- home
- Advanced Search
- Energy Research
- 2021-2025
- 6. Clean water
- IT
- Energy Research
- 2021-2025
- 6. Clean water
- IT
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Giovanna Battipaglia; Francesco Niccoli; Jerzy Piotr Kabala; Rossana Marzaioli; Teresa Di Santo; Sandro Strumia; Simona Castaldi; Milena Petriccione; Lucio Zaccariello; Daniele Battaglia; Maria Laura Mastellone; Elio Coppola; Flora Angela Rutigliano;doi: 10.3390/f14040658
Hydrochar, carbon-rich material produced during the thermochemical processing of biomass, is receiving increased attention due to its potential value as soil amendment. It can increase agroforestry systems’ productivity through direct and indirect effects on growth and soil quality. Hydrochar may also directly help mitigate climate change by sequestering stable carbon compounds in the soil and perhaps indirectly through increased C uptake by trees. In this research, we aim to evaluate how the application of hydrochar produced by two feedstock types, Cynara cardunculus L. (Hc) residuals and sewage sludge (Hs), and in two different doses (3 and 6 kg m−2) could improve the growth and water use efficiency of Populus alba L., a fast-growing tree species largely used in agroforestry as bioenergy crops and in C sequestration. We considered five plants per treatment, and we measured apical growth, secondary growth, leaf area and intrinsic water use efficiency in each plant for the whole growing season from February to October 2022. Our results highlighted that hydrochar applications stimulate the growth and water use efficiency of plants and that the double dose (6 kg m−2) of both hydrochars, and particularly Hc, had positive effects on plant performance, especially during extremely hot periods. Indeed, the year 2022 was characterized by a heat wave during the summer period, and this condition allowed us to evaluate how plants, growing in soils amended with hydrochar, could perform under climate extremes. Our findings showed that the control plants experienced severe damage in terms of dried stems and dried leaves during summer 2022, while hydrochar applications reduced these effects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f14040658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f14040658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Michela Lucian; Fabio Merzari; Michele Gubert; Antonio Messineo; Maurizio Volpe;doi: 10.3390/su13169343
Hydrothermal carbonization (HTC) provides an attractive alternative method for the treatment of high-moisture waste and, in particular, digested sludge. HTC could reduce the costs and environmental risks associated with sludge handling and management. Although it is recognized that the dewaterability of hydrochars produced from digested sludge, even at mild temperatures (180–190 °C), is highly improved with respect to the starting material, the filterability of HTC slurries for the recovery of the solid material (hydrochar) still represents a challenge. This study presents the results of an investigation into the filterability of agro-industrial digested sludge HTC slurries produced by a C-700 CarboremTM HTC industrial-scale plant. The filterability of HTC slurries, produced at 190 °C for 1 h, with the use of acid solutions of hydrochloric acid, sulfuric acid or citric acids, was investigated by using a semi-industrial filter press. The use of sulfuric acid or citric acid solutions, in particular, significantly improved the filterability of HTC slurries, reducing the time of filtration and residual moisture content. The acid treatment also promoted the migration of heavy metals and phosphorus (P) in the HTC filtrate solution. This study demonstrates that P can be recovered via the precipitation of struvite in high yields, recovering up to 85 wt% by mass of its initial P content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Mehrdad Mashkour; Mehrdad Mashkour; Mahdi Mashkour; Mostafa Rahimnejad; Francesca Soavi;Abstract Economically harvesting energy from a microbial fuel cell (MFC), increasing its electrical power production, and developing its role as a practical energy supply, needs a low-cost and high-performance design of the MFC compartments. According to this strategy, a novel monolithic membrane electrode assembly (MEA) was fabricated and evaluated as an air–cathode in a single-chamber MFC (SCMFC). The MEA was made of bacterial cellulose (BC), conductive multi-walled carbon nanotubes (CNT), and nano-zycosil (NZ). BC, as a nano-celluloses with oxygen barrier property, can maintain anaerobic conditions for the anode compartment. Binder-less CNT coating on BC avoids costly binders such as poly-tetra fluoro ethylene (PTFE) and Nafion and decreases the MEA charge transfer resistance. NZ, as a very cheap modifier, not only prevents the anolyte leakage but also provides more MEA’s active sites for the oxygen reduction reaction (ORR). The electrochemical performance of the MEA was compared to a PTFE- based gas diffusion electrode (GDE) in the SCMFC. The MEA cell provided a pulse power density of 1790 mW/m2, roughly twice as high as the pulse power density of GDE (920 mW/m2). SCMFC’s internal resistance decreased from 1.84 KΩ (with GDE) to 0.8 KΩ (with MEA). Also, the cell’s columbic efficiency increased from 4.2% (with GDE) to11.7% (with MEA). Additionally, the capacitance of the MEA (65 mF) was much higher than the value for GDE (0.73 mF). Thus, the MEA compared to the GDE showed higher performance in the SCMFC for electricity generation and wastewater treatment at a lower cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 36 citations 36 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Pappis, Ioannis; Sridharan, Vignesh; Howells, Mark; Medarac, Hrvoje; Kougias, Ioannis; Sánchez, G. Rocío; Shivakumar, Abhishek; Usher, Will;This dataset underpins the study "Synergies and conflicts of energy development and water security in Africa". The study provides insights into energy supply and demand, power generation, investments and total system costs, water consumption and withdrawal as well as carbon dioxide emissions for the African continent. We developed a model to evaluate energy supply and water requirements to cover the energy needs of the African continent during the period 2015-2065. The model was developed using the open-source modeling system for long-term energy planning OSeMOSYS. The objective function is to minimise total energy system costs, rather than, for example, co-optimise the energy and water sectors. Other energy resources were also included in the model except for adding the water analysis, and the dataset was updated based on the latest available information. The OSeMOSYS model developed to conduct the study “Energy projections for African countries”, itself extended from the Electricity Model Base for Africa (TEMBA), was further extended, included exports for all fuels, water loss due to evaporation in hydropower plants and more scenarios examined. Furthermore, the latest available data on the energy system of Africa was also updated. The TEMBA model produces aggregate energy, and detailed power system results in each country in the African continent. The power sector results are also reported with power pool aggregation. The OSeMOSYS model and input data used to produce these results can be found at KTH-dESA/jrc_temba: TEMBA 2.1 (Version v2.1) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4889373 (Authors: Ioannis Pappis, Vignesh Sridharan, Will Usher, & Mark Howells. (2021). The initial study was funded by the Joint Research Centre of the European Commission (contract number C936531 - JRC/PTT/2018/C.7/0038/NC).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3882052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 80visibility views 80 download downloads 10 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3882052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Authors: Marco Dettori; Carla Cesaraccio; Pierpaolo Duce; Valentina Mereu;With an approach combining crop modelling and biotechnology to assess the performance of three durum wheat cultivars (Creso, Duilio, Simeto) in a climate change context, weather and agronomic datasets over the period 1973–2004 from two sites, Benatzu and Ussana (Southern Sardinia, Itay), were used and the model responses were interpreted considering the role of DREB genes in the genotype performance with a focus on drought conditions. The CERES-Wheat crop model was calibrated and validated for grain yield, earliness and kernel weight. Forty-eight synthetic scenarios were used: 6 scenarios with increasing maximum air temperature; 6 scenarios with decreasing rainfall; 36 scenarios combining increasing temperature and decreasing rainfall. The simulated effects on yields, anthesis and kernel weights resulted in yield reduction, increasing kernel weight, and shortened growth duration in both sites. Creso (late cultivar) was the most sensitive to simulated climate conditions. Simeto and Duilio (early cultivars) showed lower simulated yield reductions and a larger anticipation of anthesis date. Observed data showed the same responses for the three cultivars in both sites. The CERES-Wheat model proved to be effective in representing reality and can be used in crop breeding programs with a molecular approach aiming at developing molecular markers for the resistance to drought stress.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/genes13030488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/genes13030488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Isabella Pecorini; Elena Rossi; Simone Becarelli; Francesco Baldi; Simona Di Gregorio; Renato Iannelli;doi: 10.3390/su15043168
Dark fermentation (DF) is a simple method for hydrogen (H2) production through the valorization of various organic wastes that can be used as feedstock. In particular, an organic fraction of municipal solid waste (OFMSW) is a fermentation substrate that can easily be gathered and provides high yields in biogas and value-added organic compounds such as volatile fatty acids (VFAs). DF is coupled with a methanogenic reactor to enhance biogas production from the OFMSW. In this study, a two-stage reactor was conducted and monitored to optimize the methane yield by reducing the HRT at the DF reactor. A focus of the functional inference based on a next-generation sequence (NGS) metabarcoding analysis and comparison of microbial communities that populate each reactor stage was performed. Concerning gas quality, the two-stage system observed a hydrogen-rich biogas in the first fermentative reactor (on average 20.2%) and an improvement in the methane content in the second methanogenic digester, which shifted from 61.2% obtained for the one-stage experiment to 73.5%. Such increases were due to the improvement in substrate hydrolysis. As for the specific biogas production, the results showed an overall increase of 50%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15043168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15043168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 CroatiaPublisher:SDEWES Centre Authors: Hamed, Tareq A.; Alshare, Aiman;The global energy demand is growing substantially. Clean and secure energy supply is a must for our civilization's sustainable development. Solar and wind energy is growing fast and can contribute significantly to meet the goals set by many countries to reduce greenhouse gas emissions. A deep and wide investigation of the environmental impact of solar and wind energy is important before any solar or wind plants' construction is made. In this study, the literature is reviewed to summarize the environmental impact of solar and wind energy systems in terms of the following factors; land use, water consumption, impact on biodiversity, visual and noise effects, health issues, and impact on micro climate. Although the benefits of solar and wind energy are obvious and great, negative perception of these technologies can inhibit their wide penetration in some regions. This review paper includes a critical and an inclusive analysis of solar and wind energy’s environmental impact and may serve as an important tool to conduct a proper environmental impact assessment. This critical analysis may serve also as a tool for developers, policy, and decision-when planning future solar and wind farms.
Journal of Sustainab... arrow_drop_down Journal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022Full-Text: https://hrcak.srce.hr/file/398628Data sources: HRČAK - Portal of scientific journals of CroatiaJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022 . Peer-reviewedData sources: CrossrefJournal of Sustainable Development of Energy, Water and Environment SystemsArticleLicense: CC BYData sources: UnpayWallJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13044/j.sdewes.d9.0387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Sustainab... arrow_drop_down Journal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022Full-Text: https://hrcak.srce.hr/file/398628Data sources: HRČAK - Portal of scientific journals of CroatiaJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022 . Peer-reviewedData sources: CrossrefJournal of Sustainable Development of Energy, Water and Environment SystemsArticleLicense: CC BYData sources: UnpayWallJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13044/j.sdewes.d9.0387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Ivonne Angelica Castiblanco Jimenez; Stefano Mauro; Domenico Napoli; Federica Marcolin; +4 AuthorsIvonne Angelica Castiblanco Jimenez; Stefano Mauro; Domenico Napoli; Federica Marcolin; Enrico Vezzetti; Maria Camila Rojas Torres; Stefania Specchia; Sandro Moos;The development of new methods for the correct disposal of waste is unavoidable for any city that aims to become eco-friendly. Waste management is no exception. In the modern era, the treatment and disposal of infectious waste should be seen as an opportunity to generate renewable energy, resource efficiency, and, above all, to improve the population’s quality of life. Northern Italy currently produces 66,600 tons/year of infectious waste, mostly treated through incineration plants. This research aims to explore a more ecological and sustainable solution, thereby contributing one more step toward achieving better cities for all. Particularly, this paper presents a conceptual design of the main sterilization chamber for infectious waste. The methodology selected was Design Thinking (DT), since it has a user-centered approach which allows for co-design and the inclusion of the target population. This study demonstrates to the possibility of obtaining feasible results based on the user’s needs through the application of DT as a framework for engineering design.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics10212665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics10212665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Parviz Samadof; Davide Astiaso Garcia; Alireza Mahmoudan; Siamak Hosseinzadeh;Abstract A novel integrated energy system based on a geothermal heat source and a liquefied natural gas heat sink is proposed in this study for providing heating, cooling, electricity power, and drinking water simultaneously. The arrangement is a cascade incorporating a flash-binary geothermal system, a regenerative organic Rankine cycle, a simple organic Rankine cycle, a vapor compression refrigeration cycle, a regasification unit, and a reverse osmosis desalination system. Energy, exergy, and exergoeconomic methods are employed to analyze the suggested system. A parametric study based on decision variables is carried out to better assess the system performance. Four different multi-objective optimization problems are also carried out. At the most excellent trade-off solution specified by the TOPSIS method, the system attains 29.15% exergy efficiency and 1.512 $/GJ total product cost per exergy unit. The main output products are consequently calculated to be 101.07 kg/s cooling water, 570.44 kW net output power, and 81.57 kg/s potable water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Md. Shahadat Hossain; Tahmid Ul Karim; Mahade Hassan Onik; Deepak Kumar; Md Anisur Rahman; Abu Yousuf; M. Rakib Uddin;pmid: 35418699
pmc: PMC9007994
AbstractThis study is aimed to apply dry anaerobic digestion (DAD) for methane (CH4) enriched biogas production from unsorted organic municipal solid waste (MSW). Cumulative biogas production was monitored for 35 days of operation in batch digesters at fixed feedstock to inoculum (F/I) ratio 2. Anaerobic sludge (AS) and cow manure (CM) were used as inoculum in single and mixed modes. Several process parameters such as inoculum flow pattern (single layer, multilayer, and spiral), digestion temperature (25 to 40 °C), inoculation modes (single and mixed mode), and inoculation proportion (AS:CM = 1:1, 1:2, 1:3, and 2:1) were investigated to determine the optimum DAD conditions to maximize the CH4 laden biogas yield. The study of inoculum flow pattern showed that digester with multilayer inoculum configuration generated the maximum 555 mL cumulative biogas with the production rate of 195 mL/day (at 25 °C). Biogas production rate and cumulative biogas production were found to increase with a rise in temperature and the maximum values of 380 mL/day and 1515 mL respectively were observed at 37 °C. The mixed mode of inoculation containing AS and CM augmented the biogas yield at previously optimized conditions. Final results showed that digester with multilayer inoculum flow pattern at 37 °C produced 1850 mL cumulative biogas with 1256.58 mL CH4/kg volatile solid (VS) when the mixed inoculum was used at the AS:CM—1:2 ratio. Biogas production with this significant amount of CH4 justifies the use of the DAD process for energy (biogas) generation from widely available biomass feedstock (MSW), offering various advantages to the environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-10025-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-10025-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Giovanna Battipaglia; Francesco Niccoli; Jerzy Piotr Kabala; Rossana Marzaioli; Teresa Di Santo; Sandro Strumia; Simona Castaldi; Milena Petriccione; Lucio Zaccariello; Daniele Battaglia; Maria Laura Mastellone; Elio Coppola; Flora Angela Rutigliano;doi: 10.3390/f14040658
Hydrochar, carbon-rich material produced during the thermochemical processing of biomass, is receiving increased attention due to its potential value as soil amendment. It can increase agroforestry systems’ productivity through direct and indirect effects on growth and soil quality. Hydrochar may also directly help mitigate climate change by sequestering stable carbon compounds in the soil and perhaps indirectly through increased C uptake by trees. In this research, we aim to evaluate how the application of hydrochar produced by two feedstock types, Cynara cardunculus L. (Hc) residuals and sewage sludge (Hs), and in two different doses (3 and 6 kg m−2) could improve the growth and water use efficiency of Populus alba L., a fast-growing tree species largely used in agroforestry as bioenergy crops and in C sequestration. We considered five plants per treatment, and we measured apical growth, secondary growth, leaf area and intrinsic water use efficiency in each plant for the whole growing season from February to October 2022. Our results highlighted that hydrochar applications stimulate the growth and water use efficiency of plants and that the double dose (6 kg m−2) of both hydrochars, and particularly Hc, had positive effects on plant performance, especially during extremely hot periods. Indeed, the year 2022 was characterized by a heat wave during the summer period, and this condition allowed us to evaluate how plants, growing in soils amended with hydrochar, could perform under climate extremes. Our findings showed that the control plants experienced severe damage in terms of dried stems and dried leaves during summer 2022, while hydrochar applications reduced these effects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f14040658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f14040658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Michela Lucian; Fabio Merzari; Michele Gubert; Antonio Messineo; Maurizio Volpe;doi: 10.3390/su13169343
Hydrothermal carbonization (HTC) provides an attractive alternative method for the treatment of high-moisture waste and, in particular, digested sludge. HTC could reduce the costs and environmental risks associated with sludge handling and management. Although it is recognized that the dewaterability of hydrochars produced from digested sludge, even at mild temperatures (180–190 °C), is highly improved with respect to the starting material, the filterability of HTC slurries for the recovery of the solid material (hydrochar) still represents a challenge. This study presents the results of an investigation into the filterability of agro-industrial digested sludge HTC slurries produced by a C-700 CarboremTM HTC industrial-scale plant. The filterability of HTC slurries, produced at 190 °C for 1 h, with the use of acid solutions of hydrochloric acid, sulfuric acid or citric acids, was investigated by using a semi-industrial filter press. The use of sulfuric acid or citric acid solutions, in particular, significantly improved the filterability of HTC slurries, reducing the time of filtration and residual moisture content. The acid treatment also promoted the migration of heavy metals and phosphorus (P) in the HTC filtrate solution. This study demonstrates that P can be recovered via the precipitation of struvite in high yields, recovering up to 85 wt% by mass of its initial P content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Mehrdad Mashkour; Mehrdad Mashkour; Mahdi Mashkour; Mostafa Rahimnejad; Francesca Soavi;Abstract Economically harvesting energy from a microbial fuel cell (MFC), increasing its electrical power production, and developing its role as a practical energy supply, needs a low-cost and high-performance design of the MFC compartments. According to this strategy, a novel monolithic membrane electrode assembly (MEA) was fabricated and evaluated as an air–cathode in a single-chamber MFC (SCMFC). The MEA was made of bacterial cellulose (BC), conductive multi-walled carbon nanotubes (CNT), and nano-zycosil (NZ). BC, as a nano-celluloses with oxygen barrier property, can maintain anaerobic conditions for the anode compartment. Binder-less CNT coating on BC avoids costly binders such as poly-tetra fluoro ethylene (PTFE) and Nafion and decreases the MEA charge transfer resistance. NZ, as a very cheap modifier, not only prevents the anolyte leakage but also provides more MEA’s active sites for the oxygen reduction reaction (ORR). The electrochemical performance of the MEA was compared to a PTFE- based gas diffusion electrode (GDE) in the SCMFC. The MEA cell provided a pulse power density of 1790 mW/m2, roughly twice as high as the pulse power density of GDE (920 mW/m2). SCMFC’s internal resistance decreased from 1.84 KΩ (with GDE) to 0.8 KΩ (with MEA). Also, the cell’s columbic efficiency increased from 4.2% (with GDE) to11.7% (with MEA). Additionally, the capacitance of the MEA (65 mF) was much higher than the value for GDE (0.73 mF). Thus, the MEA compared to the GDE showed higher performance in the SCMFC for electricity generation and wastewater treatment at a lower cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 36 citations 36 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Pappis, Ioannis; Sridharan, Vignesh; Howells, Mark; Medarac, Hrvoje; Kougias, Ioannis; Sánchez, G. Rocío; Shivakumar, Abhishek; Usher, Will;This dataset underpins the study "Synergies and conflicts of energy development and water security in Africa". The study provides insights into energy supply and demand, power generation, investments and total system costs, water consumption and withdrawal as well as carbon dioxide emissions for the African continent. We developed a model to evaluate energy supply and water requirements to cover the energy needs of the African continent during the period 2015-2065. The model was developed using the open-source modeling system for long-term energy planning OSeMOSYS. The objective function is to minimise total energy system costs, rather than, for example, co-optimise the energy and water sectors. Other energy resources were also included in the model except for adding the water analysis, and the dataset was updated based on the latest available information. The OSeMOSYS model developed to conduct the study “Energy projections for African countries”, itself extended from the Electricity Model Base for Africa (TEMBA), was further extended, included exports for all fuels, water loss due to evaporation in hydropower plants and more scenarios examined. Furthermore, the latest available data on the energy system of Africa was also updated. The TEMBA model produces aggregate energy, and detailed power system results in each country in the African continent. The power sector results are also reported with power pool aggregation. The OSeMOSYS model and input data used to produce these results can be found at KTH-dESA/jrc_temba: TEMBA 2.1 (Version v2.1) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4889373 (Authors: Ioannis Pappis, Vignesh Sridharan, Will Usher, & Mark Howells. (2021). The initial study was funded by the Joint Research Centre of the European Commission (contract number C936531 - JRC/PTT/2018/C.7/0038/NC).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3882052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 80visibility views 80 download downloads 10 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3882052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Authors: Marco Dettori; Carla Cesaraccio; Pierpaolo Duce; Valentina Mereu;With an approach combining crop modelling and biotechnology to assess the performance of three durum wheat cultivars (Creso, Duilio, Simeto) in a climate change context, weather and agronomic datasets over the period 1973–2004 from two sites, Benatzu and Ussana (Southern Sardinia, Itay), were used and the model responses were interpreted considering the role of DREB genes in the genotype performance with a focus on drought conditions. The CERES-Wheat crop model was calibrated and validated for grain yield, earliness and kernel weight. Forty-eight synthetic scenarios were used: 6 scenarios with increasing maximum air temperature; 6 scenarios with decreasing rainfall; 36 scenarios combining increasing temperature and decreasing rainfall. The simulated effects on yields, anthesis and kernel weights resulted in yield reduction, increasing kernel weight, and shortened growth duration in both sites. Creso (late cultivar) was the most sensitive to simulated climate conditions. Simeto and Duilio (early cultivars) showed lower simulated yield reductions and a larger anticipation of anthesis date. Observed data showed the same responses for the three cultivars in both sites. The CERES-Wheat model proved to be effective in representing reality and can be used in crop breeding programs with a molecular approach aiming at developing molecular markers for the resistance to drought stress.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/genes13030488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/genes13030488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Isabella Pecorini; Elena Rossi; Simone Becarelli; Francesco Baldi; Simona Di Gregorio; Renato Iannelli;doi: 10.3390/su15043168
Dark fermentation (DF) is a simple method for hydrogen (H2) production through the valorization of various organic wastes that can be used as feedstock. In particular, an organic fraction of municipal solid waste (OFMSW) is a fermentation substrate that can easily be gathered and provides high yields in biogas and value-added organic compounds such as volatile fatty acids (VFAs). DF is coupled with a methanogenic reactor to enhance biogas production from the OFMSW. In this study, a two-stage reactor was conducted and monitored to optimize the methane yield by reducing the HRT at the DF reactor. A focus of the functional inference based on a next-generation sequence (NGS) metabarcoding analysis and comparison of microbial communities that populate each reactor stage was performed. Concerning gas quality, the two-stage system observed a hydrogen-rich biogas in the first fermentative reactor (on average 20.2%) and an improvement in the methane content in the second methanogenic digester, which shifted from 61.2% obtained for the one-stage experiment to 73.5%. Such increases were due to the improvement in substrate hydrolysis. As for the specific biogas production, the results showed an overall increase of 50%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15043168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15043168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 CroatiaPublisher:SDEWES Centre Authors: Hamed, Tareq A.; Alshare, Aiman;The global energy demand is growing substantially. Clean and secure energy supply is a must for our civilization's sustainable development. Solar and wind energy is growing fast and can contribute significantly to meet the goals set by many countries to reduce greenhouse gas emissions. A deep and wide investigation of the environmental impact of solar and wind energy is important before any solar or wind plants' construction is made. In this study, the literature is reviewed to summarize the environmental impact of solar and wind energy systems in terms of the following factors; land use, water consumption, impact on biodiversity, visual and noise effects, health issues, and impact on micro climate. Although the benefits of solar and wind energy are obvious and great, negative perception of these technologies can inhibit their wide penetration in some regions. This review paper includes a critical and an inclusive analysis of solar and wind energy’s environmental impact and may serve as an important tool to conduct a proper environmental impact assessment. This critical analysis may serve also as a tool for developers, policy, and decision-when planning future solar and wind farms.
Journal of Sustainab... arrow_drop_down Journal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022Full-Text: https://hrcak.srce.hr/file/398628Data sources: HRČAK - Portal of scientific journals of CroatiaJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022 . Peer-reviewedData sources: CrossrefJournal of Sustainable Development of Energy, Water and Environment SystemsArticleLicense: CC BYData sources: UnpayWallJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13044/j.sdewes.d9.0387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Sustainab... arrow_drop_down Journal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022Full-Text: https://hrcak.srce.hr/file/398628Data sources: HRČAK - Portal of scientific journals of CroatiaJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022 . Peer-reviewedData sources: CrossrefJournal of Sustainable Development of Energy, Water and Environment SystemsArticleLicense: CC BYData sources: UnpayWallJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13044/j.sdewes.d9.0387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Ivonne Angelica Castiblanco Jimenez; Stefano Mauro; Domenico Napoli; Federica Marcolin; +4 AuthorsIvonne Angelica Castiblanco Jimenez; Stefano Mauro; Domenico Napoli; Federica Marcolin; Enrico Vezzetti; Maria Camila Rojas Torres; Stefania Specchia; Sandro Moos;The development of new methods for the correct disposal of waste is unavoidable for any city that aims to become eco-friendly. Waste management is no exception. In the modern era, the treatment and disposal of infectious waste should be seen as an opportunity to generate renewable energy, resource efficiency, and, above all, to improve the population’s quality of life. Northern Italy currently produces 66,600 tons/year of infectious waste, mostly treated through incineration plants. This research aims to explore a more ecological and sustainable solution, thereby contributing one more step toward achieving better cities for all. Particularly, this paper presents a conceptual design of the main sterilization chamber for infectious waste. The methodology selected was Design Thinking (DT), since it has a user-centered approach which allows for co-design and the inclusion of the target population. This study demonstrates to the possibility of obtaining feasible results based on the user’s needs through the application of DT as a framework for engineering design.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics10212665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics10212665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Parviz Samadof; Davide Astiaso Garcia; Alireza Mahmoudan; Siamak Hosseinzadeh;Abstract A novel integrated energy system based on a geothermal heat source and a liquefied natural gas heat sink is proposed in this study for providing heating, cooling, electricity power, and drinking water simultaneously. The arrangement is a cascade incorporating a flash-binary geothermal system, a regenerative organic Rankine cycle, a simple organic Rankine cycle, a vapor compression refrigeration cycle, a regasification unit, and a reverse osmosis desalination system. Energy, exergy, and exergoeconomic methods are employed to analyze the suggested system. A parametric study based on decision variables is carried out to better assess the system performance. Four different multi-objective optimization problems are also carried out. At the most excellent trade-off solution specified by the TOPSIS method, the system attains 29.15% exergy efficiency and 1.512 $/GJ total product cost per exergy unit. The main output products are consequently calculated to be 101.07 kg/s cooling water, 570.44 kW net output power, and 81.57 kg/s potable water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Md. Shahadat Hossain; Tahmid Ul Karim; Mahade Hassan Onik; Deepak Kumar; Md Anisur Rahman; Abu Yousuf; M. Rakib Uddin;pmid: 35418699
pmc: PMC9007994
AbstractThis study is aimed to apply dry anaerobic digestion (DAD) for methane (CH4) enriched biogas production from unsorted organic municipal solid waste (MSW). Cumulative biogas production was monitored for 35 days of operation in batch digesters at fixed feedstock to inoculum (F/I) ratio 2. Anaerobic sludge (AS) and cow manure (CM) were used as inoculum in single and mixed modes. Several process parameters such as inoculum flow pattern (single layer, multilayer, and spiral), digestion temperature (25 to 40 °C), inoculation modes (single and mixed mode), and inoculation proportion (AS:CM = 1:1, 1:2, 1:3, and 2:1) were investigated to determine the optimum DAD conditions to maximize the CH4 laden biogas yield. The study of inoculum flow pattern showed that digester with multilayer inoculum configuration generated the maximum 555 mL cumulative biogas with the production rate of 195 mL/day (at 25 °C). Biogas production rate and cumulative biogas production were found to increase with a rise in temperature and the maximum values of 380 mL/day and 1515 mL respectively were observed at 37 °C. The mixed mode of inoculation containing AS and CM augmented the biogas yield at previously optimized conditions. Final results showed that digester with multilayer inoculum flow pattern at 37 °C produced 1850 mL cumulative biogas with 1256.58 mL CH4/kg volatile solid (VS) when the mixed inoculum was used at the AS:CM—1:2 ratio. Biogas production with this significant amount of CH4 justifies the use of the DAD process for energy (biogas) generation from widely available biomass feedstock (MSW), offering various advantages to the environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-10025-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-10025-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu