order to understand the flow through the catalytic converter, using different monolith cell densities. A dynamically scaled-down model for a typical flow through catalytic converter was utilized for this study. Detailed experiments were conducted using hot air as the working fluid in order to evaluate the thermal and fluid flow characteristics of the new catalytic converter technology without the effect of chemical reactions. The measurements were performed at a Reynolds number of 43,000 with a free stream temperature of 177 °C. These conditions were selected in order to achieve thermal and hydraulic similarity to actual flow conditions for a typical catalytic converter. Numerical modelling of the flow through the setup under investigation was found to adequately replicate the experimental measurements for temperature, velocity and turbulence intensity within ±3%, ±5% and ±8% respectively. The use of a new design of the catalytic converter found to improve the thermal performance by 18% and the hydraulic performance by 5% without a significant increase of the pressure drop across the catalytic converter.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2018.07.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2018.07.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018 ItalyPublisher:ETA-Florence Renewable Energies Authors: AGRIFOGLIO, ANTONIO;Alberto, Fichera;
Alberto, Fichera
Alberto, Fichera in OpenAIREGagliano, Antonio;
Luciano, Falqui;Gagliano, Antonio
Gagliano, Antonio in OpenAIREhandle: 20.500.11769/359530
Recent problems about fossil fuels and environmental pollution carried to an even great interest about alternative energy sources and green-energy. Conversion of biomass in energy through biochemical and thermochemical process is one of the most promising and sustainable solution and, among thermochemical processes, pyrolysis is one of the most investigated. Different setting of parameters allow obtaining various types of pyrolysis processes, resulting in a different distribution in product yield. Before designing the simulation, Authors collected some literature data about existing biomass pyrolysis plant and products obtained through different kind of this process. Layout of simulation is based on a pilot-plant located in Caltagirone (Sicily). The simulation is developed in this paper through CHEMCAD software. The work has two aims: 1. Try to enhance percentage of bio-oil production modifying operative parameter; 2. Give a preliminary parameters and results to improve the process in a real plant. Authors show a synthesis of real pyrolysis plant showing type, steam and dimension of biomass and describing operative parameters as heating rate, residence time and maximum temperature reached during the process. Moreover, there is an overview of the entire production cycle, with a description of equipment such as type of reactor, heat exchangers and equipment of gas washing section, until obtaining of final products. Process is simulated in CHEMCAD through a K-Reactor block able to reproduce the reaction that occurs during pyrolysis. After products are discharged from the reactor, solid particles are collected in a tank whereas gas fraction carry on towards the other section of the plant to be treated. Through gas washing section and cooling process, condensable fraction is obtained and liquid phase is separated from gaseous fraction. To check reliability of results, the percentages of three products are compared with the ones collected through literature researches and there is a matching between them. Proceedings of the 26th European Biomass Conference and Exhibition, 14-17 May 2018, Copenhagen, Denmark, pp. 1131-1136
IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di CataniaConference object . 2018Data sources: IRIS - Università degli Studi di Cataniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/26theubce2018-3cv.3.9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di CataniaConference object . 2018Data sources: IRIS - Università degli Studi di Cataniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/26theubce2018-3cv.3.9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Tonkoski, Reinaldo;
Turcotte, Dave;Tonkoski, Reinaldo
Tonkoski, Reinaldo in OpenAIREEl-Fouly, Tarek H. M.;
El-Fouly, Tarek H. M.
El-Fouly, Tarek H. M. in OpenAIREThe objective of this paper is to provide an assessment on voltage profiles in residential neighborhoods in the presence of photovoltaic (PV) systems. The network was modeled in PSCAD using common feeder characteristics that Canadian system planners use in suburban residential regions. A simulation study was performed to investigate potential voltage rise issues in the network up to 11.25% total PV penetration in the feeder and LV transformer capacity penetration up to 75%. Results indicate that the PV penetration level should not adversely impact the voltage on the grid when the distributed PV resources do not exceed 2.5 kW per household on average on a typical distribution grid. Moreover, the role of feeder impedance, feeder length, and the transformer short circuit resistance in the determination of the voltage rise is quantified.
