Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
    Clear
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3,046 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 7. Clean energy
  • 12. Responsible consumption
  • CH
  • IT
  • ETH Zurich

  • Authors: orcid bw Burg, Vanessa;
    Burg, Vanessa
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Burg, Vanessa in OpenAIRE
    orcid bw Bowman, Gillianne;
    Bowman, Gillianne
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Bowman, Gillianne in OpenAIRE
    Schnorf, Vivienne; Rolli, Christian; +2 Authors

    Supplementary material for the publication " Agricultural biogas plants as a hub to foster circular economy and bioenergy: An assessment using material substance and energy flow analysis" Burg, V., b, Rolli, C., Schnorf, V., Scharfy, D., Anspach, V., Bowman, G. Today's agro-food system is typically based on linear fluxes (e.g. mineral fertilizers importation), when a circular approach should be privileged. The production of biogas as a renewable energy source and digestate, used as an organic fertilizer, is essential for the circular economy in the agricultural sector. This study investigates the current utilization of wet biomass in agricultural anaerobic digestion plants in Switzerland in terms of mass, nutrients, and energy flows, to see how biomass use contributes to circular economy and climate change mitigation through the substitution effect of mineral fertilizers and fossil fuels. We quantify the system and its benefits in details and examine future developments of agricultural biogas plants using different scenarios. Our results demonstrate that agricultural anaerobic digestion could be largely increased, as it could provide ten times more biogas by 2050, while saving significant amounts of mineral fertilizer and GHG emissions.

    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim
  • Authors: Hörtnagl, Lukas; Buchmann, Nina; Meier, Philip; Gharun, Mana; +3 Authors

    - EddyPro v6 and v7 for flux calculations [https://www.licor.com/env/products/eddy_covariance/eddypro] - bico for the conversion of binary raw data files to ASCII (2013-2016, 2020-2022) [https://gitlab.ethz.ch/flux/bico] - fluxrun for the flux calculation using EddyPro (2013-2016, 2020-2022) [https://gitlab.ethz.ch/flux/fluxrun] - Various versions of FCT (flux calculation using EddyPro) were used for years 1997-2004 and 2017-2019 [https://gitlab.ethz.ch/holukas/fct-flux-calculation-tool] - scop v0.1 (self-heating correction for open-path IRGAs) for the self-heating correction of IRGA75 fluxes [https://gitlab.ethz.ch/holukas/scop] - diive v0.21.0 (legacy version) for file merging, quality control, storage correction, outlier removal [https://gitlab.ethz.ch/diive/diive-legacy/-/tree/v0.21.0] - ReddyProc v1.2.2 for application of the constant ustar threshold, MDS gap-filliing and partitioning, in R Studio v1.3.959 [https://cran.r-project.org/web/packages/REddyProc/index.html]

    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Song, Lei; Lieu, Jenny; orcid bw Nikas, Alexandros;
    Nikas, Alexandros
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Nikas, Alexandros in OpenAIRE
    Arsenopoulos, Apostolos; +2 Authors

    This dataset contains the underlying data for the following publication: Song, L., Lieu, J., Nikas, A., Arsenopoulos, A., Vasileiou, G., & Doukas, H. (2020). Contested energy futures, conflicted rewards? Examining low-carbon transition risks and governance dynamics in China's built environment. Energy Research & Social Science, 59, 101306., https://doi.org/10.1016/j.erss.2019.101306. Full details of methods used to create the dataset and provided within this publication.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2019
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2019
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2019
    License: CC BY
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility40
    visibilityviews40
    downloaddownloads6
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2019
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2019
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2019
      License: CC BY
      Data sources: Datacite
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authors

    Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    World Data Center for Climate
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      World Data Center for Climate
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Roland W. Scholz;
    Roland W. Scholz
    ORCID
    Harvested from ORCID Public Data File

    Roland W. Scholz in OpenAIRE
    Roland W. Scholz; Roland W. Scholz; Friedrich‐Wilhelm Wellmer;

    SummaryThe German government has adopted a law that requires sewage plants to go beyond the recovery of phosphorus from wastewater and to promote recycling. We argue that there is no physical global short‐ or mid‐term phosphorus scarcity. However, we also argue that there are legitimate reasons for policies such as those of Germany, including: precaution as a way to ensure future generations’ long‐term supply security, promotion of technologies for closed‐loop economics in a promising stage of technology development, and decrease in the current supply risk with a new resource pool.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Industrial Ecology
    Article . 2018 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    46
    citations46
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Industrial Ecology
      Article . 2018 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Mengshuo Jia;
    Mengshuo Jia
    ORCID
    Harvested from ORCID Public Data File

    Mengshuo Jia in OpenAIRE
    orcid Gabriela Hug;
    Gabriela Hug
    ORCID
    Harvested from ORCID Public Data File

    Gabriela Hug in OpenAIRE
    orcid Yifan Su;
    Yifan Su
    ORCID
    Harvested from ORCID Public Data File

    Yifan Su in OpenAIRE
    orcid bw Chen Shen;
    Chen Shen
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Chen Shen in OpenAIRE

    Given the increased percentage of wind power in power systems, chance-constrained optimal power flow (CC-OPF) calculation, as a means to take wind power uncertainty into account with a guaranteed security level, is being promoted. Compared to the local CC-OPF within a regional grid, the global CC-OPF of a multi-regional interconnected grid is able to coordinate across different regions and therefore improve the economic efficiency when integrating high percentage of wind power generation. In this global problem, however, multiple regional independent system operators (ISOs) participate in the decision-making process, raising the need for distributed but coordinated approaches. Most notably, due to regulation restrictions, commercial interest, and data security, regional ISOs may refuse to share confidential information with others, including generation cost, load data, system topologies, and line parameters. But this information is needed to build and solve the global CC-OPF spanning multiple areas. To tackle these issues, this paper proposes a distributed CC-OPF method with confidentiality preservation, which enables regional ISOs to determine the optimal dispatchable generations within their regions without disclosing confidential data. This method does not require parameter tunings and will not suffer from convergence challenges. Results from IEEE test cases show that this method is highly accurate.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IEEE Transactions on Power Systems
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Research Collection
    Research . 2022
    License: CC BY NC ND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Research Collection
    Article . 2023
    License: CC BY
    https://dx.doi.org/10.48550/ar...
    Article . 2022
    License: CC BY NC ND
    Data sources: Datacite
    Research Collection
    Article . 2023
    Data sources: Datacite
    Research Collection
    Research . 2022
    License: CC BY NC ND
    Data sources: Datacite
    addClaim
    Access Routes
    Green
    hybrid
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IEEE Transactions on Power Systems
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Research Collection
      Research . 2022
      License: CC BY NC ND
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Research Collection
      Article . 2023
      License: CC BY
      https://dx.doi.org/10.48550/ar...
      Article . 2022
      License: CC BY NC ND
      Data sources: Datacite
      Research Collection
      Article . 2023
      Data sources: Datacite
      Research Collection
      Research . 2022
      License: CC BY NC ND
      Data sources: Datacite
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw Tr��ndle, Tim;
    Tr��ndle, Tim
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Tr��ndle, Tim in OpenAIRE

    pre-built Euro-Calliope Ready to use models of the European electricity system built using Calliope. Models are available on three different spatial resolutions: continental, national, and regional. In addition, euro-calliope models can be built manually which adds more configuration options. To build euro-calliope manually, head over to GitHub. At a glance euro-calliope models the European electricity system with each location representing an administrative unit. It is built on three spatial resolutions: on the continental level as a single location, on the national level with 34 locations, and on the regional level with 497 locations. On each node, renewable generation capacities (wind, solar, bioenergy) and balancing capacities (battery, hydrogen) can be built. In addition, hydro electricity and pumped hydro storage capacities can be built up to the extent to which they exist today. All capacities are used to satisfy electricity demand on all locations which is based on historic data. Locations are connected through transmission lines of unrestricted capacity. Using Calliope, the model is formulated as a linear optimisation problem with total monetary cost of all capacities as the minimisation objective. The pre-built models can be manipulated by updating any of the files. In addition to the pre-built models, models can be built manually. Manual builds provide more flexibility in adapting and configuring the model. To build euro-calliope manually, head over to GitHub. Get ready to run the models You need a Gurobi license installed on your computer. You may as well choose another solver than Gurobi. See Calliope���s documentation to understand how to switch to another solver. You need to have Calliope and Gurobi installed in your environment. The easiest way to do so is using conda. Using conda, you can create a conda environment from within you can build the model: conda env create -f environment.yaml conda activate euro-calliope Run the models There are three models in this directory ��� one for each of the three spatial resolutions continental, national, and regional. You can run all three models out-of-the-box, but you may want to modify the model. By default, the model runs for the first day of January only. To run the example model on the continental resolution type: $ calliope run ./continental/example-model.yaml For more information on how to use and modify Calliope models, see Calliope���s documentation. Manipulating the model using overrides Calliope overrides allow to easily manipulate models. An override named freeze-hydro-capacities can be used for example in this way: calliope run build/model/continental/example-model.yaml --scenario=freeze-hydro-capacities You can define your own overrides to manipulate any model component. The following overrides are built into euro-calliope: directional-rooftop-pv By default, euro-calliope contains a single technology for rooftop PV. This technology comprises the total rooftop PV potential in each location, in particular including east-, west-, and north-facing rooftops. While this allows to fully exploit the potential of rooftop PV, it leads to less than optimal capacity factors as long as the potential is not fully exploited. That is because, one would likely first exploit all south-facing rooftop, then east- and west-facing rooftops, and only then ��� if at all ��� north-facing rooftops. By default, euro-calliope cannot model that. When using the directional-rooftop-pv override, there are three instead of just one technologies for rooftop PV. The three technologies comprise (1) south-facing and flat rooftops, (2) east- and west-facing rooftops, and (3) north-facing rooftops. This leads to higher capacity factors of rooftop PV as long as the potential of rooftop PV is not fully exploited. However, this also increases the complexity of the model. freeze-hydro-capacities By default, euro-calliope allows capacities of run-of-river hydro, reservoir hydro, and pumped storage hydro capacities up to today���s levels. Alternatively, it���s possible to freeze these capacities to today���s levels using the freeze-hydro-capacities override. Model components The models contain the following files. All files in the root directory are independent of the spatial resolution. All files that depend on the spatial resolution are within subfolders named by the resolution. ��������� {resolution} <- For each spatial resolution an individual folder. ��� ��������� capacityfactors-{technology}.csv <- Timeseries of capacityfactors of all renewables. ��� ��������� directional-rooftop.yaml <- Override discriminating rooftop PV by orientation. ��� ��������� electricity-demand.csv <- Timeseries of electricity demand on each node. ��� ��������� example-model.yaml <- Calliope model definition. ��� ��������� link-all-neighbours.yaml <- Connects neighbouring locations with transmission. ��� ��������� locations.csv <- Map from Calliope location id to name of location. ��� ��������� locations.yaml <- Defines all locations and their max capacities. ��������� build-metadata.yaml <- Metadata of the build process. ��������� demand-techs.yaml <- Definition of demand technologies. ��������� environment.yaml <- Conda file defining an environment to run the model in. ��������� interest-rate.yaml <- Interest rates of all capacities. ��������� link-techs.yaml <- Definition of link technologies. ��������� README.md <- The file you are currently looking at. ��������� renewable-techs.yaml <- Definition of supply technologies. ��������� storage-techs.yaml <- Definition of storage technologies. Units of quantities The units of quantities within the models are the following: power: 100,000 MW energy: 100,000 MWh area: 10,000 km2 monetary cost: 1e+09 EUR These units were chosen in order to minimise numerical issues within the optimisation algorithm. License and attribution euro-calliope has been developed and is maintained by Tim Tr��ndle, IASS Potsdam. If you use euro-calliope in an academic publication, please cite the following article: Tr��ndle, T., Lilliestam, J., Marelli, S., Pfenninger, S., 2020. Trade-offs between geographic scale, cost, and infrastructure requirements for fully renewable electricity in Europe. Joule. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Contains modified Copernicus Atmosphere Monitoring Service information 2020. Neither the European Commission nor ECMWF is responsible for any use that may be made of the Copernicus information or data it contains. Contains modified data from Renewables.ninja. Contains modified data from Open Power System Data.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2020
    License: CC BY NC
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility969
    visibilityviews969
    downloaddownloads154
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2020
      License: CC BY NC
      Data sources: Datacite
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Øystein Strengehagen Klemetsdal;
    Øystein Strengehagen Klemetsdal
    ORCID
    Harvested from ORCID Public Data File

    Øystein Strengehagen Klemetsdal in OpenAIRE
    Øystein Strengehagen Klemetsdal; orcid Antonio Pio Rinaldi;
    Antonio Pio Rinaldi
    ORCID
    Harvested from ORCID Public Data File

    Antonio Pio Rinaldi in OpenAIRE
    Halvor Møll Nilsen; +5 Authors

    &lt;p&gt;High temperature aquifer thermal energy storage (HT-ATES) can play a key role for a sustainable interplay between different energy sources and in the overall reduction of CO&lt;sub&gt;2&lt;/sub&gt;emission. In this study, we numerically investigate the thermo-hydraulic processes of an HT-ATES in the Greater Geneva Basin (Switzerland). The main objective is to investigate how to handle the yearly excess of heat produced by a nearby waste-to-energy plant. We consider potential aquifers located in different stratigraphic units and design the model from available geological and geophysical data. Aquifer properties, flow conditions and well strategies are successively tested to evaluate their influence on the HT-ATES economic performance and environmental impact. This was achieved using a new open-access, user-friendly and efficient code that we also introduce here as a possible tool for geothermal applications.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;The results highlight the importance of thorough numerical simulations based on more realistic exploitation when designing HT-ATES systems. We show that relations between thermal performance and the shape of the injected thermal volume are generally hard to derive when complex well schedules are imposed because the injected/produced volumes may not be equal. Despite more complex storage strategies to comply with legal regulations, the shallower group of investigated aquifers in this study remains economically more suitable for storage up to 90&amp;#186;C. In average four well doublets will be required to store the yearly excess of energy. The deeper group of investigated aquifers, however, become interesting for storage at higher temperatures.&lt;/p&gt;

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institut national de...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Geothermics
    Article
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Geothermics
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://doi.org/10.5194/egusph...
    Article . 2020 . Peer-reviewed
    Data sources: Crossref
    addClaim
    Access Routes
    Green
    bronze
    37
    citations37
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institut national de...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Geothermics
      Article
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Geothermics
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      https://doi.org/10.5194/egusph...
      Article . 2020 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Konrad Hungerbühler; orcid Ulrich Fischer;
    Ulrich Fischer
    ORCID
    Harvested from ORCID Public Data File

    Ulrich Fischer in OpenAIRE
    orcid Hirokazu Sugiyama;
    Hirokazu Sugiyama
    ORCID
    Harvested from ORCID Public Data File

    Hirokazu Sugiyama in OpenAIRE
    orcid Stavros Papadokonstantakis;
    Stavros Papadokonstantakis
    ORCID
    Harvested from ORCID Public Data File

    Stavros Papadokonstantakis in OpenAIRE
    +1 Authors

    Abstract Gate-to-gate process energy consumption is an important metric for sustainability as it affects both costs and environmental impact. As only little process information is available in early phases of chemical process design, a detailed energy consumption calculation is substantially restrained. Therefore, a reliable estimation of energy consumption in early phases of process design is an important alternative. In this work, an index representing process energy consumption was evaluated and tested for 14 organic solvent case studies. By using simplified process models the indices were calculated and compared to literature values for gate-to-gate energy consumption. The predictability of the process energy consumption on the basis of this indicator, including possible modifications in its original definition, was evaluated with the Pearson's and Spearman's correlation coefficients. The results further validated the use of the EI (energy index) in its original form as a proxy indicator of the process energy consumption for decision making in early stages of process design. For assessing the production of new classes of chemicals the EI should be evaluated as shown in this paper in order to establish its practicability. In certain cases an adjustment of the indicator categories may be necessary.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    15
    citations15
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Nils Wenzler;
    Nils Wenzler
    ORCID
    Harvested from ORCID Public Data File

    Nils Wenzler in OpenAIRE
    Sebastian Rief; Sven Linden; Fabian Biebl; +6 Authors

    Most commercially used electrode materials contract and expand upon cycling. This change in volume influences the microstructure of the cell stack, which in turn impacts a range of performance parameters. Since direct observation of these microstructural changes with operando experiments is challenging and time intensive, a simulation tool that takes a real or artificially generated 3D microstructure and captures the volumetric changes in a cell during cycling would be valuable to enable rapid understanding of the impact of material choice, electrode and cell design, and operating conditions on the microstructural changes and identification of sources of mechanically-driven cell aging. Here, we report the development and verification of such a 3D electrochemical-mechanical tool, and provide an example use-case. We validate the tool by simulating the microstructural evolution of a graphite anode and a Li(Ni,Mn,Co)O2 cathode during cycling and comparing the results to X-ray tomography datasets of these electrodes taken during cycling. As an example use case for such a simulation tool, we explore how different volumetric expansion behaviors of the cathode material impact strain in the cell stack, illustrating how the material selection and its operation impact the mechanical behavior inside a cell.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of The Elect...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of The Electrochemical Society
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Research Collection
    Article . 2023
    License: CC BY
    Research Collection
    Article . 2023
    Data sources: Datacite
    addClaim
    Access Routes
    Green
    hybrid
    2
    citations2
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of The Elect...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of The Electrochemical Society
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Research Collection
      Article . 2023
      License: CC BY
      Research Collection
      Article . 2023
      Data sources: Datacite
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph