- home
- Advanced Search
- Energy Research
- Closed Access
- Restricted
- Open Source
- 6. Clean water
- 15. Life on land
- 2. Zero hunger
- IT
- DE
- Energy Research
- Closed Access
- Restricted
- Open Source
- 6. Clean water
- 15. Life on land
- 2. Zero hunger
- IT
- DE
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Nicolae Scarlat; Jean-Franc¸ois Dallemand; Manjola Banja;According to the renewable energy directive 2009/28/EC, the European Union Member States should increase by 2020 the use of renewable energy to 20% of gross final energy consumption and to reach a mandatory share of 10% renewable energy in the transport sector. This study aims to quantify the impact of 2020 bioenergy targets on the land use in the EU, based on the projections of the National Renewable Action Plans in four scenarios: Scenario 1. Bioenergy targets according to NREAPs; Scenario 2. Bioenergy targets according to NREAPs, no second generation biofuels; Scenario 3. Bioenergy targets according to NREAPs, reduced import of biofuels and bioliquids; Scenario 4. Bioenergy targets according to NREAPs, high imports of biofuels and bioliquids. This study also considers the credit for co-products generated from biofuel production. The analysis reveals that the land used in the EU for bioenergy would range between 13.5 Mha and 25.2 Mha in 2020. This represent between 12.2% and 22.5% of the total arable land used and 7.3% and 13.5% of the Utilised Agricultural Area (UAA). In the NREAPS scenario, about 17.4 Mha would be used for bioenergy production, representing 15.7% of arable land and 9.4% of UAA. The increased demand from biofuels would lead to an increased generation of co-products, replacing conventional fodder for animal feed. Considering the co-products, the land used for bioenergy would range between 8.8 Mha and 15.0 Mha in 2020 in the various scenarios. This represent between 7.9% and 13.3% of the total arable land used in the EU and 4.7% and 8.0% of the UAA. In the NREAPS scenario, when co-products are considered, about 10.3 Mha would be used for biofuels, bioliquids and bioenergy production, representing 9.3% of arable land and 5.6% of agricultural land. This study further provides detailed data on the impact on land use in each Member State.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors: SCARPA, MASSIMILIANO; MAZZALI, UGO; PERON, FABIO;handle: 11578/217904
Abstract In recent years living walls have increasingly spread, thus becoming a diffuse architectural envelope cladding technology. Consequently, a more precise understanding of their thermal behavior and impact on the building energy balance are needed. One of the most important effects provided by the use of living walls is the shading of the building envelope, with clear benefits during the cooling period. Furthermore, many features characterize the thermal behavior of living walls, namely plant species, leaf area index (LAI), evapotranspiration, emissivity and air cavity type. All these particular characteristics have been accounted in the mathematical model developed in the frame of the presented research, whose aim is to provide a tool for the prediction of the thermal behavior of living walls. Two kinds of living walls, one with grass and closed air cavity and the other one with vertical garden and open air cavity were considered. The results achieved by means of the developed model show a good agreement with the measurements also supported by model efficiency indexes such as Nash–Sutcliffe efficiency index (NSEC). Values of around 0.7 were obtained for the NSEC index for both the investigated living walls.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Butkowski, Olivier K.; Baum, Chad M.; Pakseresht, Ashkan; Bröring, Stefanie; Lagerkvist; Carl Johan;Abstract Social acceptance of innovative technologies is a key element of an effective transition towards more sustainable energy economies. However, innovative technologies like genetic modification also tend to spark controversy and backlash. So far, efforts to inform the public about any risks and benefits of novel technologies not only have struggled to foster acceptance but also neglect the interdependent foundations of consumer decision-making. Through a controlled experiment with German consumers (N = 322), we examine whether consumer support and rejection of genetic modification in bioenergy crops is influenced by the statements and actions of actors throughout the supply chain. In specific, we show that the decision of energy companies to sell and support GM bioenergy positively impacts consumer decisions to support. To ensure that decision outcomes were specifically impacted by the expressions of corporate actors, we controlled for the content and valence of information by random assignment to one of three treatments in which participants received positive, negative, or balanced (risks and benefits) information. We find that negative messaging diminished support and increased rejection relative to the other treatments. Lastly, the statements and actions of corporate actors also exerted an indirect influence on consumer decisions through their interactions with social trust and labels, e.g. greater support by farmers had a positive influence only for those who are more generally trustworthy. Given these results, we anticipate more attention to the importance of actors such as farmers and energy companies for the social acceptance of novel technologies in the energy sphere.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2019.101308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2019.101308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Marroccoli M.; Ibris N.; Telesca A.; Tregambi C.; Solimene R.; Di Lauro F.; Ruiz de Ballesteros O.; Salatino P.; Montagnaro F.;handle: 11588/867638 , 20.500.14243/416346 , 11563/153088
Dolomite-based binders are characterised by interesting technical and environmental features. For their synthesis, sources of both CaO and MgO are required. The idea developed in this work is to couple the synthesis of dolomite-based binders, starting from a natural dolomite, through the concept of concentrated solar energy (needed to drive the endothermal dolomite calcination process) in fluidised bed reactors. To this end, a fluidised bed system, where the concentrated solar radiation is mimicked by the use of Xe-lamps (short-arc), has been set up and operated. Natural dolomite (sieved in the 420-590 ?m size range) was calcined at a nominal temperature of 850 °C, and bed temperature profiles during solar-driven calcination were investigated. Then, four binders were prepared by mixing slaked dolomite (obtained from the hydration of solar calcined dolomite) with either blast furnace slag or coal fly ash as supplementary cementitious materials. The binders were hydrated for curing times ranging from 7 to 56 days. X-ray fluorescence, X-ray diffraction and combined differential thermal and thermogravimetric analyses were employed as characterisation techniques both to analyse the chemical composition of starting materials and to investigate the evolution of the hydration in the four systems.
IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:American Association for the Advancement of Science (AAAS) Funded by:EC | LUC4CEC| LUC4CAuthors: R. Alkama; A. Cescatti;pmid: 26912702
It's not only the carbon in the trees Forest loss affects climate not just because of the impacts it has on the carbon cycle, but also because of how it affects the fluxes of energy and water between the land and the atmosphere. Evaluating global impact is complicated because deforestation can produce different results in different climate zones, making it hard to determine large-scale trends rather than more local ones. Alkama and Cescatti conducted a global assessment of the biophysical effects of forest cover change. Forest loss amplifies diurnal temperature variations, increases mean and maximum air temperatures, and causes a significant amount of warming when compared to CO 2 emission from land-use change. Science , this issue p. 600
Science arrow_drop_down http://dx.doi.org/10.1126/scie...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac8083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu639 citations 639 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Science arrow_drop_down http://dx.doi.org/10.1126/scie...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac8083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV CAPORALE, ANTONIO GIANDONATO; PIGNA, MASSIMO; SOMMELLA, ALESSIA; Dynes J. J; COZZOLINO, VINCENZA; Violante A.;The influence of compost on the growth of bean plants irrigated with As-contaminated waters and its influence on the mobility of As in the soils and the uptake of As (as NaAs(III)O2) by plant components was studied at various compost application rates (3·10(4) and 6·10(4) kg ha(-1)) and at three As concentrations (1, 2 and 3 mg kg(-1)). The biomass and As and P concentrations of the roots, shoots and beans were determined at harvest time, as well as the chlorophyll content of the leaves and nonspecific and specifically bound As in the soil. The bean plants exposed to As showed typical phytotoxicity symptoms; no plants however died over the study. The biomass of the bean plants increased with the increasing amounts of compost added to the soil, attributed to the phytonutritive capacity of compost. Biomass decreased with increasing As concentrations, however, the reduction in the biomass was significantly lower with the addition of compost, indicating that the As phytotoxicity was alleviated by the compost. For the same As concentration, the As content of the roots, shoots and beans decreased with increasing compost added compared to the Control. This is due to partial immobilization of the As by the organic functional groups on the compost, either directly or through cation bridging. Most of the As adsorbed by the bean plants accumulated in the roots, while a scant allocation of As occurred in the beans. Hence, the addition of compost to soils could be used as an effective means to limit As accumulation in crops from As-contaminated waters.
Archivio della ricer... arrow_drop_down Journal of Environmental ManagementArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2013.06.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Journal of Environmental ManagementArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2013.06.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Christoph Plieth; Karl H. Mühling; Sajid Masood; Livia Saleh; Katja Witzel;pmid: 22592001
Boron (B) toxicity symptoms are visible in the form of necrotic spots and may worsen the oxidative stress caused by salinity. Hence, the interactive effects of combined salinity and B toxicity stress on antioxidative activities (TAC, LUPO, SOSA, CAT, and GR) were investigated by novel luminescence assays and standard photometric procedures. Wheat plants grown under hydroponic conditions were treated with 2.5 μM H₃BO₃ (control), 75 mM NaCl, 200 μM H₃BO₃, or 75 mM NaCl + 200 μM H₃BO₃, and analysed 6 weeks after germination. Shoot fresh weight (FW), shoot dry weight (DW), and relative water content (RWC) were significantly reduced, whereas the antioxidative activity of all enzymes was increased under salinity compared with the control. High B application led to necrotic leaf spots but did not influence growth parameters. Following NaCl + B treatment, shoot DW, RWC, SOSA, GR, and CAT activities remained the same compared with NaCl alone, whereas the TAC and LUPO activities were increased under the combined stress compared with NaCl alone. However, shoot FW was significantly reduced under NaCl + B compared with NaCl alone, as an additive effect of combined stress. Thus, we found an adjustment of antioxidative enzyme activity to the interactive effects of NaCl and high B. The stress factor "salt" mainly produced more oxidative stress than that of the factor "high B". Furthermore, addition of higher B in the presence of NaCl increases TAC and LUPO demonstrating that increased LUPO activity is an important physiological response in wheat plants against multiple stresses.
Plant Physiology and... arrow_drop_down Plant Physiology and BiochemistryArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2012.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Plant Physiology and... arrow_drop_down Plant Physiology and BiochemistryArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2012.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Paolo S. Calabrò; Filippo Fazzino; Adele Folino; Silvia Scibetta; Rossana Sidari;handle: 20.500.11769/561550
Abstract Orange Peel Waste (OPW) is a widely produced residue whose management is complicated by its physical and chemical properties. Anaerobic digestion (AD), which is commonly used for the treatment and exploitation of many biodegradable wastes, is inefficient on OPW due to the presence of essential oils (mainly d -Limonene) as well as the low pH, which cause the process to be unstable. Here we explore the effect of alkaline pre-treatment of OPW and of the addition of granular activated carbon (GAC) and Zero Valent Iron (ZVI) in improving AD in two semi-continuous reactors at a laboratory scale. The addition and pre-treatment of ZVI/GAC were shown to help process stability up to a loading of 3 kgVS·m−3·d−1 and to increase methane production even at a sub-optimal pH. The investigation of the bacterial community, by high-throughput sequencing, has also increased our insight on their involvement in AD in the presence of ZVI, including its biotic oxidation. In addition, direct interspecies electron transfer was shown to play a role in the reactor supplemented with ZVI.
IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di Cataniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2019.105337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di Cataniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2019.105337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | MINOTAURUSEC| MINOTAURUSFRASCARI, DARIO; BUCCHI, GIACOMO; DORIA, FRANCESCO; ROSATO, ANTONELLA; TAVANAIE, NASRIN; Raffaele Salviulo; CIAVARELLI, ROBERTA; PINELLI, DAVIDE; FRARACCIO, SERENA; ZANAROLI, GIULIO; FAVA, FABIO;A procedure for the design of an aerobic cometabolic process for the on-site degradation of chlorinated solvents in a packed bed reactor was developed using groundwater from an aquifer contaminated by trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (TeCA). The work led to the selection of butane among five tested growth substrates, and to the development and characterization from the site's indigenous biomass of a suspended-cell consortium capable to degrade TCE (first order constant: 96 L gprotein(-1) day(-1) at 30 °C and 4.3 L gprotein(-1) day(-1) at 15 °C) with a 90 % mineralization of the organic chlorine. The consortium immobilization had strong effects on the butane and TCE degradation rates. The microbial community structure was slightly changed by a temperature shift from 30 to 15 °C, but remarkably affected by biomass adhesion. Given the higher TCE normalized degradation rate (0.59 day(-1) at 15 °C) and attached biomass concentration (0.13 gprotein Lbioreactor(-1) at 15 °C) attained, the porous ceramic carrier Biomax was selected as the best option for the packed bed reactor process. The low TeCA degradation rate exhibited by the developed consortium suggested the inclusion of a chemical pre-treatment based on the TeCA to TCE conversion via β-elimination, a very fast reaction at alkaline pH. To the best of the authors' knowledge, this represents the first attempt to develop a procedure for the development of a packed bed reactor process for the aerobic cometabolism of chlorinated solvents.
Biodegradation arrow_drop_down http://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10532-013-9664-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Biodegradation arrow_drop_down http://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10532-013-9664-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2021 ItalyEvelina Volpe; Loredana Antronico; Francesca Ardizzone; Roberto Coscarelli; Stefano Luigi Gariano; Alessandro Mondini;Earth observation (EO) data are useful tools to analyse geomorphological processes, among which slow-moving landslides triggered by rainfall. EO data are also used to evaluate climate change and to assess its impact on geomorphological processes and geo-hydrological phenomena. The latter is the topic of the Project OT4Clima (Innovative Earth Observation technologies to study Climate Change and its impact on the environment) joined by CNR-IRPI within a consortium that includes other CNR institutes, universities and private companies. The OT4CLIMA project moves from the awareness that the impacts of climate change on the environment need to be better observed, understood, and modelled, especially at a regional scale, in order to put in place appropriate and effective risk mitigation strategies. Within the project, the CNR-IRPI group works on the development of rigorous methods and procedures for evaluating the impact of climate and its change on landslides, in particular on those characterized by a slow cinematic, at a regional scale. The test site is represented by four catchments located in the Basilicata region, southern Italy, namely the basins of the Bradano, Basento, Agri, and Sinni rivers. Long-term rainfall series gathered from 22 rain gauges located in the four catchments are analysed to evaluate the presence of temporal trends. To this aim, non-parametric and statistical tests are applied to the series. Historical landslide information is gathered from the analysis of the IFFI (Inventario dei Fenomeni Franosi in Italia) database, the Idrogeo platform (https://idrogeo.isprambiente.it/app/) and the AVI (Aree Vulnerate in Italia) catalogue. Only some types of landslide movements are considered, namely rotational-translational slides, slow slides/flows, complex movements. Moreover, Copernicus Sentinel-1 images are employed to detect the spatial and temporal distribution of slow earth surface deformations. The obtained results are used for checking the completeness of the landslide inventories. More in detail, the deformation maps of the test site are obtained by means of the application of the SBAS (Small BAseline Subset) technique to three datasets of Sentinel-1 images: t146 ascending orbit and t51 and t124 descending orbits, for the period 2015-2020. Then, a comparative analysis of rainfall data with displacement series is carried out with the aim of identifying clusters of satellite measurements with homogeneous behaviour likely correlated to variations in the rainfall regime. In particular, only the points with a mean velocity in the observation higher than 0.1 cm/year are considered to be moving. Moreover, only the displacement series of points located in areas mapped as landslides - as for the historical inventories - and sited within the influence regions of each rain gauge in the study area are analysed. A 10-km circular buffer centred in the stations are used to define the influence region of each station. The displacement series are analysed and compared to the rainfall series to search for correlations and to evaluate the effects of climate drivers on slow moving landslides.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::20141464f97a9989fe6e40eb1e03f4a7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::20141464f97a9989fe6e40eb1e03f4a7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Nicolae Scarlat; Jean-Franc¸ois Dallemand; Manjola Banja;According to the renewable energy directive 2009/28/EC, the European Union Member States should increase by 2020 the use of renewable energy to 20% of gross final energy consumption and to reach a mandatory share of 10% renewable energy in the transport sector. This study aims to quantify the impact of 2020 bioenergy targets on the land use in the EU, based on the projections of the National Renewable Action Plans in four scenarios: Scenario 1. Bioenergy targets according to NREAPs; Scenario 2. Bioenergy targets according to NREAPs, no second generation biofuels; Scenario 3. Bioenergy targets according to NREAPs, reduced import of biofuels and bioliquids; Scenario 4. Bioenergy targets according to NREAPs, high imports of biofuels and bioliquids. This study also considers the credit for co-products generated from biofuel production. The analysis reveals that the land used in the EU for bioenergy would range between 13.5 Mha and 25.2 Mha in 2020. This represent between 12.2% and 22.5% of the total arable land used and 7.3% and 13.5% of the Utilised Agricultural Area (UAA). In the NREAPS scenario, about 17.4 Mha would be used for bioenergy production, representing 15.7% of arable land and 9.4% of UAA. The increased demand from biofuels would lead to an increased generation of co-products, replacing conventional fodder for animal feed. Considering the co-products, the land used for bioenergy would range between 8.8 Mha and 15.0 Mha in 2020 in the various scenarios. This represent between 7.9% and 13.3% of the total arable land used in the EU and 4.7% and 8.0% of the UAA. In the NREAPS scenario, when co-products are considered, about 10.3 Mha would be used for biofuels, bioliquids and bioenergy production, representing 9.3% of arable land and 5.6% of agricultural land. This study further provides detailed data on the impact on land use in each Member State.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors: SCARPA, MASSIMILIANO; MAZZALI, UGO; PERON, FABIO;handle: 11578/217904
Abstract In recent years living walls have increasingly spread, thus becoming a diffuse architectural envelope cladding technology. Consequently, a more precise understanding of their thermal behavior and impact on the building energy balance are needed. One of the most important effects provided by the use of living walls is the shading of the building envelope, with clear benefits during the cooling period. Furthermore, many features characterize the thermal behavior of living walls, namely plant species, leaf area index (LAI), evapotranspiration, emissivity and air cavity type. All these particular characteristics have been accounted in the mathematical model developed in the frame of the presented research, whose aim is to provide a tool for the prediction of the thermal behavior of living walls. Two kinds of living walls, one with grass and closed air cavity and the other one with vertical garden and open air cavity were considered. The results achieved by means of the developed model show a good agreement with the measurements also supported by model efficiency indexes such as Nash–Sutcliffe efficiency index (NSEC). Values of around 0.7 were obtained for the NSEC index for both the investigated living walls.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Butkowski, Olivier K.; Baum, Chad M.; Pakseresht, Ashkan; Bröring, Stefanie; Lagerkvist; Carl Johan;Abstract Social acceptance of innovative technologies is a key element of an effective transition towards more sustainable energy economies. However, innovative technologies like genetic modification also tend to spark controversy and backlash. So far, efforts to inform the public about any risks and benefits of novel technologies not only have struggled to foster acceptance but also neglect the interdependent foundations of consumer decision-making. Through a controlled experiment with German consumers (N = 322), we examine whether consumer support and rejection of genetic modification in bioenergy crops is influenced by the statements and actions of actors throughout the supply chain. In specific, we show that the decision of energy companies to sell and support GM bioenergy positively impacts consumer decisions to support. To ensure that decision outcomes were specifically impacted by the expressions of corporate actors, we controlled for the content and valence of information by random assignment to one of three treatments in which participants received positive, negative, or balanced (risks and benefits) information. We find that negative messaging diminished support and increased rejection relative to the other treatments. Lastly, the statements and actions of corporate actors also exerted an indirect influence on consumer decisions through their interactions with social trust and labels, e.g. greater support by farmers had a positive influence only for those who are more generally trustworthy. Given these results, we anticipate more attention to the importance of actors such as farmers and energy companies for the social acceptance of novel technologies in the energy sphere.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2019.101308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2019.101308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Marroccoli M.; Ibris N.; Telesca A.; Tregambi C.; Solimene R.; Di Lauro F.; Ruiz de Ballesteros O.; Salatino P.; Montagnaro F.;handle: 11588/867638 , 20.500.14243/416346 , 11563/153088
Dolomite-based binders are characterised by interesting technical and environmental features. For their synthesis, sources of both CaO and MgO are required. The idea developed in this work is to couple the synthesis of dolomite-based binders, starting from a natural dolomite, through the concept of concentrated solar energy (needed to drive the endothermal dolomite calcination process) in fluidised bed reactors. To this end, a fluidised bed system, where the concentrated solar radiation is mimicked by the use of Xe-lamps (short-arc), has been set up and operated. Natural dolomite (sieved in the 420-590 ?m size range) was calcined at a nominal temperature of 850 °C, and bed temperature profiles during solar-driven calcination were investigated. Then, four binders were prepared by mixing slaked dolomite (obtained from the hydration of solar calcined dolomite) with either blast furnace slag or coal fly ash as supplementary cementitious materials. The binders were hydrated for curing times ranging from 7 to 56 days. X-ray fluorescence, X-ray diffraction and combined differential thermal and thermogravimetric analyses were employed as characterisation techniques both to analyse the chemical composition of starting materials and to investigate the evolution of the hydration in the four systems.
IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:American Association for the Advancement of Science (AAAS) Funded by:EC | LUC4CEC| LUC4CAuthors: R. Alkama; A. Cescatti;pmid: 26912702
It's not only the carbon in the trees Forest loss affects climate not just because of the impacts it has on the carbon cycle, but also because of how it affects the fluxes of energy and water between the land and the atmosphere. Evaluating global impact is complicated because deforestation can produce different results in different climate zones, making it hard to determine large-scale trends rather than more local ones. Alkama and Cescatti conducted a global assessment of the biophysical effects of forest cover change. Forest loss amplifies diurnal temperature variations, increases mean and maximum air temperatures, and causes a significant amount of warming when compared to CO 2 emission from land-use change. Science , this issue p. 600
Science arrow_drop_down http://dx.doi.org/10.1126/scie...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac8083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu639 citations 639 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Science arrow_drop_down http://dx.doi.org/10.1126/scie...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aac8083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV CAPORALE, ANTONIO GIANDONATO; PIGNA, MASSIMO; SOMMELLA, ALESSIA; Dynes J. J; COZZOLINO, VINCENZA; Violante A.;The influence of compost on the growth of bean plants irrigated with As-contaminated waters and its influence on the mobility of As in the soils and the uptake of As (as NaAs(III)O2) by plant components was studied at various compost application rates (3·10(4) and 6·10(4) kg ha(-1)) and at three As concentrations (1, 2 and 3 mg kg(-1)). The biomass and As and P concentrations of the roots, shoots and beans were determined at harvest time, as well as the chlorophyll content of the leaves and nonspecific and specifically bound As in the soil. The bean plants exposed to As showed typical phytotoxicity symptoms; no plants however died over the study. The biomass of the bean plants increased with the increasing amounts of compost added to the soil, attributed to the phytonutritive capacity of compost. Biomass decreased with increasing As concentrations, however, the reduction in the biomass was significantly lower with the addition of compost, indicating that the As phytotoxicity was alleviated by the compost. For the same As concentration, the As content of the roots, shoots and beans decreased with increasing compost added compared to the Control. This is due to partial immobilization of the As by the organic functional groups on the compost, either directly or through cation bridging. Most of the As adsorbed by the bean plants accumulated in the roots, while a scant allocation of As occurred in the beans. Hence, the addition of compost to soils could be used as an effective means to limit As accumulation in crops from As-contaminated waters.
Archivio della ricer... arrow_drop_down Journal of Environmental ManagementArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2013.06.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Journal of Environmental ManagementArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2013.06.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Christoph Plieth; Karl H. Mühling; Sajid Masood; Livia Saleh; Katja Witzel;pmid: 22592001
Boron (B) toxicity symptoms are visible in the form of necrotic spots and may worsen the oxidative stress caused by salinity. Hence, the interactive effects of combined salinity and B toxicity stress on antioxidative activities (TAC, LUPO, SOSA, CAT, and GR) were investigated by novel luminescence assays and standard photometric procedures. Wheat plants grown under hydroponic conditions were treated with 2.5 μM H₃BO₃ (control), 75 mM NaCl, 200 μM H₃BO₃, or 75 mM NaCl + 200 μM H₃BO₃, and analysed 6 weeks after germination. Shoot fresh weight (FW), shoot dry weight (DW), and relative water content (RWC) were significantly reduced, whereas the antioxidative activity of all enzymes was increased under salinity compared with the control. High B application led to necrotic leaf spots but did not influence growth parameters. Following NaCl + B treatment, shoot DW, RWC, SOSA, GR, and CAT activities remained the same compared with NaCl alone, whereas the TAC and LUPO activities were increased under the combined stress compared with NaCl alone. However, shoot FW was significantly reduced under NaCl + B compared with NaCl alone, as an additive effect of combined stress. Thus, we found an adjustment of antioxidative enzyme activity to the interactive effects of NaCl and high B. The stress factor "salt" mainly produced more oxidative stress than that of the factor "high B". Furthermore, addition of higher B in the presence of NaCl increases TAC and LUPO demonstrating that increased LUPO activity is an important physiological response in wheat plants against multiple stresses.
Plant Physiology and... arrow_drop_down Plant Physiology and BiochemistryArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2012.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Plant Physiology and... arrow_drop_down Plant Physiology and BiochemistryArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2012.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Paolo S. Calabrò; Filippo Fazzino; Adele Folino; Silvia Scibetta; Rossana Sidari;handle: 20.500.11769/561550
Abstract Orange Peel Waste (OPW) is a widely produced residue whose management is complicated by its physical and chemical properties. Anaerobic digestion (AD), which is commonly used for the treatment and exploitation of many biodegradable wastes, is inefficient on OPW due to the presence of essential oils (mainly d -Limonene) as well as the low pH, which cause the process to be unstable. Here we explore the effect of alkaline pre-treatment of OPW and of the addition of granular activated carbon (GAC) and Zero Valent Iron (ZVI) in improving AD in two semi-continuous reactors at a laboratory scale. The addition and pre-treatment of ZVI/GAC were shown to help process stability up to a loading of 3 kgVS·m−3·d−1 and to increase methane production even at a sub-optimal pH. The investigation of the bacterial community, by high-throughput sequencing, has also increased our insight on their involvement in AD in the presence of ZVI, including its biotic oxidation. In addition, direct interspecies electron transfer was shown to play a role in the reactor supplemented with ZVI.
IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di Cataniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2019.105337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di Cataniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2019.105337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | MINOTAURUSEC| MINOTAURUSFRASCARI, DARIO; BUCCHI, GIACOMO; DORIA, FRANCESCO; ROSATO, ANTONELLA; TAVANAIE, NASRIN; Raffaele Salviulo; CIAVARELLI, ROBERTA; PINELLI, DAVIDE; FRARACCIO, SERENA; ZANAROLI, GIULIO; FAVA, FABIO;A procedure for the design of an aerobic cometabolic process for the on-site degradation of chlorinated solvents in a packed bed reactor was developed using groundwater from an aquifer contaminated by trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (TeCA). The work led to the selection of butane among five tested growth substrates, and to the development and characterization from the site's indigenous biomass of a suspended-cell consortium capable to degrade TCE (first order constant: 96 L gprotein(-1) day(-1) at 30 °C and 4.3 L gprotein(-1) day(-1) at 15 °C) with a 90 % mineralization of the organic chlorine. The consortium immobilization had strong effects on the butane and TCE degradation rates. The microbial community structure was slightly changed by a temperature shift from 30 to 15 °C, but remarkably affected by biomass adhesion. Given the higher TCE normalized degradation rate (0.59 day(-1) at 15 °C) and attached biomass concentration (0.13 gprotein Lbioreactor(-1) at 15 °C) attained, the porous ceramic carrier Biomax was selected as the best option for the packed bed reactor process. The low TeCA degradation rate exhibited by the developed consortium suggested the inclusion of a chemical pre-treatment based on the TeCA to TCE conversion via β-elimination, a very fast reaction at alkaline pH. To the best of the authors' knowledge, this represents the first attempt to develop a procedure for the development of a packed bed reactor process for the aerobic cometabolism of chlorinated solvents.
Biodegradation arrow_drop_down http://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10532-013-9664-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Biodegradation arrow_drop_down http://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10532-013-9664-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2021 ItalyEvelina Volpe; Loredana Antronico; Francesca Ardizzone; Roberto Coscarelli; Stefano Luigi Gariano; Alessandro Mondini;Earth observation (EO) data are useful tools to analyse geomorphological processes, among which slow-moving landslides triggered by rainfall. EO data are also used to evaluate climate change and to assess its impact on geomorphological processes and geo-hydrological phenomena. The latter is the topic of the Project OT4Clima (Innovative Earth Observation technologies to study Climate Change and its impact on the environment) joined by CNR-IRPI within a consortium that includes other CNR institutes, universities and private companies. The OT4CLIMA project moves from the awareness that the impacts of climate change on the environment need to be better observed, understood, and modelled, especially at a regional scale, in order to put in place appropriate and effective risk mitigation strategies. Within the project, the CNR-IRPI group works on the development of rigorous methods and procedures for evaluating the impact of climate and its change on landslides, in particular on those characterized by a slow cinematic, at a regional scale. The test site is represented by four catchments located in the Basilicata region, southern Italy, namely the basins of the Bradano, Basento, Agri, and Sinni rivers. Long-term rainfall series gathered from 22 rain gauges located in the four catchments are analysed to evaluate the presence of temporal trends. To this aim, non-parametric and statistical tests are applied to the series. Historical landslide information is gathered from the analysis of the IFFI (Inventario dei Fenomeni Franosi in Italia) database, the Idrogeo platform (https://idrogeo.isprambiente.it/app/) and the AVI (Aree Vulnerate in Italia) catalogue. Only some types of landslide movements are considered, namely rotational-translational slides, slow slides/flows, complex movements. Moreover, Copernicus Sentinel-1 images are employed to detect the spatial and temporal distribution of slow earth surface deformations. The obtained results are used for checking the completeness of the landslide inventories. More in detail, the deformation maps of the test site are obtained by means of the application of the SBAS (Small BAseline Subset) technique to three datasets of Sentinel-1 images: t146 ascending orbit and t51 and t124 descending orbits, for the period 2015-2020. Then, a comparative analysis of rainfall data with displacement series is carried out with the aim of identifying clusters of satellite measurements with homogeneous behaviour likely correlated to variations in the rainfall regime. In particular, only the points with a mean velocity in the observation higher than 0.1 cm/year are considered to be moving. Moreover, only the displacement series of points located in areas mapped as landslides - as for the historical inventories - and sited within the influence regions of each rain gauge in the study area are analysed. A 10-km circular buffer centred in the stations are used to define the influence region of each station. The displacement series are analysed and compared to the rainfall series to search for correlations and to evaluate the effects of climate drivers on slow moving landslides.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::20141464f97a9989fe6e40eb1e03f4a7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::20141464f97a9989fe6e40eb1e03f4a7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu