- home
- Advanced Search
- Energy Research
- biological sciences
- 7. Clean energy
- DE
- IT
- Energy Research
- biological sciences
- 7. Clean energy
- DE
- IT
description Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Wiley Funded by:[no funder available]Authors: Marina Lotti; Jürgen Pleiss; Francisco Valero; Pau Ferrer;pmid: 29461685
Lipase‐catalyzed transesterification of triglycerides and alcohols to obtain biodiesel is an environmentally friendly and sustainable route for fuels production since, besides proceeding in mild reaction conditions, it allows for the use of low‐cost feedstocks that contain water and free fatty acids, for example non‐edible oils and waste oils. This review article reports recent advances in the field and focus in particular on a major issue in the enzymatic process, the inactivation of most lipases caused by methanol, the preferred acyl acceptor used for alcoholysis. The recent results about immobilization of enzymes on nano‐materials and the use of whole‐cell biocatalysts, as well as the use of cell‐surface display technologies and metabolic engineering strategies for microbial production of biodiesel are described. It is discussed also insight into the effects of methanol on lipases obtained by modeling approaches and report on studies aimed at mining novel alcohol stable enzymes or at improving robustness in existing ones by protein engineering.
Diposit Digital de D... arrow_drop_down Diposit Digital de Documents de la UABArticle . 2018Data sources: Diposit Digital de Documents de la UABBiotechnology JournalArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/biot.201700155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Diposit Digital de D... arrow_drop_down Diposit Digital de Documents de la UABArticle . 2018Data sources: Diposit Digital de Documents de la UABBiotechnology JournalArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/biot.201700155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Custers, René; BARTSCH, Detlef; Fladung, Matthias; Nilsson, Ove; Pilate, Gilles,; Sweet, Jeremy; Boerjan, Wout;pmid: 26897457
Biotechnology can greatly improve the efficiency of forest tree breeding for the production of biomass, energy, and materials. However, EU regulations impede the market introduction of genetically modified (GM) trees so their socioeconomic and environmental benefits are not realized. European policy makers should concentrate on a science-based regulatory process.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tplants.2016.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tplants.2016.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Viktor Klassen; Michael Grundmann; Pauliina Uronen; Jan H. Mussgnug; Anja Doebbe; Marco La Russa; Olaf Kruse; Julian Wichmann; Christian Bogen;pmid: 23453981
In this work, 30 microalgae strains from 17 genera were investigated in regard to biomass productivity in photoautotrophic growth conditions, lipid amount, lipid quality and biomass degradability. Six strains could be identified with robust phototrophic growth properties and high biomass productivities equal or above 300 mg l(-1) day(-1). Anaerobic fermentation of the algal biomass was most efficient for the marine members of the genera Dunaliella and Navicula, while biogas production with the freshwater strains generally resulted in lower methane yields. Monoraphidium contortum was identified as promising candidate for liquid biofuel production, characterized by high biomass productivity during maximum growth (maximum increase of 896 mg dry biomass weight (DW) l(-1) day(-1)) and a promising lipid profile. Neutral lipid production was strongly induced in M. contortum by nitrogen deficient conditions and accumulated to up to 20.4±2.2% of DW.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.01.164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 84 citations 84 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.01.164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Seghetta, Michele; Romeo, Daina; D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini; Bastianoni, Simone; Thomsen, Marianne;handle: 11365/1033832
Abstract Offshore cultivation of seaweed provides an innovative feedstock for biobased products supporting blue growth in northern Europe. This paper analyzes two alternative exploitation pathways: energy and protein production. The first pathway is based on anaerobic digestion of seaweed which is converted into biogas, for production of electricity and heat, and digestate, used as fertilizer; the second pathway uses seaweed hydrolysate as a substrate for cultivation of heterotrophic microalgae. As a result the seaweed sugars are consumed while new proteins are produced enhancing the total output. We performed a comparative Life Cycle Assessment of five scenarios identifying the critical features affecting resource efficiency and environmental performance of the systems with the aim of providing decision support for the design of future industrial scale production processes. The results show that all scenarios provide environmental benefits in terms of mitigation of climate change, with biogas production from dried Laminaria digitata being the most favorable scenario, quantified as −18.7*10 2 kg CO 2 eq./ha. This scenario presents also the lowest consumption of total cumulative energy demand, 1.7*10 4 MJ/ha, and even resulting in a net reduction of the fossil energy fraction, −1.9*10 4 MJ/ha compared to a situation without seaweed cultivation. All scenarios provide mitigation of marine eutrophication thanks to bioextraction of nitrogen and phosphorus during seaweed growth. The material consumption for seeded lines has 2–20 times higher impact on human toxicity (cancer) than the reduction achieved by energy and protein substitution. However, minor changes in cultivation design, i.e. use of stones instead of iron as ballast to weight the seeded lines, dramatically reduces human toxicity (cancer). Externalities from the use of digestate as fertilizer affect human toxicity (non-cancer) due to transfer of arsenic from aquatic environment to agricultural soil. However concentration of heavy metals in digestate does not exceed the limit established by Danish regulation. The assessment identifies seaweed productivity as the key parameter to further improve the performance of the production systems which are a promising service provider of environmental restoration and climate change mitigation.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2017.02.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2017.02.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Mahmoud Masri; Thomas Brück; Pariya Shaigani; Norbert Mehlmer; Martina Haack; Wojciech Jurkowski;Abstract Biofuels and the oleochemical industry are highly dependent on plant oils for the generation of renewable product lines. Consequently, production of plant lipids, such as palm and rapeseed oil, for industrial applications competes with agricultural activity and is associated with a negative environmental impact. Additionally, established chemical routes for upgrading bio-lipids to renewable products depend on metal-containing catalysts. Metal leaching during oil processing results in heavy metal contaminated process wastewater. This water is difficult to remediate and leads to the loss of precious metals. Therefore, the biofuels and chemical industry requires sustainable solutions for production and upgrading of bio-lipids. With regard to the former, a promising approach is the fermentative conversion of abundant, low-value biomass into microbial, particularly yeast-based lipids. This study describes the holistic, value-adding conversion of underexploited, macroalgae feedstocks into yeast oil, animal feed and biosorbents for metal-based detoxification of process wastewater. The initial step comprises a selective enzymatic liquefaction step that yields a supernatant containing 62.5% and 59.3% (w/dwbiomass) fermentable sugars from L. digitata and U. lactuca, respectively. By dispensing with chemical pretreatment constraints, we achieved a 95% (w/w) glucose recovery. Therefore, the supernatant was qualified as a cultivation media without any detoxification step or nutrition addition. Additionally, the hydrolysis step provided 27–33% (w/dwbiomass) of a solid residue, which was qualified as a metal biosorbent. Cultivation of the oleaginous yeast C. oleaginosus on the unprocessed hydrolysis supernatant provided 44.8 g L−1 yeast biomass containing 37.1% (w/dwbiomass) lipids. The remaining yeast biomass after lipid extraction is targeted as a performance animal feed additive. Selectivity and capacity of solid macroalgae residues as biosorbents were assessed for removal and recycling of rare and heavy metals, such as Ce+3, Pb+2, Cu+2 and Ni+2 from model wastewater. The biosorption capacity of the macroalgae residues (sorption capacity ∼ 0.7 mmol g−1) exceeds that of relevant commercially available adsorption resins and biosorbents. To facilitate the integration of our technology in existing chemical and biotechnological production environments, we have devised simple, rapid and cost-efficient methods for monitoring both lipogenesis and metal sorption processes. The application of the new optical monitoring tools is essential to determine yeast cell harvesting times and biosorption capacities respectively. For the first time we report on a waste-free bioprocess that combines sustainable, microbial lipid production from low value marine biomass with in-process precious metal recycling options. Our data allowed for a preliminary economic analysis, which indicated that each product could be cost competitive with current market equivalents. Hence, the synaptic nature of the technology platform provides for the economic and ecologic viability of the overall process chain.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.04.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.04.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Authors: Attilio Converti; Raquel Pedrosa Bezerra; Raquel Pedrosa Bezerra; João Carlos Monteiro de Carvalho; +2 AuthorsAttilio Converti; Raquel Pedrosa Bezerra; Raquel Pedrosa Bezerra; João Carlos Monteiro de Carvalho; Sunao Sato; Marcelo Chuei Matsudo;pmid: 22933335
AbstractSimilar to other photosynthetic microorganisms, the cyanobacterium Arthrospira platensis can be used to produce pigments, single cell proteins, fatty acids (which can be used for bioenergy), food and feed supplements, and biofixation of CO2. Cultivation in a specifically designed tubular photobioreactor is suitable for photosynthetic biomass production, because the cultivation area can be reduced by distributing the microbial cells vertically, thus avoiding loss of ammonia and CO2. The aim of this study was to investigate the influence of light intensity and dilution rate on the photosynthetic efficiency and CO2 assimilation efficiency of A. platensis cultured in a tubular photobioreactor in a continuous process. Urea was used as a nitrogen source and CO2 as carbon source and for pH control. Steady‐state conditions were achieved in most of the runs, indicating that continuous cultivation of this cyanobacterium in a tubular photobioreactor could be an interesting alternative for the large‐scale fixation of CO2 to mitigate the greenhouse effect while producing high protein content biomass.
Biotechnology Journa... arrow_drop_down Biotechnology JournalArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/biot.201200177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biotechnology Journa... arrow_drop_down Biotechnology JournalArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/biot.201200177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Funded by:EC | BIOASSORTEC| BIOASSORTAuthors: Rossana Liguori; Carlos Ricardo Soccol; Luciana Porto de Souza Vandenberghe; Adenise Lorenci Woiciechowski; +1 AuthorsRossana Liguori; Carlos Ricardo Soccol; Luciana Porto de Souza Vandenberghe; Adenise Lorenci Woiciechowski; Vincenza Faraco;doi: 10.3390/en8042575
Ethanol production from lignocellulosic biomasses raises a global interest because it represents a good alternative to petroleum-derived energies and reduces the food versus fuel conflict generated by first generation ethanol. In this study, alkaline-acid pretreated brewers’ spent grain (BSG) was evaluated for ethanol production after enzymatic hydrolysis with commercial enzymes. The obtained hydrolysate containing a glucose concentration of 75 g/L was adopted, after dilution up to 50 g/L, for fermentation by the strain Saccharomyces cerevisiae NRRL YB 2293 selected as the best producer among five ethanologenic microorganims. When the hydrolysate was supplemented with yeast extract, 12.79 g/L of ethanol, corresponding to 0.28 g of ethanol per grams of glucose consumed (55% efficiency), was obtained within 24 h, while in the non-supplemented hydrolysate, a similar concentration was reached within 48 h. The volumetric productivity increased from 0.25 g/L·h in the un-supplemented hydrolysate to 0.53 g/L h in the yeast extract supplemented hydrolysate. In conclusion, the strain S. cerevisiae NRRL YB 2293 was shown able to produce ethanol from BSG. Although an equal amount of ethanol was reached in both BSG hydrolysate media, the nitrogen source supplementation reduced the ethanol fermentation time and promoted glucose uptake and cell growth.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8042575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 72 citations 72 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8042575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Ernesto Tabacco; Paolo Balsari; Giorgio Borreani; Simona Menardo; Simona Menardo;The effects of ensiling and baling processes, of the application of silage additives and of the storage period of corn stalks on methane production have been assessed through anaerobic digestion batch experiments, in order to evaluate the storage efficacy of corn stalks used as feedstock in biogas plants. Ensiling has proved to be a good method for corn stalk preservation for methane production, as it helps to maintain low pH values of the biomass and reduce volatile solid losses during storage, even for longer periods than 3 months. It has been shown that ensiling does not affect the cumulative methane production of corn stalks but does improve the methane production rate at the beginning of the process. This can be attributed to an increase in ethanol during ensiling, which favours the rapid start of anaerobic digestion. Corn stalks inoculated with lactic acid bacteria have shown similar pH and slightly higher lactic and acetic acid contents than untreated ones, but these changes have not had a practical effect on methane production. Dry baled corn stalks have shown a lower methane production than ensiled stalks, due to the respiration process that takes place in the field during the wilting period and to the reduction in degradability, because of drying. Nevertheless, the choice of an adequate harvest chain of corn stalks is very important in order to obtain higher energy efficiency from ensiled corn stalks than from dry conservation. If the harvested biomass per hectare is very low, ensiled corn stalks could be an inefficient way of managing this biomass for methane production.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-015-9637-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-015-9637-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2021 SpainPublisher:ACM Funded by:EC | WATCHPLANTEC| WATCHPLANTMostafa Wahby; Niclas Roxhed; Virginia Hernandez-Santana; Babak Salamat; Laura García-Carmona; Stjepan Bogdan; Alfredo Quijano-Lopez; Serge Kernbach; Andreas Kernbach; Heiko Hamann; Mikolaj Dobielewski; Antonio Díaz-Espejo;handle: 10261/251495
6 páginas.- 2 figura.- 29 referencias.- 1st Conference on Information Technology for Social Good, GoodIT 2021, Rome 9-11 September 2021 New challenges such as climate change and sustainability arise in society influencing not only environmental issues but human's health directly. To face these new challenges IT technologies and their application to environmental intelligent monitoring become into a powerful tool to set new policies and blueprints to contribute to social good. In the new H2020 project, WatchPlant will provide new tools for environmental intelligence monitoring by the use of plants as "well-being"sensors of the environment they inhabit. This will be possible by equipping plants with a net of communicated wireless self-powered sensors, coupled with artificial intelligence (AI) to become plants into "biohybrid organisms"to test exposure-effects links between plant and the environment. It will become plants into a new tool to be aware of the environment status in a very early stage towards in-situ monitoring. Additionally, the system is devoted to be sustainable and energy-efficient thanks to the use of clean energy sources such as solar cells and a enzymatic biofuel cell (BFC) together with its self-deployment, self-awareness, adaptation, artificial evolution and the AI capabilities. In this concept paper, WatchPlant will envision how to face this challenge by joining interdisciplinary efforts to access the plant sap for energy harvesting and sensing purposes and become plants into "biohybrid organisms"to benefit social good in terms of environmental monitoring in urban scenarios. © 2021 Owner/Author. Project WatchPlant has received funding from the European Union’s Horizon 2020 research and innovation program under the FET grant agreement, no. 101017899 Peer reviewed
https://digital.csic... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3462203.3475885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 63visibility views 63 download downloads 376 Powered bymore_vert https://digital.csic... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3462203.3475885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Judith Becker; Anna Lange; Jonathan Fabarius; Christoph Wittmann;pmid: 26360870
Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation.
Current Opinion in B... arrow_drop_down Current Opinion in BiotechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.copbio.2015.08.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 235 citations 235 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Current Opinion in B... arrow_drop_down Current Opinion in BiotechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.copbio.2015.08.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Wiley Funded by:[no funder available]Authors: Marina Lotti; Jürgen Pleiss; Francisco Valero; Pau Ferrer;pmid: 29461685
Lipase‐catalyzed transesterification of triglycerides and alcohols to obtain biodiesel is an environmentally friendly and sustainable route for fuels production since, besides proceeding in mild reaction conditions, it allows for the use of low‐cost feedstocks that contain water and free fatty acids, for example non‐edible oils and waste oils. This review article reports recent advances in the field and focus in particular on a major issue in the enzymatic process, the inactivation of most lipases caused by methanol, the preferred acyl acceptor used for alcoholysis. The recent results about immobilization of enzymes on nano‐materials and the use of whole‐cell biocatalysts, as well as the use of cell‐surface display technologies and metabolic engineering strategies for microbial production of biodiesel are described. It is discussed also insight into the effects of methanol on lipases obtained by modeling approaches and report on studies aimed at mining novel alcohol stable enzymes or at improving robustness in existing ones by protein engineering.
Diposit Digital de D... arrow_drop_down Diposit Digital de Documents de la UABArticle . 2018Data sources: Diposit Digital de Documents de la UABBiotechnology JournalArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/biot.201700155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Diposit Digital de D... arrow_drop_down Diposit Digital de Documents de la UABArticle . 2018Data sources: Diposit Digital de Documents de la UABBiotechnology JournalArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/biot.201700155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Custers, René; BARTSCH, Detlef; Fladung, Matthias; Nilsson, Ove; Pilate, Gilles,; Sweet, Jeremy; Boerjan, Wout;pmid: 26897457
Biotechnology can greatly improve the efficiency of forest tree breeding for the production of biomass, energy, and materials. However, EU regulations impede the market introduction of genetically modified (GM) trees so their socioeconomic and environmental benefits are not realized. European policy makers should concentrate on a science-based regulatory process.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tplants.2016.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tplants.2016.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Viktor Klassen; Michael Grundmann; Pauliina Uronen; Jan H. Mussgnug; Anja Doebbe; Marco La Russa; Olaf Kruse; Julian Wichmann; Christian Bogen;pmid: 23453981
In this work, 30 microalgae strains from 17 genera were investigated in regard to biomass productivity in photoautotrophic growth conditions, lipid amount, lipid quality and biomass degradability. Six strains could be identified with robust phototrophic growth properties and high biomass productivities equal or above 300 mg l(-1) day(-1). Anaerobic fermentation of the algal biomass was most efficient for the marine members of the genera Dunaliella and Navicula, while biogas production with the freshwater strains generally resulted in lower methane yields. Monoraphidium contortum was identified as promising candidate for liquid biofuel production, characterized by high biomass productivity during maximum growth (maximum increase of 896 mg dry biomass weight (DW) l(-1) day(-1)) and a promising lipid profile. Neutral lipid production was strongly induced in M. contortum by nitrogen deficient conditions and accumulated to up to 20.4±2.2% of DW.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.01.164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 84 citations 84 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.01.164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Seghetta, Michele; Romeo, Daina; D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini; Bastianoni, Simone; Thomsen, Marianne;handle: 11365/1033832
Abstract Offshore cultivation of seaweed provides an innovative feedstock for biobased products supporting blue growth in northern Europe. This paper analyzes two alternative exploitation pathways: energy and protein production. The first pathway is based on anaerobic digestion of seaweed which is converted into biogas, for production of electricity and heat, and digestate, used as fertilizer; the second pathway uses seaweed hydrolysate as a substrate for cultivation of heterotrophic microalgae. As a result the seaweed sugars are consumed while new proteins are produced enhancing the total output. We performed a comparative Life Cycle Assessment of five scenarios identifying the critical features affecting resource efficiency and environmental performance of the systems with the aim of providing decision support for the design of future industrial scale production processes. The results show that all scenarios provide environmental benefits in terms of mitigation of climate change, with biogas production from dried Laminaria digitata being the most favorable scenario, quantified as −18.7*10 2 kg CO 2 eq./ha. This scenario presents also the lowest consumption of total cumulative energy demand, 1.7*10 4 MJ/ha, and even resulting in a net reduction of the fossil energy fraction, −1.9*10 4 MJ/ha compared to a situation without seaweed cultivation. All scenarios provide mitigation of marine eutrophication thanks to bioextraction of nitrogen and phosphorus during seaweed growth. The material consumption for seeded lines has 2–20 times higher impact on human toxicity (cancer) than the reduction achieved by energy and protein substitution. However, minor changes in cultivation design, i.e. use of stones instead of iron as ballast to weight the seeded lines, dramatically reduces human toxicity (cancer). Externalities from the use of digestate as fertilizer affect human toxicity (non-cancer) due to transfer of arsenic from aquatic environment to agricultural soil. However concentration of heavy metals in digestate does not exceed the limit established by Danish regulation. The assessment identifies seaweed productivity as the key parameter to further improve the performance of the production systems which are a promising service provider of environmental restoration and climate change mitigation.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2017.02.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2017.02.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Mahmoud Masri; Thomas Brück; Pariya Shaigani; Norbert Mehlmer; Martina Haack; Wojciech Jurkowski;Abstract Biofuels and the oleochemical industry are highly dependent on plant oils for the generation of renewable product lines. Consequently, production of plant lipids, such as palm and rapeseed oil, for industrial applications competes with agricultural activity and is associated with a negative environmental impact. Additionally, established chemical routes for upgrading bio-lipids to renewable products depend on metal-containing catalysts. Metal leaching during oil processing results in heavy metal contaminated process wastewater. This water is difficult to remediate and leads to the loss of precious metals. Therefore, the biofuels and chemical industry requires sustainable solutions for production and upgrading of bio-lipids. With regard to the former, a promising approach is the fermentative conversion of abundant, low-value biomass into microbial, particularly yeast-based lipids. This study describes the holistic, value-adding conversion of underexploited, macroalgae feedstocks into yeast oil, animal feed and biosorbents for metal-based detoxification of process wastewater. The initial step comprises a selective enzymatic liquefaction step that yields a supernatant containing 62.5% and 59.3% (w/dwbiomass) fermentable sugars from L. digitata and U. lactuca, respectively. By dispensing with chemical pretreatment constraints, we achieved a 95% (w/w) glucose recovery. Therefore, the supernatant was qualified as a cultivation media without any detoxification step or nutrition addition. Additionally, the hydrolysis step provided 27–33% (w/dwbiomass) of a solid residue, which was qualified as a metal biosorbent. Cultivation of the oleaginous yeast C. oleaginosus on the unprocessed hydrolysis supernatant provided 44.8 g L−1 yeast biomass containing 37.1% (w/dwbiomass) lipids. The remaining yeast biomass after lipid extraction is targeted as a performance animal feed additive. Selectivity and capacity of solid macroalgae residues as biosorbents were assessed for removal and recycling of rare and heavy metals, such as Ce+3, Pb+2, Cu+2 and Ni+2 from model wastewater. The biosorption capacity of the macroalgae residues (sorption capacity ∼ 0.7 mmol g−1) exceeds that of relevant commercially available adsorption resins and biosorbents. To facilitate the integration of our technology in existing chemical and biotechnological production environments, we have devised simple, rapid and cost-efficient methods for monitoring both lipogenesis and metal sorption processes. The application of the new optical monitoring tools is essential to determine yeast cell harvesting times and biosorption capacities respectively. For the first time we report on a waste-free bioprocess that combines sustainable, microbial lipid production from low value marine biomass with in-process precious metal recycling options. Our data allowed for a preliminary economic analysis, which indicated that each product could be cost competitive with current market equivalents. Hence, the synaptic nature of the technology platform provides for the economic and ecologic viability of the overall process chain.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.04.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.04.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Authors: Attilio Converti; Raquel Pedrosa Bezerra; Raquel Pedrosa Bezerra; João Carlos Monteiro de Carvalho; +2 AuthorsAttilio Converti; Raquel Pedrosa Bezerra; Raquel Pedrosa Bezerra; João Carlos Monteiro de Carvalho; Sunao Sato; Marcelo Chuei Matsudo;pmid: 22933335
AbstractSimilar to other photosynthetic microorganisms, the cyanobacterium Arthrospira platensis can be used to produce pigments, single cell proteins, fatty acids (which can be used for bioenergy), food and feed supplements, and biofixation of CO2. Cultivation in a specifically designed tubular photobioreactor is suitable for photosynthetic biomass production, because the cultivation area can be reduced by distributing the microbial cells vertically, thus avoiding loss of ammonia and CO2. The aim of this study was to investigate the influence of light intensity and dilution rate on the photosynthetic efficiency and CO2 assimilation efficiency of A. platensis cultured in a tubular photobioreactor in a continuous process. Urea was used as a nitrogen source and CO2 as carbon source and for pH control. Steady‐state conditions were achieved in most of the runs, indicating that continuous cultivation of this cyanobacterium in a tubular photobioreactor could be an interesting alternative for the large‐scale fixation of CO2 to mitigate the greenhouse effect while producing high protein content biomass.
Biotechnology Journa... arrow_drop_down Biotechnology JournalArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/biot.201200177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biotechnology Journa... arrow_drop_down Biotechnology JournalArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/biot.201200177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Funded by:EC | BIOASSORTEC| BIOASSORTAuthors: Rossana Liguori; Carlos Ricardo Soccol; Luciana Porto de Souza Vandenberghe; Adenise Lorenci Woiciechowski; +1 AuthorsRossana Liguori; Carlos Ricardo Soccol; Luciana Porto de Souza Vandenberghe; Adenise Lorenci Woiciechowski; Vincenza Faraco;doi: 10.3390/en8042575
Ethanol production from lignocellulosic biomasses raises a global interest because it represents a good alternative to petroleum-derived energies and reduces the food versus fuel conflict generated by first generation ethanol. In this study, alkaline-acid pretreated brewers’ spent grain (BSG) was evaluated for ethanol production after enzymatic hydrolysis with commercial enzymes. The obtained hydrolysate containing a glucose concentration of 75 g/L was adopted, after dilution up to 50 g/L, for fermentation by the strain Saccharomyces cerevisiae NRRL YB 2293 selected as the best producer among five ethanologenic microorganims. When the hydrolysate was supplemented with yeast extract, 12.79 g/L of ethanol, corresponding to 0.28 g of ethanol per grams of glucose consumed (55% efficiency), was obtained within 24 h, while in the non-supplemented hydrolysate, a similar concentration was reached within 48 h. The volumetric productivity increased from 0.25 g/L·h in the un-supplemented hydrolysate to 0.53 g/L h in the yeast extract supplemented hydrolysate. In conclusion, the strain S. cerevisiae NRRL YB 2293 was shown able to produce ethanol from BSG. Although an equal amount of ethanol was reached in both BSG hydrolysate media, the nitrogen source supplementation reduced the ethanol fermentation time and promoted glucose uptake and cell growth.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8042575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 72 citations 72 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8042575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Ernesto Tabacco; Paolo Balsari; Giorgio Borreani; Simona Menardo; Simona Menardo;The effects of ensiling and baling processes, of the application of silage additives and of the storage period of corn stalks on methane production have been assessed through anaerobic digestion batch experiments, in order to evaluate the storage efficacy of corn stalks used as feedstock in biogas plants. Ensiling has proved to be a good method for corn stalk preservation for methane production, as it helps to maintain low pH values of the biomass and reduce volatile solid losses during storage, even for longer periods than 3 months. It has been shown that ensiling does not affect the cumulative methane production of corn stalks but does improve the methane production rate at the beginning of the process. This can be attributed to an increase in ethanol during ensiling, which favours the rapid start of anaerobic digestion. Corn stalks inoculated with lactic acid bacteria have shown similar pH and slightly higher lactic and acetic acid contents than untreated ones, but these changes have not had a practical effect on methane production. Dry baled corn stalks have shown a lower methane production than ensiled stalks, due to the respiration process that takes place in the field during the wilting period and to the reduction in degradability, because of drying. Nevertheless, the choice of an adequate harvest chain of corn stalks is very important in order to obtain higher energy efficiency from ensiled corn stalks than from dry conservation. If the harvested biomass per hectare is very low, ensiled corn stalks could be an inefficient way of managing this biomass for methane production.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-015-9637-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-015-9637-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2021 SpainPublisher:ACM Funded by:EC | WATCHPLANTEC| WATCHPLANTMostafa Wahby; Niclas Roxhed; Virginia Hernandez-Santana; Babak Salamat; Laura García-Carmona; Stjepan Bogdan; Alfredo Quijano-Lopez; Serge Kernbach; Andreas Kernbach; Heiko Hamann; Mikolaj Dobielewski; Antonio Díaz-Espejo;handle: 10261/251495
6 páginas.- 2 figura.- 29 referencias.- 1st Conference on Information Technology for Social Good, GoodIT 2021, Rome 9-11 September 2021 New challenges such as climate change and sustainability arise in society influencing not only environmental issues but human's health directly. To face these new challenges IT technologies and their application to environmental intelligent monitoring become into a powerful tool to set new policies and blueprints to contribute to social good. In the new H2020 project, WatchPlant will provide new tools for environmental intelligence monitoring by the use of plants as "well-being"sensors of the environment they inhabit. This will be possible by equipping plants with a net of communicated wireless self-powered sensors, coupled with artificial intelligence (AI) to become plants into "biohybrid organisms"to test exposure-effects links between plant and the environment. It will become plants into a new tool to be aware of the environment status in a very early stage towards in-situ monitoring. Additionally, the system is devoted to be sustainable and energy-efficient thanks to the use of clean energy sources such as solar cells and a enzymatic biofuel cell (BFC) together with its self-deployment, self-awareness, adaptation, artificial evolution and the AI capabilities. In this concept paper, WatchPlant will envision how to face this challenge by joining interdisciplinary efforts to access the plant sap for energy harvesting and sensing purposes and become plants into "biohybrid organisms"to benefit social good in terms of environmental monitoring in urban scenarios. © 2021 Owner/Author. Project WatchPlant has received funding from the European Union’s Horizon 2020 research and innovation program under the FET grant agreement, no. 101017899 Peer reviewed
https://digital.csic... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3462203.3475885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 63visibility views 63 download downloads 376 Powered bymore_vert https://digital.csic... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3462203.3475885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Judith Becker; Anna Lange; Jonathan Fabarius; Christoph Wittmann;pmid: 26360870
Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation.
Current Opinion in B... arrow_drop_down Current Opinion in BiotechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.copbio.2015.08.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 235 citations 235 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Current Opinion in B... arrow_drop_down Current Opinion in BiotechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.copbio.2015.08.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu