- home
- Advanced Search
- Energy Research
- 2021-2025
- Open Access
- Open Source
- GB
- ES
- IT
- Energy Research
- 2021-2025
- Open Access
- Open Source
- GB
- ES
- IT
Research data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Funded by:UKRI | CoccoTrait: Revealing Coc...UKRI| CoccoTrait: Revealing Coccolithophore Trait diversity and its climatic impactsde Vries, Joost; Poulton, Alex J.; Young, Jeremy R.; Monteiro, Fanny M.; Sheward, Rosie M.; Johnson, Roberta; Hagino, Kyoko; Ziveri, Patrizia; Wolf, Levi J.;CASCADE is a global dataset for 139 extant coccolithophore taxonomic units. CASCADE includes a trait database (size and cellular organic and inorganic carbon contents) and taxonomic-specific global spatiotemporal distributions (Lat/Lon/Depth/Month/Year) of coccolithophore abundance and organic and inorganic carbon stocks. CASCADE covers all ocean basins over the upper 275 meters, spans the years 1964-2019 and includes 33,119 taxonomic-specific abundance observations. Within CASCADE, we characterise the underlying uncertainties due to measurement errors by propagating error estimates between the different studies. Full details of the data set are provided in the associated Scientific Data manuscript. The repository contains five main folders: 1) "Classification", which contains YAML files with synonyms, family-level classifications, and life cycle phase associations and definitions; 2) "Concatenated literature", which contains the merged datasets of size, PIC and POC and which were corrected for taxonomic unit synonyms; 3) "Resampled cellular datasets", which contains the resampled datasets of size, PIC and POC in long format as well as a summary table; 4) "Gridded data sets", which contains gridded datasets of abundance, PIC and POC; 5) "Species lists", which contains spreadsheets of the "common" (>20 obs) and "rare" (<20 obs) species and their number of observations. The CASCADE data set can be easily reproduced using the scripts and data provided in the associated github repository: https://github.com/nanophyto/CASCADE/ (zenodo.12797197) Correspondence to: Joost de Vries, joost.devries@bristol.ac.uk v.0.1.2 has some fixes: 1. The wrongly specified S. neapolitana was removed from synonyms.yml (this species is now S. nana)2. Longitudes were corrected for Guerreiro et al., 20233. A double entry for Dimizia et al., 2015 was fixed4. Units in Sal et al., 2013 were correct to cells/L (previously cells/ml)5. Data from Sal et al., 2013 was re-done, as some species were missing6. Duplicate entries from Baumann et al., 2000 were dropped
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13736214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13736214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022 SpainAuthors: Calama-González, Carmen María; Suárez, Rafael; León-Rodríguez, Ángel Luis;Resultados interactivos de una investigación llevada a cabo sobre la implementación de estrategias de rehabilitación optimizadas aplicadas al parque residencial social del sur de España en diferentes zonas climáticas (A3, A4, B4 y C3), ante escenarios climáticos futuros de cambio climático. En concreto, se ha realizado un análisis multiobjetivo en el que se optimizan, a partir de la aplicación de algoritmos genéticos, los costes de intervención de diversas soluciones de rehabilitación y el confort térmico interior en verano e invierno de las viviendas sociales, bajo escenarios futuros de calentamiento global. Todo ello se realiza mediante modelos parametrizados y validados a nivel de conjunto edificatorio, implementando información real contenida en una base de datos facilitada por la Agencia de Vivienda y Rehabilitación de Andalucía (AVRA) en los modelos de simulación dinámica de conjunto. Los resultados de esta investigación están vinculados con el proyecto: Optimización Paramétrica de Fachadas de Doble Piel en Clima Mediterráneo para la Mejora de la Eficiencia Energética ante Escenarios de cambio Climático (BIA2017-86383-R). La visualización de los resultados de esta investigación se realiza a través de ficheros .html que pueden ser accedidos fácilmente mediante cualquier navegador web. Existen tres tipos de figuras interactivas: gráficas de dispersión en 3d, gráficas de dispersión en 2d y gráficas de ejes paralelos. Se ha generado por cada zona climática analizada estos tres tipos de gráficos. En el caso de los gráficos de dispersión en 3d, el entorno web permite girar y aumentar la figura, para facilitar su visualización en el espacio. Además, colocando el cursor sobre cada punto, pueden consultarse los valores específicos de las variables de optimización (porcentaje de horas con temperaturas por encima del límite superior e inferior del confort y costes de inversión en €/m2 construido). En los gráficos en dispersión en 2d, colocando el cursor sobre cada punto, se despliega una ventana en la que pueden visualizarse los diferentes valores asociados a ese punto. En lo referente a las figuras de coordenadas paralelas, las variables de optimización pueden filtrase, seleccionando y arrastrando el cursor sobre un rango de valores buscado. Lo mismo puede realizarse con el resto de variables combinatorias. Hecho esto, la herramienta web mostrará la combinación de los paquetes de rehabilitación óptimos (variables de rehabilitación ligadas a la mejora energética de la envolvente térmica y las variables operacionales analizadas). Cada combinación, tendrá asociado un valor concreto de horas fuera del confort en verano e invierno, así como de costes de inversión. Por consiguiente, es posible realizar una comparación rápida y genérica entre diferentes actuaciones y seleccionar, de forma acorde, valorando los resultados, las medidas de rehabilitación que mejor se ajusten a los Programas e Iniciativas rehabilitadoras consideradas. v.1
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaDataset . 2022License: CC BYData sources: idUS. Depósito de Investigación Universidad de SevillaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::85f67ff030d43dc8358ad89fc3403ca9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaDataset . 2022License: CC BYData sources: idUS. Depósito de Investigación Universidad de SevillaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::85f67ff030d43dc8358ad89fc3403ca9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022 SpainPublisher:Figshare Ureña, Irene; González, Carmen; Ramón, Manuel; Gòdia, Marta; Clop, Alex; Calvo, Jorge H.; Carabaño, María Jesús; Serrano, Magdalena;handle: 10261/310949
Peer reviewed 1 table.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10261/310949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10261/310949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:University of Bath Authors: Cooper, Sam;doi: 10.15125/bath-01348
This spreadsheet contains the results for the article, "Meeting the costs of decarbonising industry – the potential effects on prices and competitiveness (a case study of the UK)". These include projected impacts for industrial process decarbonisation (costs, fuel use, residual emissions), for key years (2030, 2040, 2050), distributed in the following ways: - Directly allocated to industrial sector in which they occur - Shared between sectors in proportion to the share of GVA of each supply chain - Embodied in final products - Embodied in final products, aggregated to consumption patterns The source of the projections and the method to perform the distribution are described in detail in the associated article. Further relevant documentation may be found in the following resources. Cooper, S. J.G., Allen, S. R., Gailani, A., Norman, J. B., Owen, A., Barrett, J., and Taylor, P., 2024. Meeting the costs of decarbonising industry – The potential effects on prices and competitiveness (a case study of the UK). Energy Policy, 184, 113904. Available from: https://doi.org/10.1016/j.enpol.2023.113904. For details of the methods used, please see the associated journal article.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-01348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-01348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 06 Nov 2024 United KingdomPublisher:University of Strathclyde Authors: Downie, Dillon;Dataset including raw Photoluminescence (PL) spectral data, UV-vis Absorbance (ABS) spectral data, Photoluminescence quantum yield (PLQY) data and calculations, and the average Suprapartice (SP) size data.
University of Strath... arrow_drop_down University of Strathclyde KnowledgeBase DatasetsDataset . 2024License: CC BYData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15129/5825535a-ab05-4678-8102-fe957bdf7943&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Strath... arrow_drop_down University of Strathclyde KnowledgeBase DatasetsDataset . 2024License: CC BYData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15129/5825535a-ab05-4678-8102-fe957bdf7943&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Mendeley Data Geiger, Katja; Rivera, Antonella; Aguión, Alba; Barbier, Marine; Cruz, Teresa; Fandiño, Susana; García-Flórez, Lucía; Macho, Gonzalo; Neves, Francisco; Penteado, Nélia; Peón Torre, Paloma; Thiébaut, Eric; Vázquez, Elsa; Acuña, José Luis;Survey data used in a perception study of stalked barnacle harvesters on the effectiveness of fisheries management practices in Spain, Portugal and France. Harvesters from the following six regions along the Atlantic Arc participated: Morbihan in Brittany (France), Asturias-East, Asturias-West and Galicia (Spain), the Reserva Natural das Berlengas (RNB; Portugal) and the Parque Natural do Sudoeste Alentejano e Costa Vicentina (PNSACV; Portugal). We administered 184 surveys from October 2019 to September 2020 and each region was treated as an independent population. The data includes: general demographic data (Region, Age, Gender, Level of Education, Main income source, Years of Experience); perception data of the effectiveness of the currently implemented management strategies in each region (coded: e_name_of_strategy – using Likert Scale with scores ranging from 1 = completely ineffective to 5 = very effective); data of the willingness for change of the currently implemented management (Yes, No, NA); and data of harvesters’ perceptions regarding the most important strategy to achieve sustainability in the fishery. Because the surveys were conducted both before and during the Covid-19 pandemic (the column Covid indicates whether the data was collected before or during the pandemic), we had to make adjustments in our data collection methods. We provided the following options for survey completion (see the Recollection_of_data column): by hand in a written format, online, or via an oral interview conducted with the assistance of a scientist per telephone. Our results indicate that the majority of harvesters in the regions in Portugal and France were willing to make changes to current management strategies, reflecting their awareness of the need for improvement. Based on the AIC model selection analysis results, the model with the single variable region explained 83% of the cumulative model weight. The variable region was the best predictor of the trends in management strategy preferences, and presented a highly significant goodness-of-fit result (p<0.001), suggesting that regional differences play a significant role in shaping these preferences. No clear trend emerged regarding a single "optimal" management strategy preferred by harvesters across regions. Harvesters in less developed co-management systems favored general input and output restrictions and expressed a desire for greater involvement in co-management processes. Conversely, harvesters in highly developed co-management systems with Territorial User Rights for Fishers (TURFs) preferred the most restrictive and spatially explicit management strategies, such as implementing harvest bans and establishing marine reserves. Our findings emphasise that management strategies do not only need to be tailored to each region's particular practices, needs, and characteristics, but that resource users’ readiness for specific strategies also needs to be considered.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/xsk5r3z7r9.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/xsk5r3z7r9.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 16 Jan 2024Publisher:Dryad Authors: Pérez-Navarro, María Ángeles;This repository contains a series of .csv files developed for the study titled "Plant canopies promote climatic disequilibrium in Mediterranean recruit communities", authored by: Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcántara JM and Verdú M. The author of these files is Perez-Navarro MA. These files are used to characterize species niches, estimate climatic disequilibrium for recruit communities growing under plant canopies and open spaces, and conduct statistical analyses. Variables description of each table is compiled in the METADATA.txt file. Please visit Github readme () to correctly place these files in the folder tree and check for the corresponding scripts where they are required. Please notice that although alternative approaches were calibrated to estimate species niche (accordingly producing multiple niche, distances and disequilibrium dataframes), only niche centroid calibrated discarding 95 percentile of lowest niche density was used for paper results and figures. Also, in case of univariate analyses only bio01, bio06 and bio12 were used in analyses, though species niche and further niche and community estimations were obtained for all 19 variables. This is version 2 (v2) and include extra intermediate .csv required to run all the R scripts included in the abovementioned Github repository. NAs or empty cells present in the .csv files of this repository means no data and do not contribute to the analyses. Visit METADATA.txt file for variables description. These data are under CC0 license. It is possible to share, copy and redistribute the material in any medium or format, and adapt, remix, transform, and build upon the material for any purpose. Studies using R scripts or any data files from these study should cite the abovementioned paper (Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcantara JM, Verdu M. (2024). Plant canopies promote climatic disequilibrium in Mediterranean recruit communities). Please contact m.angeles582@gmail.com in case of having doubts or problems with the existing files and scripts. Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyze differences in climatic disequilibrium between understory and open ground woody plant recruits in 28 localities, covering more than 100,000 m2, across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favor warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh18932dg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh18932dg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | PARIS REINFORCEEC| PARIS REINFORCEDoukas, Haris; Spiliotis, Evangelos; Jafari, Mohsen A.; Giarola, Sara; Nikas, Alexandros;This dataset contains the underlying data for the following publication: Doukas, H., Spiliotis, E., Jafari, M. A., Giarola, S. & Nikas, A. (2021). Low-cost emissions cuts in container shipping: Thinking inside the box. Transportation Research Part D: Transport and Environment, 94, 102815, https://doi.org/10.1016/j.trd.2021.102815.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 1 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Ferreira, Igor José Malfetoni; Campanharo, Wesley Augusto; Fonseca, Marisa Gesteira; Escada, Maria Isabel Sobral; +7 AuthorsFerreira, Igor José Malfetoni; Campanharo, Wesley Augusto; Fonseca, Marisa Gesteira; Escada, Maria Isabel Sobral; Nascimento, Marcelo Trindade; Villela, Dora M.; Brancalion, Pedro; Magnago, Luiz Fernando Silva; Anderson, Liana O.; Nagy, Laszlo; Aragão, Luiz E. O. C;This file collection contains the estimated spatial distribution of the above-ground biomass density (AGB) by the end of the 21st century across the Brazilian Atlantic Forest domain and the respective uncertanty. To develop the models, we used the maximum entropy method with projected climate data to 2100, based on the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathway (RCP) 4.5 from the fifth Assessment Report (AR5). The dataset is composed of four files in GeoTIFF format: calibrated-AGB-distribution.tif: raster file representing the present spatial distribution of the above-ground biomass density in the Atlantic Forest from the calibrated model. Unit: Mg/ha estimated-uncertanty-for-calibrated-agb-distribution.tif: raster file representing the estimated spatial uncertanty distribution of the calibrated above-ground biomass density. Unit: percentage. projected-AGB-distribution-under-rcp45.tif: raster file representing the projected spatial distribution of the above-ground biomass density in the Atlantic Forest by the end of 2100 under RCP 4.5 scenario. Unit: Mg/ha estimated-uncertanty-for-projected-agb-distribution.tif: raster file representing the estimated spatial uncertanty distribution of the projected above-ground biomass density. Unit: percentage. Spatial resolution: 0.0083 degree (ca. 1 km) Coordinate reference system: Geographic Coordinate System - Datum WGS84
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7684744&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7684744&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | REINFORCEEC| REINFORCEAuthors: Mina, Marco;Input files for the ForClim model (version 4.0.1) used in the associated paper. They can be used to to reproduce results of the simulation study. The ForClim model, including the source code, executable and documentation, is freely available under an Open Access license from the website of the original developers at https://ites-fe.ethz.ch/openaccess/. The original climatic dataset used to generate the ForClim input climate files at each site in South Tyrol is freely available at https://doi.pangaea.de/10.1594/PANGAEA.924502 while the CHELSA climate data for future scenarios are available at https://www.chelsa-climate.org. If interested in using this dataset for a research study or a project, please contact Marco Mina ----------------------------------------------------------------------- Hillebrand L, Marzini S, Crespi A, Hiltner U & Mina M (2023) Contrasting impacts of climate change on protection forests of the Italian Alps. Frontiers in Forests and Global Change, 6, 2023 https://doi.org/10.3389/ffgc.2023.1240235 ABSTRACT. Protection forests play a key role in protecting settlements, people, and infrastructures from gravitational hazards such as rockfalls and avalanches in mountain areas. Rapid climate change is challenging the role of protection forests by altering their dynamics, structure, and composition. Information on local- and regional-scale impacts of climate change on protection forests is critical for planning adaptations in forest management. We used a model of forest dynamics (ForClim) to assess the succession of mountain forests in the Eastern Alps and their protective effects under future climate change scenarios. We investigated eleven representative forest sites along an elevational gradient across multiple locations within an administrative region, covering wide differences in tree species structure, composition, altitude, and exposition. We evaluated protective performance against rockfall and avalanches using numerical indices (i.e., linker functions) quantifying the degree of protection from metrics of simulated forest structure and composition. Our findings reveal that climate warming has a contrasting impact on protective effects in mountain forests of the Eastern Alps. Climate change is likely to not affect negatively all protection forest stands but its impact depends on site and stand conditions. Impacts were highly contingent to the magnitude of climate warming, with increasing criticality under the most severe climate projections. Forests in lower-montane elevations and those located in dry continental valleys showed drastic changes in forest structure and composition due to drought-induced mortality while subalpine forests mostly profited from rising temperatures and a longer vegetation period. Overall, avalanche protection will likely be negatively affected by climate change, while the ability of forests to maintain rockfall protection depends on the severity of expected climate change and their vulnerability due to elevation and topography, with most subalpine forests less prone to loosing protective effects. Proactive measures in management should be taken in the near future to avoid losses of protective effects in the case of severe climate change in the Alps. Given the heterogeneous impact of climate warming, such adaptations can be aided by model-based projections and high local resolution studies to identify forest stand types that might require management priority for maintaining protective effects in the future.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 2 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Funded by:UKRI | CoccoTrait: Revealing Coc...UKRI| CoccoTrait: Revealing Coccolithophore Trait diversity and its climatic impactsde Vries, Joost; Poulton, Alex J.; Young, Jeremy R.; Monteiro, Fanny M.; Sheward, Rosie M.; Johnson, Roberta; Hagino, Kyoko; Ziveri, Patrizia; Wolf, Levi J.;CASCADE is a global dataset for 139 extant coccolithophore taxonomic units. CASCADE includes a trait database (size and cellular organic and inorganic carbon contents) and taxonomic-specific global spatiotemporal distributions (Lat/Lon/Depth/Month/Year) of coccolithophore abundance and organic and inorganic carbon stocks. CASCADE covers all ocean basins over the upper 275 meters, spans the years 1964-2019 and includes 33,119 taxonomic-specific abundance observations. Within CASCADE, we characterise the underlying uncertainties due to measurement errors by propagating error estimates between the different studies. Full details of the data set are provided in the associated Scientific Data manuscript. The repository contains five main folders: 1) "Classification", which contains YAML files with synonyms, family-level classifications, and life cycle phase associations and definitions; 2) "Concatenated literature", which contains the merged datasets of size, PIC and POC and which were corrected for taxonomic unit synonyms; 3) "Resampled cellular datasets", which contains the resampled datasets of size, PIC and POC in long format as well as a summary table; 4) "Gridded data sets", which contains gridded datasets of abundance, PIC and POC; 5) "Species lists", which contains spreadsheets of the "common" (>20 obs) and "rare" (<20 obs) species and their number of observations. The CASCADE data set can be easily reproduced using the scripts and data provided in the associated github repository: https://github.com/nanophyto/CASCADE/ (zenodo.12797197) Correspondence to: Joost de Vries, joost.devries@bristol.ac.uk v.0.1.2 has some fixes: 1. The wrongly specified S. neapolitana was removed from synonyms.yml (this species is now S. nana)2. Longitudes were corrected for Guerreiro et al., 20233. A double entry for Dimizia et al., 2015 was fixed4. Units in Sal et al., 2013 were correct to cells/L (previously cells/ml)5. Data from Sal et al., 2013 was re-done, as some species were missing6. Duplicate entries from Baumann et al., 2000 were dropped
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13736214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13736214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022 SpainAuthors: Calama-González, Carmen María; Suárez, Rafael; León-Rodríguez, Ángel Luis;Resultados interactivos de una investigación llevada a cabo sobre la implementación de estrategias de rehabilitación optimizadas aplicadas al parque residencial social del sur de España en diferentes zonas climáticas (A3, A4, B4 y C3), ante escenarios climáticos futuros de cambio climático. En concreto, se ha realizado un análisis multiobjetivo en el que se optimizan, a partir de la aplicación de algoritmos genéticos, los costes de intervención de diversas soluciones de rehabilitación y el confort térmico interior en verano e invierno de las viviendas sociales, bajo escenarios futuros de calentamiento global. Todo ello se realiza mediante modelos parametrizados y validados a nivel de conjunto edificatorio, implementando información real contenida en una base de datos facilitada por la Agencia de Vivienda y Rehabilitación de Andalucía (AVRA) en los modelos de simulación dinámica de conjunto. Los resultados de esta investigación están vinculados con el proyecto: Optimización Paramétrica de Fachadas de Doble Piel en Clima Mediterráneo para la Mejora de la Eficiencia Energética ante Escenarios de cambio Climático (BIA2017-86383-R). La visualización de los resultados de esta investigación se realiza a través de ficheros .html que pueden ser accedidos fácilmente mediante cualquier navegador web. Existen tres tipos de figuras interactivas: gráficas de dispersión en 3d, gráficas de dispersión en 2d y gráficas de ejes paralelos. Se ha generado por cada zona climática analizada estos tres tipos de gráficos. En el caso de los gráficos de dispersión en 3d, el entorno web permite girar y aumentar la figura, para facilitar su visualización en el espacio. Además, colocando el cursor sobre cada punto, pueden consultarse los valores específicos de las variables de optimización (porcentaje de horas con temperaturas por encima del límite superior e inferior del confort y costes de inversión en €/m2 construido). En los gráficos en dispersión en 2d, colocando el cursor sobre cada punto, se despliega una ventana en la que pueden visualizarse los diferentes valores asociados a ese punto. En lo referente a las figuras de coordenadas paralelas, las variables de optimización pueden filtrase, seleccionando y arrastrando el cursor sobre un rango de valores buscado. Lo mismo puede realizarse con el resto de variables combinatorias. Hecho esto, la herramienta web mostrará la combinación de los paquetes de rehabilitación óptimos (variables de rehabilitación ligadas a la mejora energética de la envolvente térmica y las variables operacionales analizadas). Cada combinación, tendrá asociado un valor concreto de horas fuera del confort en verano e invierno, así como de costes de inversión. Por consiguiente, es posible realizar una comparación rápida y genérica entre diferentes actuaciones y seleccionar, de forma acorde, valorando los resultados, las medidas de rehabilitación que mejor se ajusten a los Programas e Iniciativas rehabilitadoras consideradas. v.1
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaDataset . 2022License: CC BYData sources: idUS. Depósito de Investigación Universidad de SevillaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::85f67ff030d43dc8358ad89fc3403ca9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaDataset . 2022License: CC BYData sources: idUS. Depósito de Investigación Universidad de SevillaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::85f67ff030d43dc8358ad89fc3403ca9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022 SpainPublisher:Figshare Ureña, Irene; González, Carmen; Ramón, Manuel; Gòdia, Marta; Clop, Alex; Calvo, Jorge H.; Carabaño, María Jesús; Serrano, Magdalena;handle: 10261/310949
Peer reviewed 1 table.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10261/310949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10261/310949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:University of Bath Authors: Cooper, Sam;doi: 10.15125/bath-01348
This spreadsheet contains the results for the article, "Meeting the costs of decarbonising industry – the potential effects on prices and competitiveness (a case study of the UK)". These include projected impacts for industrial process decarbonisation (costs, fuel use, residual emissions), for key years (2030, 2040, 2050), distributed in the following ways: - Directly allocated to industrial sector in which they occur - Shared between sectors in proportion to the share of GVA of each supply chain - Embodied in final products - Embodied in final products, aggregated to consumption patterns The source of the projections and the method to perform the distribution are described in detail in the associated article. Further relevant documentation may be found in the following resources. Cooper, S. J.G., Allen, S. R., Gailani, A., Norman, J. B., Owen, A., Barrett, J., and Taylor, P., 2024. Meeting the costs of decarbonising industry – The potential effects on prices and competitiveness (a case study of the UK). Energy Policy, 184, 113904. Available from: https://doi.org/10.1016/j.enpol.2023.113904. For details of the methods used, please see the associated journal article.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-01348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-01348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 06 Nov 2024 United KingdomPublisher:University of Strathclyde Authors: Downie, Dillon;Dataset including raw Photoluminescence (PL) spectral data, UV-vis Absorbance (ABS) spectral data, Photoluminescence quantum yield (PLQY) data and calculations, and the average Suprapartice (SP) size data.
University of Strath... arrow_drop_down University of Strathclyde KnowledgeBase DatasetsDataset . 2024License: CC BYData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15129/5825535a-ab05-4678-8102-fe957bdf7943&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Strath... arrow_drop_down University of Strathclyde KnowledgeBase DatasetsDataset . 2024License: CC BYData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15129/5825535a-ab05-4678-8102-fe957bdf7943&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Mendeley Data Geiger, Katja; Rivera, Antonella; Aguión, Alba; Barbier, Marine; Cruz, Teresa; Fandiño, Susana; García-Flórez, Lucía; Macho, Gonzalo; Neves, Francisco; Penteado, Nélia; Peón Torre, Paloma; Thiébaut, Eric; Vázquez, Elsa; Acuña, José Luis;Survey data used in a perception study of stalked barnacle harvesters on the effectiveness of fisheries management practices in Spain, Portugal and France. Harvesters from the following six regions along the Atlantic Arc participated: Morbihan in Brittany (France), Asturias-East, Asturias-West and Galicia (Spain), the Reserva Natural das Berlengas (RNB; Portugal) and the Parque Natural do Sudoeste Alentejano e Costa Vicentina (PNSACV; Portugal). We administered 184 surveys from October 2019 to September 2020 and each region was treated as an independent population. The data includes: general demographic data (Region, Age, Gender, Level of Education, Main income source, Years of Experience); perception data of the effectiveness of the currently implemented management strategies in each region (coded: e_name_of_strategy – using Likert Scale with scores ranging from 1 = completely ineffective to 5 = very effective); data of the willingness for change of the currently implemented management (Yes, No, NA); and data of harvesters’ perceptions regarding the most important strategy to achieve sustainability in the fishery. Because the surveys were conducted both before and during the Covid-19 pandemic (the column Covid indicates whether the data was collected before or during the pandemic), we had to make adjustments in our data collection methods. We provided the following options for survey completion (see the Recollection_of_data column): by hand in a written format, online, or via an oral interview conducted with the assistance of a scientist per telephone. Our results indicate that the majority of harvesters in the regions in Portugal and France were willing to make changes to current management strategies, reflecting their awareness of the need for improvement. Based on the AIC model selection analysis results, the model with the single variable region explained 83% of the cumulative model weight. The variable region was the best predictor of the trends in management strategy preferences, and presented a highly significant goodness-of-fit result (p<0.001), suggesting that regional differences play a significant role in shaping these preferences. No clear trend emerged regarding a single "optimal" management strategy preferred by harvesters across regions. Harvesters in less developed co-management systems favored general input and output restrictions and expressed a desire for greater involvement in co-management processes. Conversely, harvesters in highly developed co-management systems with Territorial User Rights for Fishers (TURFs) preferred the most restrictive and spatially explicit management strategies, such as implementing harvest bans and establishing marine reserves. Our findings emphasise that management strategies do not only need to be tailored to each region's particular practices, needs, and characteristics, but that resource users’ readiness for specific strategies also needs to be considered.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/xsk5r3z7r9.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/xsk5r3z7r9.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 16 Jan 2024Publisher:Dryad Authors: Pérez-Navarro, María Ángeles;This repository contains a series of .csv files developed for the study titled "Plant canopies promote climatic disequilibrium in Mediterranean recruit communities", authored by: Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcántara JM and Verdú M. The author of these files is Perez-Navarro MA. These files are used to characterize species niches, estimate climatic disequilibrium for recruit communities growing under plant canopies and open spaces, and conduct statistical analyses. Variables description of each table is compiled in the METADATA.txt file. Please visit Github readme () to correctly place these files in the folder tree and check for the corresponding scripts where they are required. Please notice that although alternative approaches were calibrated to estimate species niche (accordingly producing multiple niche, distances and disequilibrium dataframes), only niche centroid calibrated discarding 95 percentile of lowest niche density was used for paper results and figures. Also, in case of univariate analyses only bio01, bio06 and bio12 were used in analyses, though species niche and further niche and community estimations were obtained for all 19 variables. This is version 2 (v2) and include extra intermediate .csv required to run all the R scripts included in the abovementioned Github repository. NAs or empty cells present in the .csv files of this repository means no data and do not contribute to the analyses. Visit METADATA.txt file for variables description. These data are under CC0 license. It is possible to share, copy and redistribute the material in any medium or format, and adapt, remix, transform, and build upon the material for any purpose. Studies using R scripts or any data files from these study should cite the abovementioned paper (Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcantara JM, Verdu M. (2024). Plant canopies promote climatic disequilibrium in Mediterranean recruit communities). Please contact m.angeles582@gmail.com in case of having doubts or problems with the existing files and scripts. Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyze differences in climatic disequilibrium between understory and open ground woody plant recruits in 28 localities, covering more than 100,000 m2, across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favor warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh18932dg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh18932dg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | PARIS REINFORCEEC| PARIS REINFORCEDoukas, Haris; Spiliotis, Evangelos; Jafari, Mohsen A.; Giarola, Sara; Nikas, Alexandros;This dataset contains the underlying data for the following publication: Doukas, H., Spiliotis, E., Jafari, M. A., Giarola, S. & Nikas, A. (2021). Low-cost emissions cuts in container shipping: Thinking inside the box. Transportation Research Part D: Transport and Environment, 94, 102815, https://doi.org/10.1016/j.trd.2021.102815.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 1 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Ferreira, Igor José Malfetoni; Campanharo, Wesley Augusto; Fonseca, Marisa Gesteira; Escada, Maria Isabel Sobral; +7 AuthorsFerreira, Igor José Malfetoni; Campanharo, Wesley Augusto; Fonseca, Marisa Gesteira; Escada, Maria Isabel Sobral; Nascimento, Marcelo Trindade; Villela, Dora M.; Brancalion, Pedro; Magnago, Luiz Fernando Silva; Anderson, Liana O.; Nagy, Laszlo; Aragão, Luiz E. O. C;This file collection contains the estimated spatial distribution of the above-ground biomass density (AGB) by the end of the 21st century across the Brazilian Atlantic Forest domain and the respective uncertanty. To develop the models, we used the maximum entropy method with projected climate data to 2100, based on the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathway (RCP) 4.5 from the fifth Assessment Report (AR5). The dataset is composed of four files in GeoTIFF format: calibrated-AGB-distribution.tif: raster file representing the present spatial distribution of the above-ground biomass density in the Atlantic Forest from the calibrated model. Unit: Mg/ha estimated-uncertanty-for-calibrated-agb-distribution.tif: raster file representing the estimated spatial uncertanty distribution of the calibrated above-ground biomass density. Unit: percentage. projected-AGB-distribution-under-rcp45.tif: raster file representing the projected spatial distribution of the above-ground biomass density in the Atlantic Forest by the end of 2100 under RCP 4.5 scenario. Unit: Mg/ha estimated-uncertanty-for-projected-agb-distribution.tif: raster file representing the estimated spatial uncertanty distribution of the projected above-ground biomass density. Unit: percentage. Spatial resolution: 0.0083 degree (ca. 1 km) Coordinate reference system: Geographic Coordinate System - Datum WGS84
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7684744&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7684744&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | REINFORCEEC| REINFORCEAuthors: Mina, Marco;Input files for the ForClim model (version 4.0.1) used in the associated paper. They can be used to to reproduce results of the simulation study. The ForClim model, including the source code, executable and documentation, is freely available under an Open Access license from the website of the original developers at https://ites-fe.ethz.ch/openaccess/. The original climatic dataset used to generate the ForClim input climate files at each site in South Tyrol is freely available at https://doi.pangaea.de/10.1594/PANGAEA.924502 while the CHELSA climate data for future scenarios are available at https://www.chelsa-climate.org. If interested in using this dataset for a research study or a project, please contact Marco Mina ----------------------------------------------------------------------- Hillebrand L, Marzini S, Crespi A, Hiltner U & Mina M (2023) Contrasting impacts of climate change on protection forests of the Italian Alps. Frontiers in Forests and Global Change, 6, 2023 https://doi.org/10.3389/ffgc.2023.1240235 ABSTRACT. Protection forests play a key role in protecting settlements, people, and infrastructures from gravitational hazards such as rockfalls and avalanches in mountain areas. Rapid climate change is challenging the role of protection forests by altering their dynamics, structure, and composition. Information on local- and regional-scale impacts of climate change on protection forests is critical for planning adaptations in forest management. We used a model of forest dynamics (ForClim) to assess the succession of mountain forests in the Eastern Alps and their protective effects under future climate change scenarios. We investigated eleven representative forest sites along an elevational gradient across multiple locations within an administrative region, covering wide differences in tree species structure, composition, altitude, and exposition. We evaluated protective performance against rockfall and avalanches using numerical indices (i.e., linker functions) quantifying the degree of protection from metrics of simulated forest structure and composition. Our findings reveal that climate warming has a contrasting impact on protective effects in mountain forests of the Eastern Alps. Climate change is likely to not affect negatively all protection forest stands but its impact depends on site and stand conditions. Impacts were highly contingent to the magnitude of climate warming, with increasing criticality under the most severe climate projections. Forests in lower-montane elevations and those located in dry continental valleys showed drastic changes in forest structure and composition due to drought-induced mortality while subalpine forests mostly profited from rising temperatures and a longer vegetation period. Overall, avalanche protection will likely be negatively affected by climate change, while the ability of forests to maintain rockfall protection depends on the severity of expected climate change and their vulnerability due to elevation and topography, with most subalpine forests less prone to loosing protective effects. Proactive measures in management should be taken in the near future to avoid losses of protective effects in the case of severe climate change in the Alps. Given the heterogeneous impact of climate warming, such adaptations can be aided by model-based projections and high local resolution studies to identify forest stand types that might require management priority for maintaining protective effects in the future.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 2 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu