- home
- Advanced Search
- Energy Research
- 15. Life on land
- 14. Life underwater
- ES
- IT
- Hyper Article en Ligne
- Energy Research
- 15. Life on land
- 14. Life underwater
- ES
- IT
- Hyper Article en Ligne
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Spain, United Kingdom, United Kingdom, Netherlands, United Kingdom, United Kingdom, FrancePublisher:Copernicus GmbH Hermann Behling; John Carson; Bronwen S. Whitney; William D. Gosling; William D. Gosling; Mathias Vuille; M. S. Tonello; Francis E. Mayle; Isabel Hoyos; Catalina González-Arango; Henry Hooghiemstra; Valentí Rull; S.G.A. Flantua; M.-P. Ledru; Encarni Montoya; Antonio Maldonado;handle: 11245/1.521194 , 10261/130090
Abstract. An improved understanding of present-day climate variability and change relies on high-quality data sets from the past 2 millennia. Global efforts to model regional climate modes are in the process of being validated against, and integrated with, records of past vegetation change. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to an absence of information on the spatial and temporal coverage of study sites. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last 2 millennia. We identify 60 vegetation (pollen) records from across South America which satisfy geochronological requirements set out for climate modelling, and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local-scale responses to climate modes; thus, it is necessary to understand how vegetation–climate interactions might diverge under variable settings. We provide a qualitative translation from pollen metrics to climate variables. Additionally, pollen is an excellent indicator of human impact through time. We discuss evidence for human land use in pollen records and provide an overview considered useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. This manuscript forms part of the wider LOng-Term multi-proxy climate REconstructions and Dynamics in South America – 2k initiative that provides the ideal framework for the integration of the various palaeoclimatic subdisciplines and palaeo-science, thereby jump-starting and fostering multidisciplinary research into environmental change on centennial and millennial timescales.
CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2016License: CC BYData sources: CORE (RIOXX-UK Aggregator)CIRAD: HAL (Agricultural Research for Development)Article . 2016Full-Text: https://hal.umontpellier.fr/hal-03043388Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/cp-12-483-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 29visibility views 29 download downloads 567 Powered bymore_vert CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2016License: CC BYData sources: CORE (RIOXX-UK Aggregator)CIRAD: HAL (Agricultural Research for Development)Article . 2016Full-Text: https://hal.umontpellier.fr/hal-03043388Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/cp-12-483-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Frontiers Media SA Funded by:ANR | UNITIANR| UNITILéa Frachon; Léa Frachon; Léa Frachon; Claudia Bartoli; Sébastien Carrère; Olivier Bouchez; Adeline Chaubet; Mathieu Gautier; Dominique Roby; Fabrice Roux;Understanding the genetic bases underlying climate adaptation is a key element to predict the potential of species to face climate warming. Although substantial climate variation is observed at a micro-geographic scale, most genomic maps of climate adaptation have been established at broader geographical scales. Here, by using a Pool-Seq approach combined with a Bayesian hierarchical model that control for confounding by population structure, we performed a genome-environment association (GEA) analysis to investigate the genetic basis of adaptation to six climate variables in 168 natural populations of Arabidopsis thaliana distributed in south-west of France. Climate variation among the 168 populations represented up to 24% of climate variation among 521 European locations where A. thaliana inhabits. We identified neat and strong peaks of association, with most of the associated SNPs being significantly enriched in likely functional variants and/or in the extreme tail of genetic differentiation among populations. Furthermore, genes involved in transcriptional mechanisms appear predominant in plant functions associated with local climate adaptation. Globally, our results suggest that climate adaptation is an important driver of genomic variation in A. thaliana at a small spatial scale and mainly involves genome-wide changes in fundamental mechanisms of gene regulation. The identification of climate-adaptive genetic loci at a micro-geographic scale also highlights the importance to include within-species genetic diversity in ecological niche models for projecting potential species distributional shifts over short geographic distances.
Frontiers in Plant S... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2018.00967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Frontiers in Plant S... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2018.00967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2014 FrancePublisher:Cambridge University Press (CUP) Authors: Allen, T.; Prosperi, P.; Cogill, Bruce; Flichman, G.;The stark observation of the co-existence of undernourishment, nutrient deficiencies and overweight and obesity, the triple burden of malnutrition, is inviting us to reconsider health and nutrition as the primary goal and final endpoint of food systems. Agriculture and the food industry have made remarkable advances in the past decades. However, their development has not entirely fulfilled health and nutritional needs, and moreover, they have generated substantial collateral losses in agricultural biodiversity. Simultaneously, several regions are experiencing unprecedented weather events caused by climate change and habitat depletion, in turn putting at risk global food and nutrition security. This coincidence of food crises with increasing environmental degradation suggests an urgent need for novel analyses and new paradigms. The sustainable diets concept proposes a research and policy agenda that strives towards a sustainable use of human and natural resources for food and nutrition security, highlighting the preeminent role of consumers in defining sustainable options and the importance of biodiversity in nutrition. Food systems act as complex social–ecological systems, involving multiple interactions between human and natural components. Nutritional patterns and environment structure are interconnected in a mutual dynamic of changes. The systemic nature of these interactions calls for multidimensional approaches and integrated assessment and simulation tools to guide change. This paper proposes a review and conceptual modelling framework that articulate the synergies and tradeoffs between dietary diversity, widely recognised as key for healthy diets, and agricultural biodiversity and associated ecosystem functions, crucial resilience factors to climate and global changes.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/66038Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of The Nutrition SocietyArticle . 2014 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s002966511400069x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/66038Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of The Nutrition SocietyArticle . 2014 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s002966511400069x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, Germany, United Kingdom, France, Spain, France, FinlandPublisher:Springer Science and Business Media LLC Davide Cammarano; Davide Cammarano; Matthew P. Reynolds; Fulu Tao; Curtis D. Jones; Bruce A. Kimball; Mikhail A. Semenov; Garry O'Leary; Yan Zhu; David B. Lobell; Pramod K. Aggarwal; Sebastian Gayler; Bruno Basso; Jørgen E. Olesen; Pierre Martre; Pierre Martre; Jordi Doltra; Taru Palosuo; Daniel Wallach; P. V. V. Prasad; Elias Fereres; Frank Ewert; Reimund P. Rötter; Andrew J. Challinor; Andrew J. Challinor; Ann-Kristin Koehler; Pierre Stratonovitch; Thilo Streck; Roberto C. Izaurralde; Roberto C. Izaurralde; Kurt Christian Kersebaum; Joost Wolf; Claudio O. Stöckle; Zhigan Zhao; Zhigan Zhao; Peter J. Thorburn; Iurii Shcherbak; Iwan Supit; Claas Nendel; Christian Biernath; Eckart Priesack; Enli Wang; Christoph Müller; Gerrit Hoogenboom; Mohamed Jabloun; Margarita Garcia-Vila; L. A. Hunt; Ehsan Eyshi Rezaei; S. Naresh Kumar; Jakarat Anothai; Jakarat Anothai; Katharina Waha; G. De Sanctis; G. De Sanctis; Senthold Asseng; Phillip D. Alderman; Jeffrey W. White; Michael J. Ottman; Alex C. Ruane; Gerard W. Wall;doi: 10.1038/nclimate2470
handle: 10261/158875 , 10568/57488 , 10900/64900
Asseng, S. et al. Crop models are essential tools for assessing the threat of climate change to local and global food production1. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature2. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time. We thank the Agricultural Model Intercomparison and Improvement Project and its leaders C. Rosenzweig from NASA Goddard Institute for Space Studies and Columbia University (USA), J. Jones from University of Florida (USA), J. Hatfield from United States Department of Agriculture (USA) and J. Antle from Oregon State University (USA) for support. We also thank M. Lopez from CIMMYT (Turkey), M. Usman Bashir from University of Agriculture, Faisalabad (Pakistan), S. Soufizadeh from Shahid Beheshti University (Iran), and J. Lorgeou and J-C. Deswarte from ARVALIS—Institut du Végétal (France) for assistance with selecting key locations and quantifying regional crop cultivars, anthesis and maturity dates and R. Raymundo for assistance with GIS. S.A. and D.C. received financial support from the International Food Policy Research Institute (IFPRI). C.S. was funded through USDA National Institute for Food and Agriculture award 32011-68002-30191. C.M. received financial support from the KULUNDA project (01LL0905L) and the FACCE MACSUR project (031A103B) funded through the German Federal Ministry of Education and Research (BMBF). F.E. received support from the FACCE MACSUR project (031A103B) funded through the German Federal Ministry of Education and Research (2812ERA115) and E.E.R. was funded through the German Science Foundation (project EW 119/5-1). M.J. and J.E.O. were funded through the FACCE MACSUR project by the Danish Strategic Research Council. K.C.K. and C.N. were funded by the FACCE MACSUR project through the German Federal Ministry of Food and Agriculture (BMEL). F.T., T.P. and R.P.R. received financial support from FACCE MACSUR project funded through the Finnish Ministry of Agriculture and Forestry (MMM); F.T. was also funded through National Natural Science Foundation of China (No. 41071030). C.B. was funded through the Helmholtz project ‘REKLIM—Regional Climate Change: Causes and Effects’ Topic 9: ‘Climate Change and Air Quality’. M.P.R. and P.D.A. received funding from the CGIAR Research Program on Climate Change, Agriculture, and Food Security (CCAFS). G.O’L. was funded through the Australian Grains Research and Development Corporation and the Department of Environment and Primary Industries Victoria, Australia. R.C.I. was funded by Texas AgriLife Research, Texas A&M University. E.W. and Z.Z. were funded by CSIRO and the Chinese Academy of Sciences (CAS) through the research project ‘Advancing crop yield while reducing the use of water and nitrogen’ and by the CSIRO-MoE PhD Research Program. Peer reviewed
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/57488Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEberhard Karls University Tübingen: Publication SystemArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2K citations 1,648 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
visibility 78visibility views 78 download downloads 7,828 Powered bymore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/57488Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEberhard Karls University Tübingen: Publication SystemArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2014 ItalyPublisher:Springer International Publishing M. Farooq; K.H. M. Siddique; M. Pisante; F. Stagnari; M. Acuti; M. Bindi; V. Di Stefano; M. Carozzi;handle: 2434/349727
This chapter review aims at developing a clear understanding of the impacts and benefits of conservation agriculture (CA) with respect to climate change, and examining if there are any misleading findings at present in the scientific literature. Most of the world’s agricultural soils have been depleted of organic matter and soil health over the years under tillage-based agriculture (TA), compared with their state under natural vegetation. This degradation process can be reversed and this chapter identifies the conditions that can lead to increase in soil organic matter content and improvement in soil health under CA practices which involve minimum soil disturbance, maintenance of soil cover, and crop diversity. The chapter also discusses the need to refer to specific carbon pools when addressing carbon sequestration, as each carbon category has a different turnover rate. With respect to greenhouse gas emissions, sustainable agricultural systems based on CA principles are described which result in lower emissions from farm operations as well as from machinery manufacturing processes, and that also help to reduce fertilizer use. This chapter describes that terrestrial carbon sequestration efficiently be achieved by changing the management of agricultural lands from high soil disturbance, as TA practices to low disturbance, as CA practices, and by adopting effective nitrogen management practices to provide a positive nitrogen balance for carbon sequestration. However, full advantages of CA in terms of carbon sequestration can usually be observed only in the medium to longer term when CA practices and associated carbon sequestration processes in the soil are well established.
Hyper Article en Lig... arrow_drop_down Hyper Article en LignePart of book or chapter of book . 2015Full-Text: https://hal.inrae.fr/hal-02796321/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2015Full-Text: https://hal.inrae.fr/hal-02796321/documentInstitut National de la Recherche Agronomique: ProdINRAPart of book or chapter of book . 2015License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefArchivio Istituzionale della Ricerca dell'Università degli Studi di MilanoPart of book or chapter of book . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-11620-4_22&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LignePart of book or chapter of book . 2015Full-Text: https://hal.inrae.fr/hal-02796321/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2015Full-Text: https://hal.inrae.fr/hal-02796321/documentInstitut National de la Recherche Agronomique: ProdINRAPart of book or chapter of book . 2015License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefArchivio Istituzionale della Ricerca dell'Università degli Studi di MilanoPart of book or chapter of book . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-11620-4_22&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, France, Spain, United Kingdom, France, Spain, United States, Australia, AustraliaPublisher:Proceedings of the National Academy of Sciences Funded by:EC | BIGSEA, NSERC, EC | MERCES +1 projectsEC| BIGSEA ,NSERC ,EC| MERCES ,EC| CERESDavid A. Carozza; Steve Mackinson; Jeroen Steenbeek; Villy Christensen; Philippe Verley; Susa Niiranen; Andrea Bryndum-Buchholz; Matthias Büchner; Derek P. Tittensor; Derek P. Tittensor; Jan Volkholz; John P. Dunne; Elizabeth A. Fulton; Julia L. Blanchard; Ricardo Oliveros-Ramos; Jacob Schewe; Simon Jennings; Simon Jennings; Manuel Barange; Charles A. Stock; Boris Worm; Miranda C. Jones; Nicola D. Walker; Laurent Bopp; Olivier Maury; Olivier Maury; William W. L. Cheung; Tiago H. Silva; Daniele Bianchi; Heike K. Lotze; Tilla Roy; Catherine M. Bulman; Tyler D. Eddy; Tyler D. Eddy; Nicolas Barrier; Marta Coll; Eric D. Galbraith; Eric D. Galbraith; Jose A. Fernandes; Yunne-Jai Shin; Yunne-Jai Shin;While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 397 citations 397 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 30visibility views 30 download downloads 97 Powered bymore_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 SpainPublisher:Springer Science and Business Media LLC Funded by:ANR | BIGLYANR| BIGLYAuthors: G. Gionchetta; A. M. Romaní; F. Oliva; J. Artigas;AbstractStream microbes that occur in the Mediterranean Basin have been shown to possess heightened sensitivity to intensified water stress attributed to climate change. Here, we investigate the effects of long-term drought (150 days), storms and rewetting (7 days) on the diversity and composition of archaea, bacteria and fungi inhabiting intermittent streambed sediment (surface and hyporheic) and buried leaves. Hydrological alterations modified the archaeal community composition more than the bacterial community composition, whereas fungi were the least affected. Throughout the experiment, archaeal communities colonizing sediments showed greater phylogenetic distances compared to those of bacteria and fungi, suggesting considerable adaptation to severe hydrological disturbances. The increase in the class abundances, such as those of Thermoplasmata within archaea and of Actinobacteria and Bacilli within bacteria, revealed signs of transitioning to a drought-favoured and soil-like community composition. Strikingly, we found that in comparison to the drying phase, water return (as sporadic storms and rewetting) led to larger shifts in the surface microbial community composition and diversity. In addition, microhabitat characteristics, such as the greater capacity of the hyporheic zone to maintain/conserve moisture, tended to modulate the ability of certain microbes (e.g., bacteria) to cope with severe hydrological disturbances.
Scientific Reports arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticle . 2020 . Peer-reviewedData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-49832-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticle . 2020 . Peer-reviewedData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-49832-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Italy, United Kingdom, Australia, Portugal, United Kingdom, United Kingdom, AustraliaPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: E..., ARC | Testing climatic, physiol..., ARC | Woodland response to elev... +3 projectsNSF| Collaborative Research: Ecoclimate Teleconnections between Amazonia and Temperate North America: Cross-Region Feedbacks among Tree Mortality, Land Use Change, and the Atmosphere ,ARC| Testing climatic, physiological and hydrological assumptions underpinning water yield from montane forests ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon? ,ARC| Shifting rainfall from spring to autumn: tree growth and water use under climate change ,NSF| COLLABORATIVE RESEARCH: EAGER-NEON: Prototyping Assessment of Ecoclimate Teleconnections Affecting NEON Domains ,NSF| Transformative Behavior of Energy, Water and Carbon in the Critical Zone II: Interactions between Long- and Short-term Processes that Control Delivery of Critical Zone ServicesAuthors: Jordi Martínez-Vilalta; Timothy J. Brodribb; Simon M. Landhäusser; Melanie J. B. Zeppel; +62 AuthorsJordi Martínez-Vilalta; Timothy J. Brodribb; Simon M. Landhäusser; Melanie J. B. Zeppel; Melanie J. B. Zeppel; William T. Pockman; Thomas Kolb; Henrik Hartmann; Andy Hector; Travis E. Huxman; Alison K. Macalady; Darin J. Law; L. Turin Dickman; Matthew J. Germino; Danielle A. Way; Danielle A. Way; Leander D. L. Anderegg; Robert E. Pangle; John S. Sperry; David T. Tissue; Nate G. McDowell; J. D. Muss; Brent E. Ewers; Honglang Duan; Patrick J. Hudson; Patrick J. Mitchell; Frida I. Piper; Elizabeth A. Pinkard; Lucía Galiano; Trenton E. Franz; Uwe G. Hacke; Joe Quirk; Greg A. Barron-Gafford; Keith Reinhardt; Adam D. Collins; Arthur Gessler; David M. Love; Jeffrey M. Kane; Sanna Sevanto; Harald Bugmann; Maurizio Mencuccini; David D. Breshears; Henry D. Adams; Núria Garcia-Forner; David A. Galvez; James D. Lewis; David J. Beerling; Michael O'Brien; Chonggang Xu; Michael W. Jenkins; Jennifer A. Plaut; Anna Sala; Craig D. Allen; Monica L. Gaylord; Monica L. Gaylord; Enrico A. Yepez; Michel Vennetier; Jean-Marc Limousin; Anthony P. O'Grady; Richard Cobb; Francesco Ripullone; William R. L. Anderegg; Rodrigo Vargas; Rodrigo Hakamada; Michael G. Ryan; Michael G. Ryan;Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 790 citations 790 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 74visibility views 74 download downloads 2,340 Powered bymore_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 France, ItalyPublisher:Springer Science and Business Media LLC Annelene Pengerud; Marie-France Dignac; Giacomo Certini; Line Tau Strand; Claudia Forte; Daniel P. Rasse;Increased mineralization of the organic matter (OM) stored in permafrost is expected to constitute the largest additional global warming potential from terrestrial ecosystems exposed to a warmer climate. Chemical composition of permafrost OM is thought to be a key factor controlling the sensitivity of decomposition to warming. Our objective was to characterise OM from permafrost soils of the European Arctic: two mineral soils-Adventdalen, Svalbard, Norway and Vorkuta, northwest Russia-and a "palsa" (ice-cored peat mound patterning in heterogeneous permafrost landscapes) soil in Neiden, northern Norway, in terms of molecular composition and state of decomposition. At all sites, the OM stored in the permafrost was at an advanced stage of decomposition, although somewhat less so in the palsa peat. By comparing permafrost and active layers, we found no consistent effect of depth or permafrost on soil organic matter (SOM) chemistry across sites. The permafrost-affected palsa peat displayed better preservation of plant material in the deeper layer, as indicated by increasing contribution of lignin carbon to total carbon with depth, associated to decreasing acid (Ac) to aldehyde (Al) ratio of the syringyl (S) and vanillyl (V) units, and increasing S/V and contribution of plant-derived sugars. By contrast, in Adventdalen, the Ac/Al ratio of lignin and the Alkyl C to O-alkyl C ratio in the NMR spectra increased with depth, which suggests less oxidized SOM in the active layer compared to the permafrost layer. In Vorkuta, SOM characteristics in the permafrost profile did not change substantially with depth, probably due to mixing of soil layers by cryoturbation. The composition and state of decomposition of SOM appeared to be site-specific, in particular bound to the prevailing organic or mineral nature of soil when attempting to predict the SOM proneness to degradation. The occurrence of processes such as palsa formation in organic soils and cryoturbation should be considered when up-scaling and predicting the responses of OM to climate change in arctic soils.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-017-0373-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-017-0373-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 Spain, FrancePublisher:Copernicus GmbH Funded by:EC | LUC4C, EC | IMBALANCE-PEC| LUC4C ,EC| IMBALANCE-PWei Li; Philippe Ciais; Chao Yue; Thomas Gasser; Shushi Peng; Ana Bastos;Abstract. Bookkeeping models are used to estimate land-use and land-cover change (LULCC) carbon fluxes (ELULCC). The uncertainty of bookkeeping models partly arises from data used to define response curves (usually from local data) and their representativeness for application to large regions. Here, we compare biomass recovery curves derived from a recent synthesis of secondary forest plots in Latin America by Poorter et al. (2016) with the curves used previously in bookkeeping models from Houghton (1999) and Hansis et al. (2015). We find that the two latter models overestimate the long-term (100 years) vegetation carbon density of secondary forest by about 25 %. We also use idealized LULCC scenarios combined with these three different response curves to demonstrate the importance of considering gross forest area changes instead of net forest area changes for estimating regional ELULCC. In the illustrative case of a net gain in forest area composed of a large gross loss and a large gross gain occurring during a single year, the initial gross loss has an important legacy effect on ELULCC so that the system can be a net source of CO2 to the atmosphere long after the initial forest area change. We show the existence of critical values of the ratio of gross area change over net area change (γAnetAgross), above which cumulative ELULCC is a net CO2 source rather than a sink for a given time horizon after the initial perturbation. These theoretical critical ratio values derived from simulations of a bookkeeping model are compared with observations from the 30 m resolution Landsat Thematic Mapper data of gross and net forest area change in the Amazon. This allows us to diagnose areas in which current forest gains with a large land turnover will still result in LULCC carbon emissions in 20, 50 and 100 years.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806808Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806808Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-15-91-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806808Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806808Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-15-91-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Spain, United Kingdom, United Kingdom, Netherlands, United Kingdom, United Kingdom, FrancePublisher:Copernicus GmbH Hermann Behling; John Carson; Bronwen S. Whitney; William D. Gosling; William D. Gosling; Mathias Vuille; M. S. Tonello; Francis E. Mayle; Isabel Hoyos; Catalina González-Arango; Henry Hooghiemstra; Valentí Rull; S.G.A. Flantua; M.-P. Ledru; Encarni Montoya; Antonio Maldonado;handle: 11245/1.521194 , 10261/130090
Abstract. An improved understanding of present-day climate variability and change relies on high-quality data sets from the past 2 millennia. Global efforts to model regional climate modes are in the process of being validated against, and integrated with, records of past vegetation change. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to an absence of information on the spatial and temporal coverage of study sites. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last 2 millennia. We identify 60 vegetation (pollen) records from across South America which satisfy geochronological requirements set out for climate modelling, and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local-scale responses to climate modes; thus, it is necessary to understand how vegetation–climate interactions might diverge under variable settings. We provide a qualitative translation from pollen metrics to climate variables. Additionally, pollen is an excellent indicator of human impact through time. We discuss evidence for human land use in pollen records and provide an overview considered useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. This manuscript forms part of the wider LOng-Term multi-proxy climate REconstructions and Dynamics in South America – 2k initiative that provides the ideal framework for the integration of the various palaeoclimatic subdisciplines and palaeo-science, thereby jump-starting and fostering multidisciplinary research into environmental change on centennial and millennial timescales.
CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2016License: CC BYData sources: CORE (RIOXX-UK Aggregator)CIRAD: HAL (Agricultural Research for Development)Article . 2016Full-Text: https://hal.umontpellier.fr/hal-03043388Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/cp-12-483-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 29visibility views 29 download downloads 567 Powered bymore_vert CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2016License: CC BYData sources: CORE (RIOXX-UK Aggregator)CIRAD: HAL (Agricultural Research for Development)Article . 2016Full-Text: https://hal.umontpellier.fr/hal-03043388Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/cp-12-483-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Frontiers Media SA Funded by:ANR | UNITIANR| UNITILéa Frachon; Léa Frachon; Léa Frachon; Claudia Bartoli; Sébastien Carrère; Olivier Bouchez; Adeline Chaubet; Mathieu Gautier; Dominique Roby; Fabrice Roux;Understanding the genetic bases underlying climate adaptation is a key element to predict the potential of species to face climate warming. Although substantial climate variation is observed at a micro-geographic scale, most genomic maps of climate adaptation have been established at broader geographical scales. Here, by using a Pool-Seq approach combined with a Bayesian hierarchical model that control for confounding by population structure, we performed a genome-environment association (GEA) analysis to investigate the genetic basis of adaptation to six climate variables in 168 natural populations of Arabidopsis thaliana distributed in south-west of France. Climate variation among the 168 populations represented up to 24% of climate variation among 521 European locations where A. thaliana inhabits. We identified neat and strong peaks of association, with most of the associated SNPs being significantly enriched in likely functional variants and/or in the extreme tail of genetic differentiation among populations. Furthermore, genes involved in transcriptional mechanisms appear predominant in plant functions associated with local climate adaptation. Globally, our results suggest that climate adaptation is an important driver of genomic variation in A. thaliana at a small spatial scale and mainly involves genome-wide changes in fundamental mechanisms of gene regulation. The identification of climate-adaptive genetic loci at a micro-geographic scale also highlights the importance to include within-species genetic diversity in ecological niche models for projecting potential species distributional shifts over short geographic distances.
Frontiers in Plant S... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2018.00967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Frontiers in Plant S... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2018.00967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2014 FrancePublisher:Cambridge University Press (CUP) Authors: Allen, T.; Prosperi, P.; Cogill, Bruce; Flichman, G.;The stark observation of the co-existence of undernourishment, nutrient deficiencies and overweight and obesity, the triple burden of malnutrition, is inviting us to reconsider health and nutrition as the primary goal and final endpoint of food systems. Agriculture and the food industry have made remarkable advances in the past decades. However, their development has not entirely fulfilled health and nutritional needs, and moreover, they have generated substantial collateral losses in agricultural biodiversity. Simultaneously, several regions are experiencing unprecedented weather events caused by climate change and habitat depletion, in turn putting at risk global food and nutrition security. This coincidence of food crises with increasing environmental degradation suggests an urgent need for novel analyses and new paradigms. The sustainable diets concept proposes a research and policy agenda that strives towards a sustainable use of human and natural resources for food and nutrition security, highlighting the preeminent role of consumers in defining sustainable options and the importance of biodiversity in nutrition. Food systems act as complex social–ecological systems, involving multiple interactions between human and natural components. Nutritional patterns and environment structure are interconnected in a mutual dynamic of changes. The systemic nature of these interactions calls for multidimensional approaches and integrated assessment and simulation tools to guide change. This paper proposes a review and conceptual modelling framework that articulate the synergies and tradeoffs between dietary diversity, widely recognised as key for healthy diets, and agricultural biodiversity and associated ecosystem functions, crucial resilience factors to climate and global changes.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/66038Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of The Nutrition SocietyArticle . 2014 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s002966511400069x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/66038Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of The Nutrition SocietyArticle . 2014 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s002966511400069x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, Germany, United Kingdom, France, Spain, France, FinlandPublisher:Springer Science and Business Media LLC Davide Cammarano; Davide Cammarano; Matthew P. Reynolds; Fulu Tao; Curtis D. Jones; Bruce A. Kimball; Mikhail A. Semenov; Garry O'Leary; Yan Zhu; David B. Lobell; Pramod K. Aggarwal; Sebastian Gayler; Bruno Basso; Jørgen E. Olesen; Pierre Martre; Pierre Martre; Jordi Doltra; Taru Palosuo; Daniel Wallach; P. V. V. Prasad; Elias Fereres; Frank Ewert; Reimund P. Rötter; Andrew J. Challinor; Andrew J. Challinor; Ann-Kristin Koehler; Pierre Stratonovitch; Thilo Streck; Roberto C. Izaurralde; Roberto C. Izaurralde; Kurt Christian Kersebaum; Joost Wolf; Claudio O. Stöckle; Zhigan Zhao; Zhigan Zhao; Peter J. Thorburn; Iurii Shcherbak; Iwan Supit; Claas Nendel; Christian Biernath; Eckart Priesack; Enli Wang; Christoph Müller; Gerrit Hoogenboom; Mohamed Jabloun; Margarita Garcia-Vila; L. A. Hunt; Ehsan Eyshi Rezaei; S. Naresh Kumar; Jakarat Anothai; Jakarat Anothai; Katharina Waha; G. De Sanctis; G. De Sanctis; Senthold Asseng; Phillip D. Alderman; Jeffrey W. White; Michael J. Ottman; Alex C. Ruane; Gerard W. Wall;doi: 10.1038/nclimate2470
handle: 10261/158875 , 10568/57488 , 10900/64900
Asseng, S. et al. Crop models are essential tools for assessing the threat of climate change to local and global food production1. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature2. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time. We thank the Agricultural Model Intercomparison and Improvement Project and its leaders C. Rosenzweig from NASA Goddard Institute for Space Studies and Columbia University (USA), J. Jones from University of Florida (USA), J. Hatfield from United States Department of Agriculture (USA) and J. Antle from Oregon State University (USA) for support. We also thank M. Lopez from CIMMYT (Turkey), M. Usman Bashir from University of Agriculture, Faisalabad (Pakistan), S. Soufizadeh from Shahid Beheshti University (Iran), and J. Lorgeou and J-C. Deswarte from ARVALIS—Institut du Végétal (France) for assistance with selecting key locations and quantifying regional crop cultivars, anthesis and maturity dates and R. Raymundo for assistance with GIS. S.A. and D.C. received financial support from the International Food Policy Research Institute (IFPRI). C.S. was funded through USDA National Institute for Food and Agriculture award 32011-68002-30191. C.M. received financial support from the KULUNDA project (01LL0905L) and the FACCE MACSUR project (031A103B) funded through the German Federal Ministry of Education and Research (BMBF). F.E. received support from the FACCE MACSUR project (031A103B) funded through the German Federal Ministry of Education and Research (2812ERA115) and E.E.R. was funded through the German Science Foundation (project EW 119/5-1). M.J. and J.E.O. were funded through the FACCE MACSUR project by the Danish Strategic Research Council. K.C.K. and C.N. were funded by the FACCE MACSUR project through the German Federal Ministry of Food and Agriculture (BMEL). F.T., T.P. and R.P.R. received financial support from FACCE MACSUR project funded through the Finnish Ministry of Agriculture and Forestry (MMM); F.T. was also funded through National Natural Science Foundation of China (No. 41071030). C.B. was funded through the Helmholtz project ‘REKLIM—Regional Climate Change: Causes and Effects’ Topic 9: ‘Climate Change and Air Quality’. M.P.R. and P.D.A. received funding from the CGIAR Research Program on Climate Change, Agriculture, and Food Security (CCAFS). G.O’L. was funded through the Australian Grains Research and Development Corporation and the Department of Environment and Primary Industries Victoria, Australia. R.C.I. was funded by Texas AgriLife Research, Texas A&M University. E.W. and Z.Z. were funded by CSIRO and the Chinese Academy of Sciences (CAS) through the research project ‘Advancing crop yield while reducing the use of water and nitrogen’ and by the CSIRO-MoE PhD Research Program. Peer reviewed
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/57488Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEberhard Karls University Tübingen: Publication SystemArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2K citations 1,648 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
visibility 78visibility views 78 download downloads 7,828 Powered bymore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/57488Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEberhard Karls University Tübingen: Publication SystemArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2014 ItalyPublisher:Springer International Publishing M. Farooq; K.H. M. Siddique; M. Pisante; F. Stagnari; M. Acuti; M. Bindi; V. Di Stefano; M. Carozzi;handle: 2434/349727
This chapter review aims at developing a clear understanding of the impacts and benefits of conservation agriculture (CA) with respect to climate change, and examining if there are any misleading findings at present in the scientific literature. Most of the world’s agricultural soils have been depleted of organic matter and soil health over the years under tillage-based agriculture (TA), compared with their state under natural vegetation. This degradation process can be reversed and this chapter identifies the conditions that can lead to increase in soil organic matter content and improvement in soil health under CA practices which involve minimum soil disturbance, maintenance of soil cover, and crop diversity. The chapter also discusses the need to refer to specific carbon pools when addressing carbon sequestration, as each carbon category has a different turnover rate. With respect to greenhouse gas emissions, sustainable agricultural systems based on CA principles are described which result in lower emissions from farm operations as well as from machinery manufacturing processes, and that also help to reduce fertilizer use. This chapter describes that terrestrial carbon sequestration efficiently be achieved by changing the management of agricultural lands from high soil disturbance, as TA practices to low disturbance, as CA practices, and by adopting effective nitrogen management practices to provide a positive nitrogen balance for carbon sequestration. However, full advantages of CA in terms of carbon sequestration can usually be observed only in the medium to longer term when CA practices and associated carbon sequestration processes in the soil are well established.
Hyper Article en Lig... arrow_drop_down Hyper Article en LignePart of book or chapter of book . 2015Full-Text: https://hal.inrae.fr/hal-02796321/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2015Full-Text: https://hal.inrae.fr/hal-02796321/documentInstitut National de la Recherche Agronomique: ProdINRAPart of book or chapter of book . 2015License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefArchivio Istituzionale della Ricerca dell'Università degli Studi di MilanoPart of book or chapter of book . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-11620-4_22&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LignePart of book or chapter of book . 2015Full-Text: https://hal.inrae.fr/hal-02796321/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2015Full-Text: https://hal.inrae.fr/hal-02796321/documentInstitut National de la Recherche Agronomique: ProdINRAPart of book or chapter of book . 2015License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefArchivio Istituzionale della Ricerca dell'Università degli Studi di MilanoPart of book or chapter of book . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-11620-4_22&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, France, Spain, United Kingdom, France, Spain, United States, Australia, AustraliaPublisher:Proceedings of the National Academy of Sciences Funded by:EC | BIGSEA, NSERC, EC | MERCES +1 projectsEC| BIGSEA ,NSERC ,EC| MERCES ,EC| CERESDavid A. Carozza; Steve Mackinson; Jeroen Steenbeek; Villy Christensen; Philippe Verley; Susa Niiranen; Andrea Bryndum-Buchholz; Matthias Büchner; Derek P. Tittensor; Derek P. Tittensor; Jan Volkholz; John P. Dunne; Elizabeth A. Fulton; Julia L. Blanchard; Ricardo Oliveros-Ramos; Jacob Schewe; Simon Jennings; Simon Jennings; Manuel Barange; Charles A. Stock; Boris Worm; Miranda C. Jones; Nicola D. Walker; Laurent Bopp; Olivier Maury; Olivier Maury; William W. L. Cheung; Tiago H. Silva; Daniele Bianchi; Heike K. Lotze; Tilla Roy; Catherine M. Bulman; Tyler D. Eddy; Tyler D. Eddy; Nicolas Barrier; Marta Coll; Eric D. Galbraith; Eric D. Galbraith; Jose A. Fernandes; Yunne-Jai Shin; Yunne-Jai Shin;While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 397 citations 397 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 30visibility views 30 download downloads 97 Powered bymore_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 SpainPublisher:Springer Science and Business Media LLC Funded by:ANR | BIGLYANR| BIGLYAuthors: G. Gionchetta; A. M. Romaní; F. Oliva; J. Artigas;AbstractStream microbes that occur in the Mediterranean Basin have been shown to possess heightened sensitivity to intensified water stress attributed to climate change. Here, we investigate the effects of long-term drought (150 days), storms and rewetting (7 days) on the diversity and composition of archaea, bacteria and fungi inhabiting intermittent streambed sediment (surface and hyporheic) and buried leaves. Hydrological alterations modified the archaeal community composition more than the bacterial community composition, whereas fungi were the least affected. Throughout the experiment, archaeal communities colonizing sediments showed greater phylogenetic distances compared to those of bacteria and fungi, suggesting considerable adaptation to severe hydrological disturbances. The increase in the class abundances, such as those of Thermoplasmata within archaea and of Actinobacteria and Bacilli within bacteria, revealed signs of transitioning to a drought-favoured and soil-like community composition. Strikingly, we found that in comparison to the drying phase, water return (as sporadic storms and rewetting) led to larger shifts in the surface microbial community composition and diversity. In addition, microhabitat characteristics, such as the greater capacity of the hyporheic zone to maintain/conserve moisture, tended to modulate the ability of certain microbes (e.g., bacteria) to cope with severe hydrological disturbances.
Scientific Reports arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticle . 2020 . Peer-reviewedData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-49832-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticle . 2020 . Peer-reviewedData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-49832-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Italy, United Kingdom, Australia, Portugal, United Kingdom, United Kingdom, AustraliaPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: E..., ARC | Testing climatic, physiol..., ARC | Woodland response to elev... +3 projectsNSF| Collaborative Research: Ecoclimate Teleconnections between Amazonia and Temperate North America: Cross-Region Feedbacks among Tree Mortality, Land Use Change, and the Atmosphere ,ARC| Testing climatic, physiological and hydrological assumptions underpinning water yield from montane forests ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon? ,ARC| Shifting rainfall from spring to autumn: tree growth and water use under climate change ,NSF| COLLABORATIVE RESEARCH: EAGER-NEON: Prototyping Assessment of Ecoclimate Teleconnections Affecting NEON Domains ,NSF| Transformative Behavior of Energy, Water and Carbon in the Critical Zone II: Interactions between Long- and Short-term Processes that Control Delivery of Critical Zone ServicesAuthors: Jordi Martínez-Vilalta; Timothy J. Brodribb; Simon M. Landhäusser; Melanie J. B. Zeppel; +62 AuthorsJordi Martínez-Vilalta; Timothy J. Brodribb; Simon M. Landhäusser; Melanie J. B. Zeppel; Melanie J. B. Zeppel; William T. Pockman; Thomas Kolb; Henrik Hartmann; Andy Hector; Travis E. Huxman; Alison K. Macalady; Darin J. Law; L. Turin Dickman; Matthew J. Germino; Danielle A. Way; Danielle A. Way; Leander D. L. Anderegg; Robert E. Pangle; John S. Sperry; David T. Tissue; Nate G. McDowell; J. D. Muss; Brent E. Ewers; Honglang Duan; Patrick J. Hudson; Patrick J. Mitchell; Frida I. Piper; Elizabeth A. Pinkard; Lucía Galiano; Trenton E. Franz; Uwe G. Hacke; Joe Quirk; Greg A. Barron-Gafford; Keith Reinhardt; Adam D. Collins; Arthur Gessler; David M. Love; Jeffrey M. Kane; Sanna Sevanto; Harald Bugmann; Maurizio Mencuccini; David D. Breshears; Henry D. Adams; Núria Garcia-Forner; David A. Galvez; James D. Lewis; David J. Beerling; Michael O'Brien; Chonggang Xu; Michael W. Jenkins; Jennifer A. Plaut; Anna Sala; Craig D. Allen; Monica L. Gaylord; Monica L. Gaylord; Enrico A. Yepez; Michel Vennetier; Jean-Marc Limousin; Anthony P. O'Grady; Richard Cobb; Francesco Ripullone; William R. L. Anderegg; Rodrigo Vargas; Rodrigo Hakamada; Michael G. Ryan; Michael G. Ryan;Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 790 citations 790 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 74visibility views 74 download downloads 2,340 Powered bymore_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 France, ItalyPublisher:Springer Science and Business Media LLC Annelene Pengerud; Marie-France Dignac; Giacomo Certini; Line Tau Strand; Claudia Forte; Daniel P. Rasse;Increased mineralization of the organic matter (OM) stored in permafrost is expected to constitute the largest additional global warming potential from terrestrial ecosystems exposed to a warmer climate. Chemical composition of permafrost OM is thought to be a key factor controlling the sensitivity of decomposition to warming. Our objective was to characterise OM from permafrost soils of the European Arctic: two mineral soils-Adventdalen, Svalbard, Norway and Vorkuta, northwest Russia-and a "palsa" (ice-cored peat mound patterning in heterogeneous permafrost landscapes) soil in Neiden, northern Norway, in terms of molecular composition and state of decomposition. At all sites, the OM stored in the permafrost was at an advanced stage of decomposition, although somewhat less so in the palsa peat. By comparing permafrost and active layers, we found no consistent effect of depth or permafrost on soil organic matter (SOM) chemistry across sites. The permafrost-affected palsa peat displayed better preservation of plant material in the deeper layer, as indicated by increasing contribution of lignin carbon to total carbon with depth, associated to decreasing acid (Ac) to aldehyde (Al) ratio of the syringyl (S) and vanillyl (V) units, and increasing S/V and contribution of plant-derived sugars. By contrast, in Adventdalen, the Ac/Al ratio of lignin and the Alkyl C to O-alkyl C ratio in the NMR spectra increased with depth, which suggests less oxidized SOM in the active layer compared to the permafrost layer. In Vorkuta, SOM characteristics in the permafrost profile did not change substantially with depth, probably due to mixing of soil layers by cryoturbation. The composition and state of decomposition of SOM appeared to be site-specific, in particular bound to the prevailing organic or mineral nature of soil when attempting to predict the SOM proneness to degradation. The occurrence of processes such as palsa formation in organic soils and cryoturbation should be considered when up-scaling and predicting the responses of OM to climate change in arctic soils.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-017-0373-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-017-0373-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 Spain, FrancePublisher:Copernicus GmbH Funded by:EC | LUC4C, EC | IMBALANCE-PEC| LUC4C ,EC| IMBALANCE-PWei Li; Philippe Ciais; Chao Yue; Thomas Gasser; Shushi Peng; Ana Bastos;Abstract. Bookkeeping models are used to estimate land-use and land-cover change (LULCC) carbon fluxes (ELULCC). The uncertainty of bookkeeping models partly arises from data used to define response curves (usually from local data) and their representativeness for application to large regions. Here, we compare biomass recovery curves derived from a recent synthesis of secondary forest plots in Latin America by Poorter et al. (2016) with the curves used previously in bookkeeping models from Houghton (1999) and Hansis et al. (2015). We find that the two latter models overestimate the long-term (100 years) vegetation carbon density of secondary forest by about 25 %. We also use idealized LULCC scenarios combined with these three different response curves to demonstrate the importance of considering gross forest area changes instead of net forest area changes for estimating regional ELULCC. In the illustrative case of a net gain in forest area composed of a large gross loss and a large gross gain occurring during a single year, the initial gross loss has an important legacy effect on ELULCC so that the system can be a net source of CO2 to the atmosphere long after the initial forest area change. We show the existence of critical values of the ratio of gross area change over net area change (γAnetAgross), above which cumulative ELULCC is a net CO2 source rather than a sink for a given time horizon after the initial perturbation. These theoretical critical ratio values derived from simulations of a bookkeeping model are compared with observations from the 30 m resolution Landsat Thematic Mapper data of gross and net forest area change in the Amazon. This allows us to diagnose areas in which current forest gains with a large land turnover will still result in LULCC carbon emissions in 20, 50 and 100 years.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806808Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806808Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-15-91-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806808Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806808Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-15-91-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu