Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
314 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted
  • 15. Life on land
  • 2. Zero hunger
  • IT
  • US
  • PL

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ahmed Debez; Maria Adelaide Iannelli; Naceur Jedidi; Abdelbasset Lakhdar; +2 Authors

    AbstractBACKGROUND: Inappropriate utilisation of biosolids may adversely impact agrosystem productivity. Here, we address the response of wheat (Triticum durum) to different doses (0, 40, 100, 200 and 300 t ha−1) of either municipal solid waste (MSW) compost or sewage sludge in a greenhouse pot experiment. Plant growth, heavy metal uptake, and antioxidant activity were considered.RESULTS: Biomass production of treated plants was significantly enhanced at 40 t ha−1 and 100 t ha−1 of MSW compost (+48% and +78% relative to the control, respectively). At the same doses of sewage sludge, the increase was only 18%. Higher doses of both biosolids restricted significantly the plant growth, in concomitance with the significant accumulation of heavy metals (Ni2+, Pb2+, Cu2+ and Zn2+), especially in leaves. Leaf activities of antioxidant enzymes (ascorbate peroxidase, glutathione reductase, catalase and superoxide dismutase) were unchanged at 40 t ha−1 MSW compost or sewage sludge, but were significantly stimulated at higher doses (200–300 t ha−1), together with higher leaf concentration of reduced glutathione.CONCLUSION: This preliminary study suggests that a MSW supply at moderate doses (100 t ha−1) could be highly beneficial for wheat productivity. Copyright © 2010 Society of Chemical Industry

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2010
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of the Science of Food and Agriculture
    Article . 2010 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    49
    citations49
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2010
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of the Science of Food and Agriculture
      Article . 2010 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Noelia Domínguez-Morueco; Nuno Ratola; Jordi Sierra; Martí Nadal; +1 Authors

    In this study, air concentrations of BaP in two different seasons (winter 2015 and summer 2016) and BaP levels in ground vegetation from Tarragona County were used as control simulations performed with the WRF-CHIMERE air quality modelling system, in order to reproduce the incidence of that hazardous chemical in air and soils. The CTM was validated for the present climatology, showing a good ability to represent air and soil concentrations of BaP over the target domain (petrochemical, chemical, urban and background sites), particularly in the winter. Then, the variation of the BaP concentrations in air and soils were simulated for the time series 1996-2015 and for the climate change scenario RCP8.5 (2031-2050). While an increase is projected for the levels in air, particularly in chemical and remote sites where the variation can go up to 10%, in terms of soil deposition the findings are the opposite, with an evident decrease in soil BaP concentrations, particularly for background sites. Finally, a potential health effect of BaP for the local population (lung cancer) was assessed. Although according to the projections the EU threshold for BaP atmospheric incidence (1 ng m-3) will not be reached by 2050, there will be an increase in the life-time risk of lung cancer, particularly in the most populated areas within the simulation domain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gianpietro Venturi; Andrea Monti; Nicola Di Virgilio;

    The harvested biomass of switchgrass (Panicum virgatum L.) is generally much lower than its potential; this may be due to several factors including not recovering all the biomass at harvest, weed competition, pests, disease and spatial variation of soil features. The objective of this research was to quantify the yield spatial variation of switchgrass and relate it to soil parameters, in a field of about 5 ha, in 2004 and 2005. Several thematic maps of soil parameters and biomass yield were produced using GIS and geostatistical methods. Soil parameters changed consistently within very short distances and biomass yield varied from 3 to more than 20 Mg ha-1. This remarkable variation indicates that the potential for increasing switchgrass productivity is a real prospect. Furthermore, spatial variation of yield showed similar patterns in the 2 years (r = 0.38**), and therefore a major influence of site characteristics on switchgrass yield can be assumed to occur. Significant correlations were found between biomass yield and soil N, P, moisture and pH as well as between soil parameters. Some soil parameters such as sand content showed patchy spatial distribution. Conversely, a reliable spatial dependence could not be identified for other parameters such as P. Further research is needed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2007
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Field Crops Research
    Article . 2007 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    80
    citations80
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2007
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Field Crops Research
      Article . 2007 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Paolo Picchi; Davide Geneletti; Sven Stremke; Sven Stremke; +1 Authors

    The transition to a low carbon future is starting to affect landscapes around the world. In order for this landscape transformation to be sustainable, renewable energy technologies should not cause critical trade-offs between the provision of energy and that of other ecosystem services such as food production. This literature review advances the body of knowledge on sustainable energy transition with special focus on ecosystem services-based approaches and methods. Two key issues emerge from this review: only one sixth of the published applications on the relation between renewable energy and landscape make use of the ecosystem service framework. Secondly, the applications that do address ecosystem services for landscape planning and design lack efficient methods and spatial reference systems that accommodate both cultural and regulating ecosystem services. Future research efforts should be directed to further advancing the spatial reference systems, the use of participatory mapping and landscape visualizations tools for cultural ecosystem services and the elaboration of landscape design principles.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecosystem Servicesarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecosystem Services
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    58
    citations58
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecosystem Servicesarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecosystem Services
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Issam Touhami; Hassane Moutahir; Dorsaf Assoul; Kaouther Bergaoui; +3 Authors

    Abstract The Mediterranean region is one of the most vulnerable regions to climate change. The majority of climate models forecast a rise in temperatures and less rainfall, which have been observed in recent decades. These changes will affect several vegetation properties, especially phenological dynamics and traits, by increasing drought intensity and recurrence. In this climate change context, the present study aims to assess the evolution of vegetation state and its relation with the climate dynamics in the Mediterranean forest region of northeast Tunisia using Land Surface Phenology (LSP) metrics and the vegetation index (NDVI) analysis from 2000 to 2017. To conduct this work, we used precipitation and temperature data from the two closest weather stations and 16-day NDVI composite images from the MODIS satellite source, with 250-m spatial resolution. Three phenological metrics— start of season (SOS), end of season (EOS), and length of season (LOS) — were obtained and compared for different vegetation types. The LSP variation in response to climatic metrics was also analyzed. The results showed that the LSP in our study area changed significantly during the 2000–2017 period, which includes an average 7.8 days delay in the SOS, an average advance in the EOS by 5 days, and LOS shortened by an average 12.8 days. Autumn (Pr_9) and spring (Pr_3 and P3_4) precipitations, as well as maximum temperature (Tx9+10), represent the best climate parameters to explain the changes in LSP. Both the NDVI and SPEI showed a significant high correlation (p

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Acta Oecologica
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    23
    citations23
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Acta Oecologica
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wim Timmermans; J. Slijkhuis; F. van den Goorbergh; Elizelle Juaneé Cilliers; +1 Authors

    Stories play an exceptionally important role in how people assign value to a place. Taken together, all those stories essentially give a place an identity. The aim of placemaking is to ensure that the people using a place can appreciate that place. Placemaking approaches are focussed on strategic interventions in a place and aimed at changing the meaning and value of that place for local people, thus creating a qualitative place for enhanced storytelling. Using greenery is a common approach in place-making. Urban greenery has gone through a process of emancipation in the past 15 years. This emancipation has led to awareness that urban greenery is about more than just ecology and biodiversity, but also has social and economic consequences for a city’s fortunes. It is clear that green spaces do not stand alone: they are part of a complex urban system, and the use of green spaces in this complex system has immediate repercussions for how the city functions. With the changing role of green spaces within cities, the need to manage these spaces is emphasized. In this sense, the place-making approach, along with the storytelling approach could provide valuable insight on the planning and management of green spaces within the urban environment, with the aim to enhance quality of life by means of the social connection between people, the users of the space, and the qualitative place provided. This research illustrated that green space managers would need more social and organizational skills to manage modern urban green spaces in an attempt to create qualitative, usable spaces for citizens, spaces that are built upon stories and spaces that would further enable future stories of citizen life. The Story Behind the Place: Creating Urban Spaces That Enhance Quality of Life (PDF Download Available). Available from: https://www.researchgate.net/publication/271918395_The_Story_Behind_the_Place_Creating_Urban_Spaces_That_Enhance_Quality_of_Life [accessed Dec 21, 2015].

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Research in ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Research in Quality of Life
    Article . 2014 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    26
    citations26
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Research in ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Research in Quality of Life
      Article . 2014 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Andrea Pisanelli; Claudia Consalvo; Giuseppe Russo; Marco Lauteri; +1 Authors

    It is recognised that several constraints such as the lack of knowledge and expertise of farmers, land users and policy makers concerning agroforestry systems establishment and management hamper the adoption of agroforestry systems (Camilli et al. 2017). AFINET project acts at EU level in order to direct research results into practice and promote innovative ideas to face challenges and solve practitioners' problems. AFINET proposes an innovative methodology based on the creation of a European Interregional Network, linking different Regional Agroforestry Innovation Networks (RAINs). RAINs represent different climatic, geographical, social and cultural conditions and enclose a balanced representation of the key actors with complementary types of expertise (farmers, policy makers, advisory services, extension services, etc.). The Italian RAIN is focused on the Extra-Virgin Olive Oil (EVOO) value chain, with the main aim to promote agroforestry management of local olive orchards. Olive trees are still managed traditionally, often in marginal sites, with minimal mechanization and relatively low external inputs such as chemical treatments in comparison to other crops. The presence of permanent crops (olive trees) guarantees a partially tree cover reducing hydrogeological risk. Soil management usually keeps natural grassing reducing soil carbon emission and increasing soil fertility (Bateni et al. 2017). Intercropping with cereals and/or fodder legumes and livestock can also be practiced in olive orchards, increasing the complexity of the olive tree multifunctional system. Moreover, olive orchards can be managed as agroforestry systems since they can be intercropped with arable crops (cereals, legumes) and/or combined with livestock (sheep, poultry). The RAIN process, involving local stakeholders, highlighted the main bottlenecks of the EVOO value chain related to communication and dissemination of knowledge, technical and management aspects, market and policy. In order to contrast bottlenecks and exploit opportunities of the olive oil supply chain, the identified innovations are: i) adoption of best practices: testing and experimenting innovative agroforestry systems introducing different crop/animals species and varieties; ii) improve the management of the olive orchards: encouraging and increasing the organic production; iii) valorisation of olive processing residues: identifying and testing innovative products (bio-materials, olive paste as example); iv) arise the awareness among consumers: educating people about the benefits of olive oil consumption, creating networks among stakeholders, improving marketing and commercialization. Creating a Bio-district, defined as a geographical area where farmers, citizens, tourist operators, associations and public authorities enter into an agreement for the sustainable management of local resources, emerged a powerful tool to implement the innovation in the local EVOO value chain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2019
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2019
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Andrea Buffagni; David G. Armanini; Stefania Erba;

    Hydromorphological features are crucial in structuring habitats for freshwater organisms. The quantification of these variables is often performed through accurate measuring or detailed estimation, but their assessment is not always feasible for river management purposes. Economic and time constraints often lead to difficulty in creating simple summaries of collected data for practical use. The Lentic-lotic River Descriptor (LRD) was developed to identify the character of a river site in terms of local hydraulic conditions. Information about the presence of flow types, channel substrates, in-stream vegetation, organic debris and artificial features is included in its calculation. The main aim of this paper is to investigate whether the lentic-lotic character of a river site, as summarized with the LRD descriptor, is relevant to aquatic invertebrate communities in nearly natural river sites. Invertebrate data were collected with multi-habitat, proportional sampling and hydromorphological information was gained by applying the CARAVAGGIO method (river habitat survey technique) in the field. The dataset was generated from High or Good ecological status river sites located in Mediterranean areas of Italy. Correspondence Analysis was performed to relate the invertebrate community structure to a set of catchment-scale, reach-scale and chemical environmental variables. The results of the multivariate analysis indicate that LRD provides a persuasive explanation of the most important axis of variation in benthic data. This paper also presents the optimal LRD range for a set of invertebrate taxa, accompanied by a short discussion of their potential use in conservation issues.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2010
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Aquatic Sciences
    Article . 2009 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    40
    citations40
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2010
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Aquatic Sciences
      Article . 2009 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    (Uploaded by Plazi for the Bat Literature Project) The evolutionary history of plant and animal species has been deeply influenced by both climate changes and human actions. Human actions have been particularly heavy during the Anthropocene, when over 250 mammal species became extinct, mostly on islands. Here, we shortly review the existing literature, and test whether the various mammalian orders are all equally prone to extinction risks. We concluded that species belonging to the orders Rodentia, Primates, and Artiodactyla were more prone to become extinct, whereas those belonging to the orders Chiroptera and Carnivora were less. Surprisingly, apparently IUCN red list placed higher conservation concerns for the species belonging to the mammalian orders which are globally least prone to become extinct during the Holocene.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2014
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    RENDICONTI LINCEI
    Article . 2013 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    ZENODO
    Article . 2014
    Data sources: Datacite
    ZENODO
    Article . 2014
    Data sources: ZENODO
    ZENODO
    Article . 2014
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2014
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      RENDICONTI LINCEI
      Article . 2013 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      ZENODO
      Article . 2014
      Data sources: Datacite
      ZENODO
      Article . 2014
      Data sources: ZENODO
      ZENODO
      Article . 2014
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Bosso, Luciano; Luchi, Nicola; Maresi, Giorgio; Cristinzio, Gennaro; +2 Authors

    Species distribution models (SDMs) provide realistic scenarios to explain the influence of bioclimatic variables on plant pathogen distribution. Diplodia sapinea is most harmful to plantations of both exotic and native pine species in Italy, causing economic consequences expecially to edible seed production. In this study, we developed maximum entropy models for D. sapinea in Italy to reach the following goals: (i) to carry out the pathogen's first geographical distribution analysis in Italy and determine which ecogeographical variables (EGVs) may influence its outbreaks; (ii) to detect the effect of climate change on the potential occurrence of disease outbreaks by 2050 and 2070. We used Maxent ver. 3.4.0 to develop SDMs. We used six global climate models (BCC-CSM1-1, CCSM4, GISS-E2-R, MIROC5, HadGEM2-ES and MPI-ESM-LR) for two representative concentration pathways (4.5 and 8.5) and two time projections (2050 and 2070) to detect future climate projections of D. sapinea. The most important EGVs influencing outbreaks were land cover, altitude, mean temperature of driest and wettest quarter, precipitation of wettest quarter, precipitation seasonality and minimum temperature of coldest month. The distribution of D. sapinea mostly expanded in central and southern Italy and shifted in altitude upwards on average by ca. 93m a.s.l. Moreover the fungus expanded the range where disease outbreaks may be recorded in response to an increase in the mean temperature of wettest and driest quarter by ca. 1.9 C and 5.8 C, respectively in all climate change scenarios. Precipitation of wettest quarter did not differ between current and any of future models. Under different climate change scenarios D. sapinea's disease outbreaks will be likely to affect larger areas of pine forests in the country, probably causing heavy effects on the dynamics and evolution of these stands or perhaps constraining their survival.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2017
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Forest Ecology and Management
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    66
    citations66
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2017
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Forest Ecology and Management
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
314 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ahmed Debez; Maria Adelaide Iannelli; Naceur Jedidi; Abdelbasset Lakhdar; +2 Authors

    AbstractBACKGROUND: Inappropriate utilisation of biosolids may adversely impact agrosystem productivity. Here, we address the response of wheat (Triticum durum) to different doses (0, 40, 100, 200 and 300 t ha−1) of either municipal solid waste (MSW) compost or sewage sludge in a greenhouse pot experiment. Plant growth, heavy metal uptake, and antioxidant activity were considered.RESULTS: Biomass production of treated plants was significantly enhanced at 40 t ha−1 and 100 t ha−1 of MSW compost (+48% and +78% relative to the control, respectively). At the same doses of sewage sludge, the increase was only 18%. Higher doses of both biosolids restricted significantly the plant growth, in concomitance with the significant accumulation of heavy metals (Ni2+, Pb2+, Cu2+ and Zn2+), especially in leaves. Leaf activities of antioxidant enzymes (ascorbate peroxidase, glutathione reductase, catalase and superoxide dismutase) were unchanged at 40 t ha−1 MSW compost or sewage sludge, but were significantly stimulated at higher doses (200–300 t ha−1), together with higher leaf concentration of reduced glutathione.CONCLUSION: This preliminary study suggests that a MSW supply at moderate doses (100 t ha−1) could be highly beneficial for wheat productivity. Copyright © 2010 Society of Chemical Industry

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2010
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of the Science of Food and Agriculture
    Article . 2010 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    49
    citations49
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2010
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of the Science of Food and Agriculture
      Article . 2010 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Noelia Domínguez-Morueco; Nuno Ratola; Jordi Sierra; Martí Nadal; +1 Authors

    In this study, air concentrations of BaP in two different seasons (winter 2015 and summer 2016) and BaP levels in ground vegetation from Tarragona County were used as control simulations performed with the WRF-CHIMERE air quality modelling system, in order to reproduce the incidence of that hazardous chemical in air and soils. The CTM was validated for the present climatology, showing a good ability to represent air and soil concentrations of BaP over the target domain (petrochemical, chemical, urban and background sites), particularly in the winter. Then, the variation of the BaP concentrations in air and soils were simulated for the time series 1996-2015 and for the climate change scenario RCP8.5 (2031-2050). While an increase is projected for the levels in air, particularly in chemical and remote sites where the variation can go up to 10%, in terms of soil deposition the findings are the opposite, with an evident decrease in soil BaP concentrations, particularly for background sites. Finally, a potential health effect of BaP for the local population (lung cancer) was assessed. Although according to the projections the EU threshold for BaP atmospheric incidence (1 ng m-3) will not be reached by 2050, there will be an increase in the life-time risk of lung cancer, particularly in the most populated areas within the simulation domain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gianpietro Venturi; Andrea Monti; Nicola Di Virgilio;

    The harvested biomass of switchgrass (Panicum virgatum L.) is generally much lower than its potential; this may be due to several factors including not recovering all the biomass at harvest, weed competition, pests, disease and spatial variation of soil features. The objective of this research was to quantify the yield spatial variation of switchgrass and relate it to soil parameters, in a field of about 5 ha, in 2004 and 2005. Several thematic maps of soil parameters and biomass yield were produced using GIS and geostatistical methods. Soil parameters changed consistently within very short distances and biomass yield varied from 3 to more than 20 Mg ha-1. This remarkable variation indicates that the potential for increasing switchgrass productivity is a real prospect. Furthermore, spatial variation of yield showed similar patterns in the 2 years (r = 0.38**), and therefore a major influence of site characteristics on switchgrass yield can be assumed to occur. Significant correlations were found between biomass yield and soil N, P, moisture and pH as well as between soil parameters. Some soil parameters such as sand content showed patchy spatial distribution. Conversely, a reliable spatial dependence could not be identified for other parameters such as P. Further research is needed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2007
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Field Crops Research
    Article . 2007 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    80
    citations80
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2007
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Field Crops Research
      Article . 2007 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Paolo Picchi; Davide Geneletti; Sven Stremke; Sven Stremke; +1 Authors

    The transition to a low carbon future is starting to affect landscapes around the world. In order for this landscape transformation to be sustainable, renewable energy technologies should not cause critical trade-offs between the provision of energy and that of other ecosystem services such as food production. This literature review advances the body of knowledge on sustainable energy transition with special focus on ecosystem services-based approaches and methods. Two key issues emerge from this review: only one sixth of the published applications on the relation between renewable energy and landscape make use of the ecosystem service framework. Secondly, the applications that do address ecosystem services for landscape planning and design lack efficient methods and spatial reference systems that accommodate both cultural and regulating ecosystem services. Future research efforts should be directed to further advancing the spatial reference systems, the use of participatory mapping and landscape visualizations tools for cultural ecosystem services and the elaboration of landscape design principles.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecosystem Servicesarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecosystem Services
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    58
    citations58
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecosystem Servicesarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecosystem Services
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Issam Touhami; Hassane Moutahir; Dorsaf Assoul; Kaouther Bergaoui; +3 Authors

    Abstract The Mediterranean region is one of the most vulnerable regions to climate change. The majority of climate models forecast a rise in temperatures and less rainfall, which have been observed in recent decades. These changes will affect several vegetation properties, especially phenological dynamics and traits, by increasing drought intensity and recurrence. In this climate change context, the present study aims to assess the evolution of vegetation state and its relation with the climate dynamics in the Mediterranean forest region of northeast Tunisia using Land Surface Phenology (LSP) metrics and the vegetation index (NDVI) analysis from 2000 to 2017. To conduct this work, we used precipitation and temperature data from the two closest weather stations and 16-day NDVI composite images from the MODIS satellite source, with 250-m spatial resolution. Three phenological metrics— start of season (SOS), end of season (EOS), and length of season (LOS) — were obtained and compared for different vegetation types. The LSP variation in response to climatic metrics was also analyzed. The results showed that the LSP in our study area changed significantly during the 2000–2017 period, which includes an average 7.8 days delay in the SOS, an average advance in the EOS by 5 days, and LOS shortened by an average 12.8 days. Autumn (Pr_9) and spring (Pr_3 and P3_4) precipitations, as well as maximum temperature (Tx9+10), represent the best climate parameters to explain the changes in LSP. Both the NDVI and SPEI showed a significant high correlation (p

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Acta Oecologica
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    23
    citations23
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Acta Oecologica
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wim Timmermans; J. Slijkhuis; F. van den Goorbergh; Elizelle Juaneé Cilliers; +1 Authors

    Stories play an exceptionally important role in how people assign value to a place. Taken together, all those stories essentially give a place an identity. The aim of placemaking is to ensure that the people using a place can appreciate that place. Placemaking approaches are focussed on strategic interventions in a place and aimed at changing the meaning and value of that place for local people, thus creating a qualitative place for enhanced storytelling. Using greenery is a common approach in place-making. Urban greenery has gone through a process of emancipation in the past 15 years. This emancipation has led to awareness that urban greenery is about more than just ecology and biodiversity, but also has social and economic consequences for a city’s fortunes. It is clear that green spaces do not stand alone: they are part of a complex urban system, and the use of green spaces in this complex system has immediate repercussions for how the city functions. With the changing role of green spaces within cities, the need to manage these spaces is emphasized. In this sense, the place-making approach, along with the storytelling approach could provide valuable insight on the planning and management of green spaces within the urban environment, with the aim to enhance quality of life by means of the social connection between people, the users of the space, and the qualitative place provided. This research illustrated that green space managers would need more social and organizational skills to manage modern urban green spaces in an attempt to create qualitative, usable spaces for citizens, spaces that are built upon stories and spaces that would further enable future stories of citizen life. The Story Behind the Place: Creating Urban Spaces That Enhance Quality of Life (PDF Download Available). Available from: https://www.researchgate.net/publication/271918395_The_Story_Behind_the_Place_Creating_Urban_Spaces_That_Enhance_Quality_of_Life [accessed Dec 21, 2015].

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Research in ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Research in Quality of Life
    Article . 2014 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    26
    citations26
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Research in ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Research in Quality of Life
      Article . 2014 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Andrea Pisanelli; Claudia Consalvo; Giuseppe Russo; Marco Lauteri; +1 Authors

    It is recognised that several constraints such as the lack of knowledge and expertise of farmers, land users and policy makers concerning agroforestry systems establishment and management hamper the adoption of agroforestry systems (Camilli et al. 2017). AFINET project acts at EU level in order to direct research results into practice and promote innovative ideas to face challenges and solve practitioners' problems. AFINET proposes an innovative methodology based on the creation of a European Interregional Network, linking different Regional Agroforestry Innovation Networks (RAINs). RAINs represent different climatic, geographical, social and cultural conditions and enclose a balanced representation of the key actors with complementary types of expertise (farmers, policy makers, advisory services, extension services, etc.). The Italian RAIN is focused on the Extra-Virgin Olive Oil (EVOO) value chain, with the main aim to promote agroforestry management of local olive orchards. Olive trees are still managed traditionally, often in marginal sites, with minimal mechanization and relatively low external inputs such as chemical treatments in comparison to other crops. The presence of permanent crops (olive trees) guarantees a partially tree cover reducing hydrogeological risk. Soil management usually keeps natural grassing reducing soil carbon emission and increasing soil fertility (Bateni et al. 2017). Intercropping with cereals and/or fodder legumes and livestock can also be practiced in olive orchards, increasing the complexity of the olive tree multifunctional system. Moreover, olive orchards can be managed as agroforestry systems since they can be intercropped with arable crops (cereals, legumes) and/or combined with livestock (sheep, poultry). The RAIN process, involving local stakeholders, highlighted the main bottlenecks of the EVOO value chain related to communication and dissemination of knowledge, technical and management aspects, market and policy. In order to contrast bottlenecks and exploit opportunities of the olive oil supply chain, the identified innovations are: i) adoption of best practices: testing and experimenting innovative agroforestry systems introducing different crop/animals species and varieties; ii) improve the management of the olive orchards: encouraging and increasing the organic production; iii) valorisation of olive processing residues: identifying and testing innovative products (bio-materials, olive paste as example); iv) arise the awareness among consumers: educating people about the benefits of olive oil consumption, creating networks among stakeholders, improving marketing and commercialization. Creating a Bio-district, defined as a geographical area where farmers, citizens, tourist operators, associations and public authorities enter into an agreement for the sustainable management of local resources, emerged a powerful tool to implement the innovation in the local EVOO value chain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2019
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2019
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Andrea Buffagni; David G. Armanini; Stefania Erba;

    Hydromorphological features are crucial in structuring habitats for freshwater organisms. The quantification of these variables is often performed through accurate measuring or detailed estimation, but their assessment is not always feasible for river management purposes. Economic and time constraints often lead to difficulty in creating simple summaries of collected data for practical use. The Lentic-lotic River Descriptor (LRD) was developed to identify the character of a river site in terms of local hydraulic conditions. Information about the presence of flow types, channel substrates, in-stream vegetation, organic debris and artificial features is included in its calculation. The main aim of this paper is to investigate whether the lentic-lotic character of a river site, as summarized with the LRD descriptor, is relevant to aquatic invertebrate communities in nearly natural river sites. Invertebrate data were collected with multi-habitat, proportional sampling and hydromorphological information was gained by applying the CARAVAGGIO method (river habitat survey technique) in the field. The dataset was generated from High or Good ecological status river sites located in Mediterranean areas of Italy. Correspondence Analysis was performed to relate the invertebrate community structure to a set of catchment-scale, reach-scale and chemical environmental variables. The results of the multivariate analysis indicate that LRD provides a persuasive explanation of the most important axis of variation in benthic data. This paper also presents the optimal LRD range for a set of invertebrate taxa, accompanied by a short discussion of their potential use in conservation issues.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2010
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Aquatic Sciences
    Article . 2009 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    40
    citations40
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2010
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Aquatic Sciences
      Article . 2009 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    (Uploaded by Plazi for the Bat Literature Project) The evolutionary history of plant and animal species has been deeply influenced by both climate changes and human actions. Human actions have been particularly heavy during the Anthropocene, when over 250 mammal species became extinct, mostly on islands. Here, we shortly review the existing literature, and test whether the various mammalian orders are all equally prone to extinction risks. We concluded that species belonging to the orders Rodentia, Primates, and Artiodactyla were more prone to become extinct, whereas those belonging to the orders Chiroptera and Carnivora were less. Surprisingly, apparently IUCN red list placed higher conservation concerns for the species belonging to the mammalian orders which are globally least prone to become extinct during the Holocene.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2014
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    RENDICONTI LINCEI
    Article . 2013 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    ZENODO
    Article . 2014
    Data sources: Datacite
    ZENODO
    Article . 2014
    Data sources: ZENODO
    ZENODO
    Article . 2014
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2014
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      RENDICONTI LINCEI
      Article . 2013 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      ZENODO
      Article . 2014
      Data sources: Datacite
      ZENODO
      Article . 2014
      Data sources: ZENODO
      ZENODO
      Article . 2014
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Bosso, Luciano; Luchi, Nicola; Maresi, Giorgio; Cristinzio, Gennaro; +2 Authors

    Species distribution models (SDMs) provide realistic scenarios to explain the influence of bioclimatic variables on plant pathogen distribution. Diplodia sapinea is most harmful to plantations of both exotic and native pine species in Italy, causing economic consequences expecially to edible seed production. In this study, we developed maximum entropy models for D. sapinea in Italy to reach the following goals: (i) to carry out the pathogen's first geographical distribution analysis in Italy and determine which ecogeographical variables (EGVs) may influence its outbreaks; (ii) to detect the effect of climate change on the potential occurrence of disease outbreaks by 2050 and 2070. We used Maxent ver. 3.4.0 to develop SDMs. We used six global climate models (BCC-CSM1-1, CCSM4, GISS-E2-R, MIROC5, HadGEM2-ES and MPI-ESM-LR) for two representative concentration pathways (4.5 and 8.5) and two time projections (2050 and 2070) to detect future climate projections of D. sapinea. The most important EGVs influencing outbreaks were land cover, altitude, mean temperature of driest and wettest quarter, precipitation of wettest quarter, precipitation seasonality and minimum temperature of coldest month. The distribution of D. sapinea mostly expanded in central and southern Italy and shifted in altitude upwards on average by ca. 93m a.s.l. Moreover the fungus expanded the range where disease outbreaks may be recorded in response to an increase in the mean temperature of wettest and driest quarter by ca. 1.9 C and 5.8 C, respectively in all climate change scenarios. Precipitation of wettest quarter did not differ between current and any of future models. Under different climate change scenarios D. sapinea's disease outbreaks will be likely to affect larger areas of pine forests in the country, probably causing heavy effects on the dynamics and evolution of these stands or perhaps constraining their survival.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2017
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Forest Ecology and Management
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    66
    citations66
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2017
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Forest Ecology and Management
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.