- home
- Advanced Search
Filters
Clear All- Energy Research
- 11. Sustainability
- IT
- Energies
- Energy Research
- 11. Sustainability
- IT
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Corti P.; Capannolo L.; Bonomo P.; De Berardinis P.; Frontini F.;doi: 10.3390/en13153827
handle: 11697/174172
The built environment remains a strategic research and innovation domain in view of the goal of full decarbonization. The priority is the retrofitting of existing buildings as zero-emission to improve their energy efficiency with renewable energy technologies pulling the market with cost-effective strategies. From the first age of photovoltaics (PV) mainly integrated in solar roofs, we rapidly moved towards complete active building skins where all the architectural surfaces are photoactive (Building Integrated Photovoltaics - BIPV). This change of paradigm, where PV replaces a conventional building material, shifted the attention to relate construction choices with energy and cost effectiveness. However, systematic investigations which put into action a cross-disciplinary approach between construction, economic and energy related domains is still missing. This paper provides the detailed assessment of a real multifamily building, taking into account retrofit scenarios for making active the building skin, with the goal to identify the sensitive aspects of the energetic and economic effectiveness of BIPV design options. By assuming a real case study with monitored data, the analysis will consider a breakdown of the main individual parts composing the building envelope, by then combining alternative re-configurations in merged clusters with different energy and construction goals. Results will highlight the correlation between building skin construction strategies and the energy and cost parameters by identifying the cornerstones for enhancing efficiency. The outcomes, related to the total life cost, self-consumption/sufficiency, in combination with different building design options (façade, roof, balconies, surface orientations, etc.), provide a practical insight for researchers and professionals to identify renovation strategies by synergistically exploiting the solar active parts towards lower global costs and higher energy efficiency of the whole building system.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3827/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3827/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2019Embargo end date: 01 Jan 2018 France, ItalyPublisher:MDPI AG Tantet, Alexis; Concettini, Silvia; d'Ambrosio, Claudia; Thomopulos, Dimitri; Tankov, Peter; St��fanon, Marc; Drobinski, Philippe; Badosa, Jordi; Cr��ti, Anna; Thomopulos, Dimitri;handle: 11568/1013293
We develop an open-source Python software integrating flexibility needs from Variable Renewable Energies (VREs) in the development of regional energy mixes. It provides a flexible and extensible tool to researchers/engineers, and for education/outreach. It aims at evaluating and optimizing energy deployment strategies with higher shares of VRE, assessing the impact of new technologies and of climate variability and conducting sensitivity studies. Specifically, to limit the algorithm’s complexity, we avoid solving a full-mix cost-minimization problem by taking the mean and variance of the renewable production–demand ratio as proxies to balance services. Second, observations of VRE technologies being typically too short or nonexistent, the hourly demand and production are estimated from climate time series and fitted to available observations. We illustrate e4clim’s potential with an optimal recommissioning-study of the 2015 Italian PV-wind mix testing different climate data sources and strategies and assessing the impact of climate variability and the robustness of the results.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4299/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di PisaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Université François-Rabelais de Tours: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4299/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di PisaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Université François-Rabelais de Tours: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Tonini F.; Sanvito F. D.; Colombelli F.; Colombo E.;doi: 10.3390/en15051902
handle: 11311/1208728
As it emerges from the literature, electricity access in rural contexts is deeply intertwined with socioeconomic dynamics. However, the advent of a reliable and sufficient source of electricity is not the sole driver that might contribute to local development. Indeed, complementary activities might have a crucial role in sustaining the development of rural communities as well as the electricity access. The current research addresses the lack of counterfactual scenarios in which the impact of complementary activities on electrification projects can be investigated. The authors introduce the case study of Matembwe village, a rural community in the Njombe region of Tanzania. The data collection includes the electricity consumption, number of electricity connections, and number of income-generating activities in a timespan ranging from 1989 to 2015. The analysis is based on system dynamics. The study considers different scenarios representing the dynamics related to the following complementary actions: access to market measures, access to credit measures, and access to usable skills. On the one hand, the study reveals that the effectiveness of the considered complementary actions is limited except from the access to microcredit which fosters an increase in electricity connections by 17%. On the other hand, both access to microcredit and the starting up of a local cooperative by CEFA Onlus that reinvests its profits in the local market impact the socio-economic dimension by 69% and 22%, respectively.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1902/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051902&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1902/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051902&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Luca Castellazzi; Maria Avgerinou; Paolo Bertoldi;doi: 10.3390/en10101470
Climate change is recognised as one of the key challenges humankind is facing. The Information and Communication Technology (ICT) sector including data centres generates up to 2% of the global CO2 emissions, a number on par to the aviation sector contribution, and data centres are estimated to have the fastest growing carbon footprint from across the whole ICT sector, mainly due to technological advances such as the cloud computing and the rapid growth of the use of Internet services. There are no recent estimations of the total energy consumption of the European data centre and of their energy efficiency. The aim of this paper is to evaluate, analyse and present the current trends in energy consumption and efficiency in data centres in the European Union using the data submitted by companies participating in the European Code of Conduct for Data Centre Energy Efficiency programme, a voluntary initiative created in 2008 in response to the increasing energy consumption in data centres and the need to reduce the related environmental, economic and energy supply security impacts. The analysis shows that the average Power Usage Effectiveness (PUE) of the facilities participating in the programme is declining year after year. This confirms that voluntary approaches could be effective in addressing climate and energy issue.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/10/1470/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10101470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 247 citations 247 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/10/1470/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10101470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Luciani, Sara; Tonoli, Andrea;doi: 10.3390/en15062004
handle: 11583/2958799
Concerns about climate change, air pollution, and the depletion of oil resources have prompted authorities to enforce increasingly strict rules in the automotive sector. There are several benefits to implementing fuel cell hybrid vehicles (FCHV) in the transportation sector, including the ability to assist in reducing greenhouse gas emissions by replacing fossil fuels with hydrogen as energy carriers. This paper examines different control strategies for optimizing the power split between the battery and PEM fuel cell in order to maximize the PEM fuel cell system efficiency and reduce fuel consumption. First, the vehicle and fuel cell system models are described. A forward approach is considered to model the vehicle dynamics, while a semi-empirical and quasi-static model is used for the PEM fuel cell. Then, different rule-based control strategies are analyzed with the aim of maximizing fuel cell system efficiency while ensuring a constant battery state of charge (SOC). The different methods are evaluated while the FCHV is performing both low-load and high-load drive cycles. The hydrogen consumption and the overall fuel cell system efficiency are considered for all testing conditions. The results highlight that in both low-load cycles and high-load cycles, the best control strategies achieve a fuel cell system efficiency equal or greater to 33%, while achieving a fuel consumption 30% less with respect to the baseline control strategy in low-load drive cycles.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2004/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2022License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2004/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2022License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Authors: Boulanger, Saveria Olga Murielle;doi: 10.3390/en15249326
handle: 11585/910595
The smart city has been a growing utopia, a brilliant image of a city of the future, in the past twenty years. Since its birth, at the end of the previous century, several changes have been seen in urban areas, both aligned and detached from this concept. On the one side, digital implementation seems to be growing in all the major cities, especially in the service sector, which are experiencing a proliferation of new solutions, tools and modalities of interactions. On the other side, new concepts are rising such as the “digital twin”, the “15-minute city”, and the “metaverse city”, evidencing both the necessity to continuously innovate and reach higher levels of digitalization but also the need to focus on people’s life. This paper aims to provide a contribution to the understanding of the concept’s evolution at the forefront of climate change with the aim to detect the elements of innovation, focusing on implementation roadmaps and trends but also searching for evolutions in research due to the COVID-19 pandemic. The hypothesis is that some changes of direction could have been triggered by the pandemic due to the urgency of finding concrete solutions. The conclusions will show that it is possible to detect some of them, especially in the technological domain.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249326&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249326&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:MDPI AG Funded by:EC | CULTURAL-EEC| CULTURAL-EAuthors: Pistore, Lorenza; Tintinaglia, Francesca; Pernetti, Roberta; Stivanello, Pietro; +1 AuthorsPistore, Lorenza; Tintinaglia, Francesca; Pernetti, Roberta; Stivanello, Pietro; Pasut, Wilmer;doi: 10.3390/en16052499
handle: 10278/5016228 , 11571/1512146
Towards a carbon-neutral society, the building sector has a pivotal role with still a great potential for improvement. A new generation of buildings is rising but, to set a more ambitious shift in the paradigm and to fully justify the additional efforts (technological and economic) needed to fill the gap between net zero and plus energy performances, it is essential to consider not only the direct effects, but also all the indirect impacts. However, research conducted in the last decade solely focuses on the direct effects, mainly energy savings, while the indirect impacts neither have a clear identity nor terminology and a defined list of the impacts and methodologies for their quantification is still missing. With these premises, a systematic literature review on the current state of the art was performed in this work, with the aim of (i) investigating the heterogeneous terminology used for such indirect effects, (ii) identifying a final potential list of impacts both at the household and at the community level and (iii) their macro-categorizations, and (iv) exploring the current implemented methodologies and indicators for an economic quantification. As a final result of the analysis, the authors propose a unique terminology for addressing the indirect effects of high-performance buildings. This paper sets the needed basis and common ground for future research in this field, meant to economically quantify the indirect effects in the building sector.
Archivio istituziona... arrow_drop_down EnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/5/2499/pdfData sources: SygmaIRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 11 Powered bymore_vert Archivio istituziona... arrow_drop_down EnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/5/2499/pdfData sources: SygmaIRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Ferrari S.; Zagarella F.; Caputo P.; Dall'o' G.;doi: 10.3390/en14175445
handle: 11311/1184307
Assessing the existing building stock’s hourly energy demand and predicting its variation due to energy efficiency measures are fundamental for planning strategies towards renewable-based Smart Energy Systems. However, the need for accurate methods for this purpose in the literature arises. The present article describes a GIS-based procedure developed for estimating the energy demand profiles of urban buildings based on the definition of the volumetric consistency of a building stock, characterized by different ages of construction and the most widespread uses, as well as dynamic simulations of a set of Building Energy Models adopting different energy-related features. The simulation models are based on a simple Building Energy Concept where selected thermal zones, representative of different boundary conditions options, are accounted. By associating the simulated hourly energy density profiles to the geo-referenced building stock and to the surveyed thermal system types, the whole hourly energy profile is estimated for the considered area. The method was tested on the building stock of Milan (Italy) and validated with the data available from the annual energy balance of the city. This procedure could support energy planners in defining urban energy demand profiles for energy policy scenarios.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5445/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5445/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 ItalyPublisher:MDPI AG Authors: PISELLO, ANNA LAURA; M. Bobker; COTANA, Franco;doi: 10.3390/en5125257
handle: 11391/1067065
Building energy efficiency is strongly linked to the operations and control systems, together with the integrated performance of passive and active systems. In new high quality buildings in particular, where these two latter aspects have been already implemented at the design stage, users’ perspective, obtained through post-occupancy assessment, has to be considered to reduce whole energy requirement during service life. This research presents an innovative and low-cost methodology to reduce buildings’ energy requirements through post-occupancy assessment and optimization of energy operations using effective users’ attitudes and requirements as feedback. As a meaningful example, the proposed method is applied to a multipurpose building located in New York City, NY, USA, where real occupancy conditions are assessed. The effectiveness of the method is tested through dynamic simulations using a numerical model of the case study, calibrated through real monitoring data collected on the building. Results show that, for the chosen case study, the method provides optimized building energy operations which allow a reduction of primary energy requirements for HVAC, lighting, room-electricity, and auxiliary supply by about 21%. This paper shows that the proposed strategy represents an effective way to reduce buildings’ energy waste, in particular in those complex and high-efficiency buildings that are not performing as well as expected during the concept-design-commissioning stage, in particular due to the lack of feedback after the building handover.
Energies arrow_drop_down EnergiesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1996-1073/5/12/5257/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5125257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 62 citations 62 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1996-1073/5/12/5257/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5125257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Funded by:MIUR | La ricerca per i PAES: un...MIUR| La ricerca per i PAES: una piattaforma per le municipalit� partecipanti al Patto dei Sindaci (Research for SEAP: a platform for municiplities taking part in the Covenant of Mayors)Authors: Fichera A.; Pluchino A.; Volpe R.;doi: 10.3390/en13143715
handle: 20.500.11769/480378
Complexity is a widely acknowledged feature of urban areas. Among the different levels to which this definition applies, the energy sector is one of the most representative of this way of conceiving cities. An evidence of this complexity can be detected in the growing impact of prosumers. Prosumers produce energy to meet their own demands, distribute it directly to neighbors and, eventually, store the energy neither consumed nor distributed. The modelling of distribution networks is a challenging task that requires ad hoc models to simulate the mutual energy exchanges occurring among prosumers. To serve at this scope, this paper proposes an agent-based model aiming at determining which operating conditions enhance the energy distribution among prosumers and diminish the supply from traditional power plants. An application of the model within a residential territory is then presented and simulations are conducted under two scenarios: the first investigating the distribution among prosumers equipped with photovoltaics (PV) systems, the second integrating energy storage systems to PV panels. Both scenarios are studied at varying the installed PV capacity within the territory, the allowed distance of connection among prosumers, as well as the rate of utilization of the links of the network. Results from the simulated case study reveal that the energy distribution among prosumers can be enhanced by providing short-range links for the electricity exchange. Similar advantages can be achieved by integrating storage systems to PV, along with a significant reduction in the electricity requested to the centralized grid.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/14/3715/pdfData sources: Multidisciplinary Digital Publishing InstituteIRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di Cataniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13143715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/14/3715/pdfData sources: Multidisciplinary Digital Publishing InstituteIRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di Cataniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13143715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Corti P.; Capannolo L.; Bonomo P.; De Berardinis P.; Frontini F.;doi: 10.3390/en13153827
handle: 11697/174172
The built environment remains a strategic research and innovation domain in view of the goal of full decarbonization. The priority is the retrofitting of existing buildings as zero-emission to improve their energy efficiency with renewable energy technologies pulling the market with cost-effective strategies. From the first age of photovoltaics (PV) mainly integrated in solar roofs, we rapidly moved towards complete active building skins where all the architectural surfaces are photoactive (Building Integrated Photovoltaics - BIPV). This change of paradigm, where PV replaces a conventional building material, shifted the attention to relate construction choices with energy and cost effectiveness. However, systematic investigations which put into action a cross-disciplinary approach between construction, economic and energy related domains is still missing. This paper provides the detailed assessment of a real multifamily building, taking into account retrofit scenarios for making active the building skin, with the goal to identify the sensitive aspects of the energetic and economic effectiveness of BIPV design options. By assuming a real case study with monitored data, the analysis will consider a breakdown of the main individual parts composing the building envelope, by then combining alternative re-configurations in merged clusters with different energy and construction goals. Results will highlight the correlation between building skin construction strategies and the energy and cost parameters by identifying the cornerstones for enhancing efficiency. The outcomes, related to the total life cost, self-consumption/sufficiency, in combination with different building design options (façade, roof, balconies, surface orientations, etc.), provide a practical insight for researchers and professionals to identify renovation strategies by synergistically exploiting the solar active parts towards lower global costs and higher energy efficiency of the whole building system.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3827/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3827/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2019Embargo end date: 01 Jan 2018 France, ItalyPublisher:MDPI AG Tantet, Alexis; Concettini, Silvia; d'Ambrosio, Claudia; Thomopulos, Dimitri; Tankov, Peter; St��fanon, Marc; Drobinski, Philippe; Badosa, Jordi; Cr��ti, Anna; Thomopulos, Dimitri;handle: 11568/1013293
We develop an open-source Python software integrating flexibility needs from Variable Renewable Energies (VREs) in the development of regional energy mixes. It provides a flexible and extensible tool to researchers/engineers, and for education/outreach. It aims at evaluating and optimizing energy deployment strategies with higher shares of VRE, assessing the impact of new technologies and of climate variability and conducting sensitivity studies. Specifically, to limit the algorithm’s complexity, we avoid solving a full-mix cost-minimization problem by taking the mean and variance of the renewable production–demand ratio as proxies to balance services. Second, observations of VRE technologies being typically too short or nonexistent, the hourly demand and production are estimated from climate time series and fitted to available observations. We illustrate e4clim’s potential with an optimal recommissioning-study of the 2015 Italian PV-wind mix testing different climate data sources and strategies and assessing the impact of climate variability and the robustness of the results.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4299/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di PisaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Université François-Rabelais de Tours: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4299/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di PisaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Université François-Rabelais de Tours: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Tonini F.; Sanvito F. D.; Colombelli F.; Colombo E.;doi: 10.3390/en15051902
handle: 11311/1208728
As it emerges from the literature, electricity access in rural contexts is deeply intertwined with socioeconomic dynamics. However, the advent of a reliable and sufficient source of electricity is not the sole driver that might contribute to local development. Indeed, complementary activities might have a crucial role in sustaining the development of rural communities as well as the electricity access. The current research addresses the lack of counterfactual scenarios in which the impact of complementary activities on electrification projects can be investigated. The authors introduce the case study of Matembwe village, a rural community in the Njombe region of Tanzania. The data collection includes the electricity consumption, number of electricity connections, and number of income-generating activities in a timespan ranging from 1989 to 2015. The analysis is based on system dynamics. The study considers different scenarios representing the dynamics related to the following complementary actions: access to market measures, access to credit measures, and access to usable skills. On the one hand, the study reveals that the effectiveness of the considered complementary actions is limited except from the access to microcredit which fosters an increase in electricity connections by 17%. On the other hand, both access to microcredit and the starting up of a local cooperative by CEFA Onlus that reinvests its profits in the local market impact the socio-economic dimension by 69% and 22%, respectively.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1902/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051902&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1902/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051902&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Luca Castellazzi; Maria Avgerinou; Paolo Bertoldi;doi: 10.3390/en10101470
Climate change is recognised as one of the key challenges humankind is facing. The Information and Communication Technology (ICT) sector including data centres generates up to 2% of the global CO2 emissions, a number on par to the aviation sector contribution, and data centres are estimated to have the fastest growing carbon footprint from across the whole ICT sector, mainly due to technological advances such as the cloud computing and the rapid growth of the use of Internet services. There are no recent estimations of the total energy consumption of the European data centre and of their energy efficiency. The aim of this paper is to evaluate, analyse and present the current trends in energy consumption and efficiency in data centres in the European Union using the data submitted by companies participating in the European Code of Conduct for Data Centre Energy Efficiency programme, a voluntary initiative created in 2008 in response to the increasing energy consumption in data centres and the need to reduce the related environmental, economic and energy supply security impacts. The analysis shows that the average Power Usage Effectiveness (PUE) of the facilities participating in the programme is declining year after year. This confirms that voluntary approaches could be effective in addressing climate and energy issue.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/10/1470/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10101470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 247 citations 247 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/10/1470/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10101470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Luciani, Sara; Tonoli, Andrea;doi: 10.3390/en15062004
handle: 11583/2958799
Concerns about climate change, air pollution, and the depletion of oil resources have prompted authorities to enforce increasingly strict rules in the automotive sector. There are several benefits to implementing fuel cell hybrid vehicles (FCHV) in the transportation sector, including the ability to assist in reducing greenhouse gas emissions by replacing fossil fuels with hydrogen as energy carriers. This paper examines different control strategies for optimizing the power split between the battery and PEM fuel cell in order to maximize the PEM fuel cell system efficiency and reduce fuel consumption. First, the vehicle and fuel cell system models are described. A forward approach is considered to model the vehicle dynamics, while a semi-empirical and quasi-static model is used for the PEM fuel cell. Then, different rule-based control strategies are analyzed with the aim of maximizing fuel cell system efficiency while ensuring a constant battery state of charge (SOC). The different methods are evaluated while the FCHV is performing both low-load and high-load drive cycles. The hydrogen consumption and the overall fuel cell system efficiency are considered for all testing conditions. The results highlight that in both low-load cycles and high-load cycles, the best control strategies achieve a fuel cell system efficiency equal or greater to 33%, while achieving a fuel consumption 30% less with respect to the baseline control strategy in low-load drive cycles.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2004/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2022License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2004/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2022License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Authors: Boulanger, Saveria Olga Murielle;doi: 10.3390/en15249326
handle: 11585/910595
The smart city has been a growing utopia, a brilliant image of a city of the future, in the past twenty years. Since its birth, at the end of the previous century, several changes have been seen in urban areas, both aligned and detached from this concept. On the one side, digital implementation seems to be growing in all the major cities, especially in the service sector, which are experiencing a proliferation of new solutions, tools and modalities of interactions. On the other side, new concepts are rising such as the “digital twin”, the “15-minute city”, and the “metaverse city”, evidencing both the necessity to continuously innovate and reach higher levels of digitalization but also the need to focus on people’s life. This paper aims to provide a contribution to the understanding of the concept’s evolution at the forefront of climate change with the aim to detect the elements of innovation, focusing on implementation roadmaps and trends but also searching for evolutions in research due to the COVID-19 pandemic. The hypothesis is that some changes of direction could have been triggered by the pandemic due to the urgency of finding concrete solutions. The conclusions will show that it is possible to detect some of them, especially in the technological domain.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249326&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249326&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:MDPI AG Funded by:EC | CULTURAL-EEC| CULTURAL-EAuthors: Pistore, Lorenza; Tintinaglia, Francesca; Pernetti, Roberta; Stivanello, Pietro; +1 AuthorsPistore, Lorenza; Tintinaglia, Francesca; Pernetti, Roberta; Stivanello, Pietro; Pasut, Wilmer;doi: 10.3390/en16052499
handle: 10278/5016228 , 11571/1512146
Towards a carbon-neutral society, the building sector has a pivotal role with still a great potential for improvement. A new generation of buildings is rising but, to set a more ambitious shift in the paradigm and to fully justify the additional efforts (technological and economic) needed to fill the gap between net zero and plus energy performances, it is essential to consider not only the direct effects, but also all the indirect impacts. However, research conducted in the last decade solely focuses on the direct effects, mainly energy savings, while the indirect impacts neither have a clear identity nor terminology and a defined list of the impacts and methodologies for their quantification is still missing. With these premises, a systematic literature review on the current state of the art was performed in this work, with the aim of (i) investigating the heterogeneous terminology used for such indirect effects, (ii) identifying a final potential list of impacts both at the household and at the community level and (iii) their macro-categorizations, and (iv) exploring the current implemented methodologies and indicators for an economic quantification. As a final result of the analysis, the authors propose a unique terminology for addressing the indirect effects of high-performance buildings. This paper sets the needed basis and common ground for future research in this field, meant to economically quantify the indirect effects in the building sector.
Archivio istituziona... arrow_drop_down EnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/5/2499/pdfData sources: SygmaIRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 11 Powered bymore_vert Archivio istituziona... arrow_drop_down EnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/5/2499/pdfData sources: SygmaIRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Ferrari S.; Zagarella F.; Caputo P.; Dall'o' G.;doi: 10.3390/en14175445
handle: 11311/1184307
Assessing the existing building stock’s hourly energy demand and predicting its variation due to energy efficiency measures are fundamental for planning strategies towards renewable-based Smart Energy Systems. However, the need for accurate methods for this purpose in the literature arises. The present article describes a GIS-based procedure developed for estimating the energy demand profiles of urban buildings based on the definition of the volumetric consistency of a building stock, characterized by different ages of construction and the most widespread uses, as well as dynamic simulations of a set of Building Energy Models adopting different energy-related features. The simulation models are based on a simple Building Energy Concept where selected thermal zones, representative of different boundary conditions options, are accounted. By associating the simulated hourly energy density profiles to the geo-referenced building stock and to the surveyed thermal system types, the whole hourly energy profile is estimated for the considered area. The method was tested on the building stock of Milan (Italy) and validated with the data available from the annual energy balance of the city. This procedure could support energy planners in defining urban energy demand profiles for energy policy scenarios.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5445/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5445/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 ItalyPublisher:MDPI AG Authors: PISELLO, ANNA LAURA; M. Bobker; COTANA, Franco;doi: 10.3390/en5125257
handle: 11391/1067065
Building energy efficiency is strongly linked to the operations and control systems, together with the integrated performance of passive and active systems. In new high quality buildings in particular, where these two latter aspects have been already implemented at the design stage, users’ perspective, obtained through post-occupancy assessment, has to be considered to reduce whole energy requirement during service life. This research presents an innovative and low-cost methodology to reduce buildings’ energy requirements through post-occupancy assessment and optimization of energy operations using effective users’ attitudes and requirements as feedback. As a meaningful example, the proposed method is applied to a multipurpose building located in New York City, NY, USA, where real occupancy conditions are assessed. The effectiveness of the method is tested through dynamic simulations using a numerical model of the case study, calibrated through real monitoring data collected on the building. Results show that, for the chosen case study, the method provides optimized building energy operations which allow a reduction of primary energy requirements for HVAC, lighting, room-electricity, and auxiliary supply by about 21%. This paper shows that the proposed strategy represents an effective way to reduce buildings’ energy waste, in particular in those complex and high-efficiency buildings that are not performing as well as expected during the concept-design-commissioning stage, in particular due to the lack of feedback after the building handover.
Energies arrow_drop_down EnergiesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1996-1073/5/12/5257/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5125257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 62 citations 62 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1996-1073/5/12/5257/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5125257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Funded by:MIUR | La ricerca per i PAES: un...MIUR| La ricerca per i PAES: una piattaforma per le municipalit� partecipanti al Patto dei Sindaci (Research for SEAP: a platform for municiplities taking part in the Covenant of Mayors)Authors: Fichera A.; Pluchino A.; Volpe R.;doi: 10.3390/en13143715
handle: 20.500.11769/480378
Complexity is a widely acknowledged feature of urban areas. Among the different levels to which this definition applies, the energy sector is one of the most representative of this way of conceiving cities. An evidence of this complexity can be detected in the growing impact of prosumers. Prosumers produce energy to meet their own demands, distribute it directly to neighbors and, eventually, store the energy neither consumed nor distributed. The modelling of distribution networks is a challenging task that requires ad hoc models to simulate the mutual energy exchanges occurring among prosumers. To serve at this scope, this paper proposes an agent-based model aiming at determining which operating conditions enhance the energy distribution among prosumers and diminish the supply from traditional power plants. An application of the model within a residential territory is then presented and simulations are conducted under two scenarios: the first investigating the distribution among prosumers equipped with photovoltaics (PV) systems, the second integrating energy storage systems to PV panels. Both scenarios are studied at varying the installed PV capacity within the territory, the allowed distance of connection among prosumers, as well as the rate of utilization of the links of the network. Results from the simulated case study reveal that the energy distribution among prosumers can be enhanced by providing short-range links for the electricity exchange. Similar advantages can be achieved by integrating storage systems to PV, along with a significant reduction in the electricity requested to the centralized grid.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/14/3715/pdfData sources: Multidisciplinary Digital Publishing InstituteIRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di Cataniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13143715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/14/3715/pdfData sources: Multidisciplinary Digital Publishing InstituteIRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di Cataniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13143715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu