Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Environmental Management
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of compost on the mobility of arsenic in soil and its uptake by bean plants (Phaseolus vulgaris L.) irrigated with arsenite-contaminated water

Authors: CAPORALE, ANTONIO GIANDONATO; PIGNA, MASSIMO; SOMMELLA, ALESSIA; Dynes J. J; COZZOLINO, VINCENZA; Violante A.;

Influence of compost on the mobility of arsenic in soil and its uptake by bean plants (Phaseolus vulgaris L.) irrigated with arsenite-contaminated water

Abstract

The influence of compost on the growth of bean plants irrigated with As-contaminated waters and its influence on the mobility of As in the soils and the uptake of As (as NaAs(III)O2) by plant components was studied at various compost application rates (3·10(4) and 6·10(4) kg ha(-1)) and at three As concentrations (1, 2 and 3 mg kg(-1)). The biomass and As and P concentrations of the roots, shoots and beans were determined at harvest time, as well as the chlorophyll content of the leaves and nonspecific and specifically bound As in the soil. The bean plants exposed to As showed typical phytotoxicity symptoms; no plants however died over the study. The biomass of the bean plants increased with the increasing amounts of compost added to the soil, attributed to the phytonutritive capacity of compost. Biomass decreased with increasing As concentrations, however, the reduction in the biomass was significantly lower with the addition of compost, indicating that the As phytotoxicity was alleviated by the compost. For the same As concentration, the As content of the roots, shoots and beans decreased with increasing compost added compared to the Control. This is due to partial immobilization of the As by the organic functional groups on the compost, either directly or through cation bridging. Most of the As adsorbed by the bean plants accumulated in the roots, while a scant allocation of As occurred in the beans. Hence, the addition of compost to soils could be used as an effective means to limit As accumulation in crops from As-contaminated waters.

Country
Italy
Keywords

Chlorophyll, Agricultural Irrigation, Arsenites, Uptake, Biological Availability, Plant Roots, Arsenic, Soil, Phytoavailability, Soil Pollutants, Biomass, Mobility, Phaseolus, Chlorophyll A, Bean, Phosphorus, Compost, Plant Leaves, Arsenic; Bean; Compost; Mobility; Phytoavailability; Uptake, Water Pollutants, Chemical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%