
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Predicting current and future disease outbreaks of Diplodia sapinea shoot blight in Italy: species distribution models as a tool for forest management planning

Species distribution models (SDMs) provide realistic scenarios to explain the influence of bioclimatic variables on plant pathogen distribution. Diplodia sapinea is most harmful to plantations of both exotic and native pine species in Italy, causing economic consequences expecially to edible seed production. In this study, we developed maximum entropy models for D. sapinea in Italy to reach the following goals: (i) to carry out the pathogen's first geographical distribution analysis in Italy and determine which ecogeographical variables (EGVs) may influence its outbreaks; (ii) to detect the effect of climate change on the potential occurrence of disease outbreaks by 2050 and 2070. We used Maxent ver. 3.4.0 to develop SDMs. We used six global climate models (BCC-CSM1-1, CCSM4, GISS-E2-R, MIROC5, HadGEM2-ES and MPI-ESM-LR) for two representative concentration pathways (4.5 and 8.5) and two time projections (2050 and 2070) to detect future climate projections of D. sapinea. The most important EGVs influencing outbreaks were land cover, altitude, mean temperature of driest and wettest quarter, precipitation of wettest quarter, precipitation seasonality and minimum temperature of coldest month. The distribution of D. sapinea mostly expanded in central and southern Italy and shifted in altitude upwards on average by ca. 93m a.s.l. Moreover the fungus expanded the range where disease outbreaks may be recorded in response to an increase in the mean temperature of wettest and driest quarter by ca. 1.9 C and 5.8 C, respectively in all climate change scenarios. Precipitation of wettest quarter did not differ between current and any of future models. Under different climate change scenarios D. sapinea's disease outbreaks will be likely to affect larger areas of pine forests in the country, probably causing heavy effects on the dynamics and evolution of these stands or perhaps constraining their survival.
- University Federico II of Naples Italy
- National Research Council Italy
- University of Bristol United Kingdom
- Parthenope University of Naples Italy
- National Academies of Sciences, Engineering, and Medicine United States
Fungus, GIS, Pine, Climate change, Forest ecology, Maxent, Climate change Forest ecology Fungus GIS Maxent Pine, Settore AGR/12 - PATOLOGIA VEGETALE
Fungus, GIS, Pine, Climate change, Forest ecology, Maxent, Climate change Forest ecology Fungus GIS Maxent Pine, Settore AGR/12 - PATOLOGIA VEGETALE
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).66 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
