Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation and analysis of a proxy indicator for the estimation of gate-to-gate energy consumption in the early process design phases: The case of organic solvent production

Authors: Konrad Hungerbühler; Ulrich Fischer; Hirokazu Sugiyama; Stavros Papadokonstantakis; A. A. Bumann;

Evaluation and analysis of a proxy indicator for the estimation of gate-to-gate energy consumption in the early process design phases: The case of organic solvent production

Abstract

Abstract Gate-to-gate process energy consumption is an important metric for sustainability as it affects both costs and environmental impact. As only little process information is available in early phases of chemical process design, a detailed energy consumption calculation is substantially restrained. Therefore, a reliable estimation of energy consumption in early phases of process design is an important alternative. In this work, an index representing process energy consumption was evaluated and tested for 14 organic solvent case studies. By using simplified process models the indices were calculated and compared to literature values for gate-to-gate energy consumption. The predictability of the process energy consumption on the basis of this indicator, including possible modifications in its original definition, was evaluated with the Pearson's and Spearman's correlation coefficients. The results further validated the use of the EI (energy index) in its original form as a proxy indicator of the process energy consumption for decision making in early stages of process design. For assessing the production of new classes of chemicals the EI should be evaluated as shown in this paper in order to establish its practicability. In certain cases an adjustment of the indicator categories may be necessary.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Top 10%
bronze