IEEE Transactions on... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2012.2191425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IEEE Transactions on... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2012.2191425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors:Jacopo Bacenetti;
Jacopo Bacenetti
Jacopo Bacenetti in OpenAIREDaniela Lovarelli;
Daniela Lovarelli
Daniela Lovarelli in OpenAIRECarlo Ingrao;
Carlo Ingrao
Carlo Ingrao in OpenAIRECaterina Tricase;
+2 AuthorsCaterina Tricase
Caterina Tricase in OpenAIREJacopo Bacenetti;
Jacopo Bacenetti
Jacopo Bacenetti in OpenAIREDaniela Lovarelli;
Daniela Lovarelli
Daniela Lovarelli in OpenAIRECarlo Ingrao;
Carlo Ingrao
Carlo Ingrao in OpenAIRECaterina Tricase;
Marco Negri;Caterina Tricase
Caterina Tricase in OpenAIREMarco Fiala;
Marco Fiala
Marco Fiala in OpenAIREpmid: 26141286
handle: 2434/285871 , 11369/329506 , 11586/474168
In Europe, thanks to public subsidy, the production of electricity from anaerobic digestion (AD) of agricultural feedstock has considerably grown and several AD plants were built. When AD plants are concentrated in specific areas (e.g., Northern Italy), increases of feedstock' prices and transport distances can be observed. In this context, as regards low-energy density feedstock, the present research was designed to estimate the influence of the related long-distance transport on the environmental performances of the biogas-to-electricity process. For this purpose the following transport systems were considered: farm trailers and trucks. For small distances (<5 km), the whole plant silage shows the lowest impact; however, when distances increase, silages with higher energy density (even though characterised by lower methane production per hectare) become more environmentally sustainable. The transport by trucks achieves better environmental performances especially for distances greater than 25 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.06.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.06.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors:ARENA, Umberto;
ARENA, Umberto
ARENA, Umberto in OpenAIREDi Gregorio F.;
Di Gregorio F.
Di Gregorio F. in OpenAIREhandle: 11591/200490
Abstract The paper investigates the technical feasibility of an air gasification process of a Solid Recovered Fuel (SRF) obtained from municipal solid waste. A pilot scale bubbling fluidized bed gasifier, having a feedstock capacity of about 70 kg/h and a maximum thermal output of about 400 kW, provided the experimental data: the complete composition of the syngas (including the tar, particulate and acid/basic gas contents), the chemical and physical characterization of the bed material and that of entrained fines collected at the cyclone. The experimental runs were carried out by reaching a condition of thermal and chemical steady state under values of equivalence ratio ranging from 0.25 to 0.33. The results indicate that the selected SRF can be conveniently gasified, yielding a syngas of valuable quality for energy applications. The rather high content of tar in the syngas indicates that the more appropriate plant configuration should be that of a “thermal gasifier”, with the direct combustion of the syngas in a burner ad hoc designed, coupled with an adequate energy-conversion device.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2013.09.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2013.09.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Authors: A.A. Tortosa Masiá; Bart J P Buhre;Terry Wall;
Terry Wall
Terry Wall in OpenAIRERajender Gupta;
Rajender Gupta
Rajender Gupta in OpenAIREDeposits formation on heat transfer surfaces is one of the main problems associated to biomass co-combustion. It reduces plant efficiency and availability and increases maintenance costs. It is obvious that an increasing amount of low-temperature melting components in fuel ash accelerates and aggravates this process. Research is done to evaluate the validity of thermal analysis methods to characterise fusion of biomass and waste ashes. Laboratory ashes from a set of biomass and waste fuels are leached in successive steps. The original and the leached ashes are analysed by Thermo-Mechanical Analysis (TMA). Traces obtained from TMA show to be promising ash fingerprints to classify deposition tendencies. Additionally Simultaneous Thermal Analysis (STA) is performed on selected samples. Furthermore, improved chemical equilibrium calculations are proposed to predict the proportion of melted species resulting from combustion of biomass fuels. The model takes into account the reactivity of the inorganic matter in the fuel as issued from ash leaching.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2007.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2007.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002Publisher:Elsevier BV Authors: Parissa Sadri; Timothy Othman;W. Wayne Lautt;
Dallas J. Legare; +1 AuthorsW. Wayne Lautt
W. Wayne Lautt in OpenAIREParissa Sadri; Timothy Othman;W. Wayne Lautt;
Dallas J. Legare; Fiona E. Parkinson;W. Wayne Lautt
W. Wayne Lautt in OpenAIREpmid: 11943515
Ethanol exposure during fetal development can result in behavioral and neurological deficits, including reduced cognitive functions, retarded growth, and craniofacial abnormalities. Adenosine is an endogenous neuromodulator that fine-tunes the release and/or synaptic activities of several neurotransmitters, including glutamate, dopamine, and serotonin. Our aim was to determine whether ethanol exposure during early development affects adenosine receptors, particularly the A1 receptor subtype, in adult rats. Female rats were given water or 15% (vol/vol) ethanol in water prior to mating and throughout gestation and lactation. Sixty-day-old male rat offspring from these dams were randomly selected and assayed for adenosine A1 receptor expression in four brain areas: cortex, cerebellum, hippocampus, and striatum. Our results indicate that ethanol intake by dams decreased body and brain weights of offspring and reduced both A1 receptor mRNA and protein density in cortex and cerebellum. These preliminary findings indicate that ethanol intake by dams during pregnancy and lactation can affect adenosine A1 receptor signalling in the offspring. A pair-fed controlled study is warranted to explore these findings further.
Neurotoxicology and ... arrow_drop_down Neurotoxicology and TeratologyArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0892-0362(01)00211-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Neurotoxicology and ... arrow_drop_down Neurotoxicology and TeratologyArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0892-0362(01)00211-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu