- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- JP
- Leibniz Association
- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- JP
- Leibniz Association
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSHaberl, Helmut; Wiedenhofer, Dominik; Schug, Franz; Frantz, David; Virag, Doris; Plutzar, Christoph; Gruhler, Karin; Lederer, Jakob; Schiller, Georg; Fishman, Tomer; Lanau, Maud; Gattringer, Andreas; Kemper, Thomas; Liu, Gang; Tanikawa, Hiroki; van der Linden, Sebastian; Hostert, Patrick;Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures. This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Temporal extent The map is representative for ca. 2018. Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. The dataset features area and mass for different street types area and mass for different rail types area and mass for other infrastructure area, volume and mass for different building types Masses are reported as total values, and per material category. Units area in m² height in m volume in m³ mass in t for infrastructure and buildings Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 586visibility views 586 download downloads 70 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 13 Oct 2022 Germany, Germany, India, Japan, IndiaPublisher:IOP Publishing Funded by:EC | CD-LINKSEC| CD-LINKSAuthors: Shinichiro Fujimori; Shinichiro Fujimori; Swapnil Shekhar; Saritha Vishwanathan; +10 AuthorsShinichiro Fujimori; Shinichiro Fujimori; Swapnil Shekhar; Saritha Vishwanathan; Johannes Emmerling; Ritu Mathur; Gunnar Luderer; Mark Roelfsema; Zoi Vrontisi; Amit Garg; Christoph Bertram; Jacques Després; Elmar Kriegler; Aman Malik;handle: 2433/255255 , 11718/25358
Abstract Cost-effective achievement of the Paris Agreement’s long-term goals requires the unanimous phase-out of coal power generation by mid-century. However, continued investments in coal power plants will make this transition difficult. India is one of the major countries with significant under construction and planned increase in coal power capacity. To ascertain the likelihood and consequences of the continued expansion of coal power for India’s future mitigation options, we use harmonised scenario results from national and global models along with projections from various government reports. Both these approaches estimate that coal capacity is expected to increase until 2030, along with rapid developments in wind and solar power. However, coal capacity stranding of the order of 133–237 GW needs to occur after 2030 if India were to pursue an ambitious climate policy in line with a well-below 2 °C target. Earlier policy strengthening starting after 2020 can reduce stranded assets (14–159 GW) but brings with it political economy and renewable expansion challenges. We conclude that a policy limiting coal plants to those under construction combined with higher solar targets could be politically feasible, prevent significant stranded capacity, and allow higher mitigation ambition in the future.
Publication Database... arrow_drop_down IIMA Institutional Repository (Indian Institute of Management)Article . 2020License: CC BYFull-Text: https://www.doi.org/10.1088/1748-9326/ab8033Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab8033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publication Database... arrow_drop_down IIMA Institutional Repository (Indian Institute of Management)Article . 2020License: CC BYFull-Text: https://www.doi.org/10.1088/1748-9326/ab8033Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab8033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Andreas Löschel; Andreas Löschel; Andreas Löschel; Shunsuke Managi; Chu Wei;Abstract The continuously accelerating global energy demand leads to increased public concern about climate change. The international community expects China, the world's largest energy consumer, to play a leading role in the energy transition, especially since the United States has withdrawn from the Paris Agreement. This special issue on “Energy Demand in Emerging and Developing Economies: Measurement, Policy Interventions and Evaluation” improves international understanding of the patterns of energy demand in China by presenting recent experimental and empirical research following the Beijing Energy Conference in 2018. The main purpose of this introductory article is to present recent research advances by summarizing new findings and insights from this special issue, combined with recent literature. It shows that China's rising energy demand and energy transition practices have led to numerous policy interventions, which provides rich observational data on behavioral change and offers an “experimental window” with large opportunities for scholars. Beyond the traditional topics of residential and industrial energy demand and its drivers, an increasing number of studies focuses on energy policy evaluation or quantify the environmental and climate consequences of energy consumption. This new line of research, supported by policy-oriented model-based quantitative analyses, experimental approaches and econometric analyses using multi-source disaggregated data, offers new insights into various aspects of China's energy demand.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chieco.2020.101517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chieco.2020.101517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Germany, United Kingdom, Germany, JapanPublisher:IOP Publishing Dan Tong; Shinichiro Fujimori; Shinichiro Fujimori; Shinichiro Fujimori; Johannes Emmerling; Robert Fofrich; Oliver Fricko; Gunnar Luderer; Gunnar Luderer; Joeri Rogelj; Joeri Rogelj; Steven J. Davis; Harmen Sytze de Boer; Harmen Sytze de Boer; Katherine Calvin;handle: 2433/255250 , 10044/1/83047
Abstract International efforts to avoid dangerous climate change aim for large and rapid reductions of fossil fuel CO2 emissions worldwide, including nearly complete decarbonization of the electric power sector. However, achieving such rapid reductions may depend on early retirement of coal- and natural gas-fired power plants. Here, we analyze future fossil fuel electricity demand in 171 energy-emissions scenarios from Integrated Assessment Models (IAMs), evaluating the implicit retirements and/or reduced operation of generating infrastructure. Although IAMs calculate retirements endogenously, the structure and methods of each model differ; we use a standard approach to infer retirements in outputs from all six major IAMs and—unlike the IAMs themselves—we begin with the age distribution and region-specific operating capacities of the existing power fleet. We find that coal-fired power plants in scenarios consistent with international climate targets (i.e. keeping global warming well-below 2 °C or 1.5 °C) retire one to three decades earlier than historically has been the case. If plants are built to meet projected fossil electricity demand and instead allowed to operate at the level and over the lifetimes they have historically, the roughly 200 Gt CO2 of additional emissions this century would be incompatible with keeping global warming well-below 2 °C. Thus, ambitious climate mitigation scenarios entail drastic, and perhaps un-appreciated, changes in the operating and/or retirement schedules of power infrastructure.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/83047Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab96d3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 34 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/83047Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab96d3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | CD-LINKSEC| CD-LINKSChristoph Bertram; Toshihiko Masui; Keii Gi; Shinichiro Fujimori; Shinichiro Fujimori; Shinichiro Fujimori; Zoi Vrontisi; Ken Oshiro; Jacques Després; Pedro Rochedo; Mark Roelfsema; Heleen van Soest; Heleen van Soest;Abstract This study assesses Japan’s mid-century low-emission pathways using both national and global integrated assessment models in the common mitigation scenario framework, based on the carbon budgets corresponding to the global 2 °C goal. We examine high and low budgets, equal to global cumulative 1600 and 1000 Gt-CO2 (2011–2100) for global models, and 36 and 31 Gt-CO2 (2011–2050) in Japan for national models, based on the cost-effectiveness allocation performed by the global models. The impacts of near-term policy assumption, including the implementation and enhancement of the 2030 target of the nationally determined contribution (NDC), are also considered. Our estimates show that the low budget scenarios require a 75% reduction of CO2 emissions by 2050 below the 2010 level, which is nearly the same as Japan’s governmental 2050 goal of reducing greenhouse gas emissions by 80%. With regard to near-term actions, Japan’s 2030 target included in the NDC is on track to meet the high budget scenario, whereas it is falling short for the low budget scenario, which would require emission reductions immediately after 2020. Whereas models differ in the type of energy source on which they foresee Japan basing its decarbonization process (e.g., nuclear- or variable renewable energy-dependent), the large-scale deployment of low-carbon energy (nuclear, renewable, and carbon capture and storage) is shared across most models in both the high and low budget scenarios. By 2050, low-carbon energy represents 44–54% of primary energy and 86–97% of electricity supply in the high and low budget scenarios, respectively.
Publication Database... arrow_drop_down IIASA DAREArticle . 2019License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/16018/1/Oshiro2019_Article_Mid-centuryEmissionPathwaysInJ.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-019-02490-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publication Database... arrow_drop_down IIASA DAREArticle . 2019License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/16018/1/Oshiro2019_Article_Mid-centuryEmissionPathwaysInJ.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-019-02490-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 France, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | SIZEEC| SIZEStefan Frank; Vassilis Daioglou; Vassilis Daioglou; Thierry Brunelle; Pekka Lauri; Zoran J. N. Steinmann; Tomoko Hasegawa; Tomoko Hasegawa; Alexander Popp; Steef V. Hanssen; Detlef P. van Vuuren; Detlef P. van Vuuren; Mark A. J. Huijbregts; Mark A. J. Huijbregts;AbstractIn the twenty-first century, modern bioenergy could become one of the largest sources of energy, partially replacing fossil fuels and contributing to climate change mitigation. Agricultural and forestry biomass residues form an inexpensive bioenergy feedstock with low greenhouse gas (GHG) emissions, if harvested sustainably. We analysed quantities of biomass residues supplied for energy and their sensitivities in harmonised bioenergy demand scenarios across eight integrated assessment models (IAMs) and compared them with literature-estimated residue availability. IAM results vary substantially, at both global and regional scales, but suggest that residues could meet 7–50% of bioenergy demand towards 2050, and 2–30% towards 2100, in a scenario with 300 EJ/year of exogenous bioenergy demand towards 2100. When considering mean literature-estimated availability, residues could provide around 55 EJ/year by 2050. Inter-model differences primarily arise from model structure, assumptions, and the representation of agriculture and forestry. Despite these differences, drivers of residues supplied and underlying cost dynamics are largely similar across models. Higher bioenergy demand or biomass prices increase the quantity of residues supplied for energy, though their effects level off as residues become depleted. GHG emission pricing and land protection can increase the costs of using land for lignocellulosic bioenergy crop cultivation, which increases residue use at the expense of lignocellulosic bioenergy crops. In most IAMs and scenarios, supplied residues in 2050 are within literature-estimated residue availability, but outliers and sustainability concerns warrant further exploration. We conclude that residues can cost-competitively play an important role in the twenty-first century bioenergy supply, though uncertainties remain concerning (regional) forestry and agricultural production and resulting residue supply potentials.
IIASA DARE arrow_drop_down IIASA DAREArticle . 2019License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/16068/1/Hanssen2019_Article_BiomassResiduesAsTwenty-firstC.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-019-02539-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down IIASA DAREArticle . 2019License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/16068/1/Hanssen2019_Article_BiomassResiduesAsTwenty-firstC.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-019-02539-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 GermanyPublisher:Wiley Fischer-Kowalski, M.; Krausmann, F.; Giljum, S.; Lutter, S.; Mayer, A.; Bringezu, S.; Moriguchi, Y.; Schütz, H.; Schandl, H.; Weisz, H.;Summary This contribution presents the state of the art of economywide material flow accounting. Starting from a brief recollection of the intellectual and policy history of this approach, we outline system definition, key methodological assumptions, and derived indicators. The next section makes an effort to establish data reliability and uncertainty for a number of existing multinational (European and global) material flow accounting (MFA) data compilations and discusses sources of inconsistencies and variations for some indicators and trends. The results show that the methodology has reached a certain maturity: Coefficients of variation between databases lie in the range of 10% to 20%, and correlations between databases across countries amount to an average R 2 of 0.95. After discussing some of the research frontiers for further methodological development, we conclude that the material flow accounting framework and the data generated have reached a maturity that warrants material flow indicators to complement traditional economic and demographic information in providing a sound basis for discussing national and international policies for sustainable resource use.
Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-9290.2011.00366.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 381 citations 381 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-9290.2011.00366.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, Germany, NetherlandsPublisher:Elsevier BV Funded by:EC | PATHWAYS, EC | ADVANCE, EC | LUC4CEC| PATHWAYS ,EC| ADVANCE ,EC| LUC4CBrian C. O'Neill; Tomoko Hasegawa; Detlef P. van Vuuren; Alexander Popp; Shinichiro Fujimori; Petr Havlik; Giacomo Marangoni; Tom Kram; Hermann Lotze-Campen; Hermann Lotze-Campen; Florian Humpenöder; Gunnar Luderer; Massimo Tavoni; Massimo Tavoni; David E.H.J. Gernaat; Johannes Emmerling; Kiyoshi Takahashi; Steve Smith; Mathijs Harmsen; Valentina Bosetti; Valentina Bosetti; Jessica Strefler; Andrzej Tabeau; Joeri Rogelj; Jiyong Eom; Jiyong Eom; Samir Kc; Samir Kc; Leiwen Jiang; Katherine Calvin; Kristie L. Ebi; Mikiko Kainuma; Jesus Crespo Cuaresma; Rob Dellink; Lavinia Baumstark; Wolfgang Lutz; Toshihiko Masui; Marian Leimbach; Lara Aleluia Da Silva; Laurent Drouet; Oliver Fricko; Nico Bauer; Jae Edmonds; Michael Obersteiner; Volker Krey; Zbigniew Klimont; Shilpa Rao; Elke Stehfest; Keywan Riahi; Elmar Kriegler; Jonathan C. Doelman;handle: 10044/1/78069
This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/78069Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4K citations 3,592 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 12visibility views 12 download downloads 623 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/78069Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Royal Society of Chemistry (RSC) Hujun Cao; Claudio Pistidda; Maria Victoria Castro Riglos; Anna-Lisa Chaudhary; Giovanni Capurso; Jo-Chi Tseng; Julián Puszkiel; Michael T. Wharmby; Thomas Gemming; Ping Chen; Thomas Klassen; Martin Dornheim;doi: 10.1039/c9se01284b
A new route to synthesize the Mg(NH2)2–2LiH composite is proposed starting from magnesium waste alloy and LiH, after a multi-step treatment. This is an effective way to convert magnesium waste into light weight hydrogen storage materials.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se01284b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se01284b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020Publisher:MDPI AG P. Muthukumar; B. Kiran Naik; B. Kiran Naik; Redmond R. Shamshiri; Mullapudi Joshi; Muhammad Sultan; Takahiko Miyazaki; Hadeed Ashraf;doi: 10.3390/su122410582
This study reports on the investigation of the performance of single and two-stage liquid and solid desiccant dehumidification systems and two-stage combined liquid and solid desiccant dehumidification systems with reference to humid climates. The research focus is on a dehumidification system capacity of 25 kW designed for room air conditioning application using the thermal models reported in the literature. RD-type silica gel and LiCl are used as solid and liquid desiccant materials, respectively. In this study, the application of proposed system for deep drying application is also explored. Condensation rate and moisture removal efficiency are chosen as performance parameters for room air conditioning application, whereas air outlet temperature is chosen as performance parameter for deep drying application. Further, for a given range of operating parameters, influences of air inlet humidity ratio, flow rate, and inlet temperature on performance parameters of the systems are investigated. In humid climatic conditions, it has been observed that a two-stage liquid desiccant dehumidification system is more effective for room air conditioning application, and two-stage solid desiccant dehumidification system is more suitable for deep drying application in the temperature range of 50 to 70 °C, while single-stage solid desiccant and two-stage combined liquid and solid desiccant dehumidification systems are more effective for low temperature, i.e., 30 to 50 °C deep drying application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su122410582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su122410582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSHaberl, Helmut; Wiedenhofer, Dominik; Schug, Franz; Frantz, David; Virag, Doris; Plutzar, Christoph; Gruhler, Karin; Lederer, Jakob; Schiller, Georg; Fishman, Tomer; Lanau, Maud; Gattringer, Andreas; Kemper, Thomas; Liu, Gang; Tanikawa, Hiroki; van der Linden, Sebastian; Hostert, Patrick;Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures. This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Temporal extent The map is representative for ca. 2018. Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. The dataset features area and mass for different street types area and mass for different rail types area and mass for other infrastructure area, volume and mass for different building types Masses are reported as total values, and per material category. Units area in m² height in m volume in m³ mass in t for infrastructure and buildings Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 586visibility views 586 download downloads 70 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 13 Oct 2022 Germany, Germany, India, Japan, IndiaPublisher:IOP Publishing Funded by:EC | CD-LINKSEC| CD-LINKSAuthors: Shinichiro Fujimori; Shinichiro Fujimori; Swapnil Shekhar; Saritha Vishwanathan; +10 AuthorsShinichiro Fujimori; Shinichiro Fujimori; Swapnil Shekhar; Saritha Vishwanathan; Johannes Emmerling; Ritu Mathur; Gunnar Luderer; Mark Roelfsema; Zoi Vrontisi; Amit Garg; Christoph Bertram; Jacques Després; Elmar Kriegler; Aman Malik;handle: 2433/255255 , 11718/25358
Abstract Cost-effective achievement of the Paris Agreement’s long-term goals requires the unanimous phase-out of coal power generation by mid-century. However, continued investments in coal power plants will make this transition difficult. India is one of the major countries with significant under construction and planned increase in coal power capacity. To ascertain the likelihood and consequences of the continued expansion of coal power for India’s future mitigation options, we use harmonised scenario results from national and global models along with projections from various government reports. Both these approaches estimate that coal capacity is expected to increase until 2030, along with rapid developments in wind and solar power. However, coal capacity stranding of the order of 133–237 GW needs to occur after 2030 if India were to pursue an ambitious climate policy in line with a well-below 2 °C target. Earlier policy strengthening starting after 2020 can reduce stranded assets (14–159 GW) but brings with it political economy and renewable expansion challenges. We conclude that a policy limiting coal plants to those under construction combined with higher solar targets could be politically feasible, prevent significant stranded capacity, and allow higher mitigation ambition in the future.
Publication Database... arrow_drop_down IIMA Institutional Repository (Indian Institute of Management)Article . 2020License: CC BYFull-Text: https://www.doi.org/10.1088/1748-9326/ab8033Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab8033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publication Database... arrow_drop_down IIMA Institutional Repository (Indian Institute of Management)Article . 2020License: CC BYFull-Text: https://www.doi.org/10.1088/1748-9326/ab8033Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab8033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Andreas Löschel; Andreas Löschel; Andreas Löschel; Shunsuke Managi; Chu Wei;Abstract The continuously accelerating global energy demand leads to increased public concern about climate change. The international community expects China, the world's largest energy consumer, to play a leading role in the energy transition, especially since the United States has withdrawn from the Paris Agreement. This special issue on “Energy Demand in Emerging and Developing Economies: Measurement, Policy Interventions and Evaluation” improves international understanding of the patterns of energy demand in China by presenting recent experimental and empirical research following the Beijing Energy Conference in 2018. The main purpose of this introductory article is to present recent research advances by summarizing new findings and insights from this special issue, combined with recent literature. It shows that China's rising energy demand and energy transition practices have led to numerous policy interventions, which provides rich observational data on behavioral change and offers an “experimental window” with large opportunities for scholars. Beyond the traditional topics of residential and industrial energy demand and its drivers, an increasing number of studies focuses on energy policy evaluation or quantify the environmental and climate consequences of energy consumption. This new line of research, supported by policy-oriented model-based quantitative analyses, experimental approaches and econometric analyses using multi-source disaggregated data, offers new insights into various aspects of China's energy demand.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chieco.2020.101517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chieco.2020.101517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Germany, United Kingdom, Germany, JapanPublisher:IOP Publishing Dan Tong; Shinichiro Fujimori; Shinichiro Fujimori; Shinichiro Fujimori; Johannes Emmerling; Robert Fofrich; Oliver Fricko; Gunnar Luderer; Gunnar Luderer; Joeri Rogelj; Joeri Rogelj; Steven J. Davis; Harmen Sytze de Boer; Harmen Sytze de Boer; Katherine Calvin;handle: 2433/255250 , 10044/1/83047
Abstract International efforts to avoid dangerous climate change aim for large and rapid reductions of fossil fuel CO2 emissions worldwide, including nearly complete decarbonization of the electric power sector. However, achieving such rapid reductions may depend on early retirement of coal- and natural gas-fired power plants. Here, we analyze future fossil fuel electricity demand in 171 energy-emissions scenarios from Integrated Assessment Models (IAMs), evaluating the implicit retirements and/or reduced operation of generating infrastructure. Although IAMs calculate retirements endogenously, the structure and methods of each model differ; we use a standard approach to infer retirements in outputs from all six major IAMs and—unlike the IAMs themselves—we begin with the age distribution and region-specific operating capacities of the existing power fleet. We find that coal-fired power plants in scenarios consistent with international climate targets (i.e. keeping global warming well-below 2 °C or 1.5 °C) retire one to three decades earlier than historically has been the case. If plants are built to meet projected fossil electricity demand and instead allowed to operate at the level and over the lifetimes they have historically, the roughly 200 Gt CO2 of additional emissions this century would be incompatible with keeping global warming well-below 2 °C. Thus, ambitious climate mitigation scenarios entail drastic, and perhaps un-appreciated, changes in the operating and/or retirement schedules of power infrastructure.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/83047Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab96d3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 34 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/83047Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab96d3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | CD-LINKSEC| CD-LINKSChristoph Bertram; Toshihiko Masui; Keii Gi; Shinichiro Fujimori; Shinichiro Fujimori; Shinichiro Fujimori; Zoi Vrontisi; Ken Oshiro; Jacques Després; Pedro Rochedo; Mark Roelfsema; Heleen van Soest; Heleen van Soest;Abstract This study assesses Japan’s mid-century low-emission pathways using both national and global integrated assessment models in the common mitigation scenario framework, based on the carbon budgets corresponding to the global 2 °C goal. We examine high and low budgets, equal to global cumulative 1600 and 1000 Gt-CO2 (2011–2100) for global models, and 36 and 31 Gt-CO2 (2011–2050) in Japan for national models, based on the cost-effectiveness allocation performed by the global models. The impacts of near-term policy assumption, including the implementation and enhancement of the 2030 target of the nationally determined contribution (NDC), are also considered. Our estimates show that the low budget scenarios require a 75% reduction of CO2 emissions by 2050 below the 2010 level, which is nearly the same as Japan’s governmental 2050 goal of reducing greenhouse gas emissions by 80%. With regard to near-term actions, Japan’s 2030 target included in the NDC is on track to meet the high budget scenario, whereas it is falling short for the low budget scenario, which would require emission reductions immediately after 2020. Whereas models differ in the type of energy source on which they foresee Japan basing its decarbonization process (e.g., nuclear- or variable renewable energy-dependent), the large-scale deployment of low-carbon energy (nuclear, renewable, and carbon capture and storage) is shared across most models in both the high and low budget scenarios. By 2050, low-carbon energy represents 44–54% of primary energy and 86–97% of electricity supply in the high and low budget scenarios, respectively.
Publication Database... arrow_drop_down IIASA DAREArticle . 2019License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/16018/1/Oshiro2019_Article_Mid-centuryEmissionPathwaysInJ.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-019-02490-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publication Database... arrow_drop_down IIASA DAREArticle . 2019License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/16018/1/Oshiro2019_Article_Mid-centuryEmissionPathwaysInJ.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-019-02490-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 France, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | SIZEEC| SIZEStefan Frank; Vassilis Daioglou; Vassilis Daioglou; Thierry Brunelle; Pekka Lauri; Zoran J. N. Steinmann; Tomoko Hasegawa; Tomoko Hasegawa; Alexander Popp; Steef V. Hanssen; Detlef P. van Vuuren; Detlef P. van Vuuren; Mark A. J. Huijbregts; Mark A. J. Huijbregts;AbstractIn the twenty-first century, modern bioenergy could become one of the largest sources of energy, partially replacing fossil fuels and contributing to climate change mitigation. Agricultural and forestry biomass residues form an inexpensive bioenergy feedstock with low greenhouse gas (GHG) emissions, if harvested sustainably. We analysed quantities of biomass residues supplied for energy and their sensitivities in harmonised bioenergy demand scenarios across eight integrated assessment models (IAMs) and compared them with literature-estimated residue availability. IAM results vary substantially, at both global and regional scales, but suggest that residues could meet 7–50% of bioenergy demand towards 2050, and 2–30% towards 2100, in a scenario with 300 EJ/year of exogenous bioenergy demand towards 2100. When considering mean literature-estimated availability, residues could provide around 55 EJ/year by 2050. Inter-model differences primarily arise from model structure, assumptions, and the representation of agriculture and forestry. Despite these differences, drivers of residues supplied and underlying cost dynamics are largely similar across models. Higher bioenergy demand or biomass prices increase the quantity of residues supplied for energy, though their effects level off as residues become depleted. GHG emission pricing and land protection can increase the costs of using land for lignocellulosic bioenergy crop cultivation, which increases residue use at the expense of lignocellulosic bioenergy crops. In most IAMs and scenarios, supplied residues in 2050 are within literature-estimated residue availability, but outliers and sustainability concerns warrant further exploration. We conclude that residues can cost-competitively play an important role in the twenty-first century bioenergy supply, though uncertainties remain concerning (regional) forestry and agricultural production and resulting residue supply potentials.
IIASA DARE arrow_drop_down IIASA DAREArticle . 2019License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/16068/1/Hanssen2019_Article_BiomassResiduesAsTwenty-firstC.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-019-02539-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down IIASA DAREArticle . 2019License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/16068/1/Hanssen2019_Article_BiomassResiduesAsTwenty-firstC.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-019-02539-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 GermanyPublisher:Wiley Fischer-Kowalski, M.; Krausmann, F.; Giljum, S.; Lutter, S.; Mayer, A.; Bringezu, S.; Moriguchi, Y.; Schütz, H.; Schandl, H.; Weisz, H.;Summary This contribution presents the state of the art of economywide material flow accounting. Starting from a brief recollection of the intellectual and policy history of this approach, we outline system definition, key methodological assumptions, and derived indicators. The next section makes an effort to establish data reliability and uncertainty for a number of existing multinational (European and global) material flow accounting (MFA) data compilations and discusses sources of inconsistencies and variations for some indicators and trends. The results show that the methodology has reached a certain maturity: Coefficients of variation between databases lie in the range of 10% to 20%, and correlations between databases across countries amount to an average R 2 of 0.95. After discussing some of the research frontiers for further methodological development, we conclude that the material flow accounting framework and the data generated have reached a maturity that warrants material flow indicators to complement traditional economic and demographic information in providing a sound basis for discussing national and international policies for sustainable resource use.
Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-9290.2011.00366.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 381 citations 381 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-9290.2011.00366.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, Germany, NetherlandsPublisher:Elsevier BV Funded by:EC | PATHWAYS, EC | ADVANCE, EC | LUC4CEC| PATHWAYS ,EC| ADVANCE ,EC| LUC4CBrian C. O'Neill; Tomoko Hasegawa; Detlef P. van Vuuren; Alexander Popp; Shinichiro Fujimori; Petr Havlik; Giacomo Marangoni; Tom Kram; Hermann Lotze-Campen; Hermann Lotze-Campen; Florian Humpenöder; Gunnar Luderer; Massimo Tavoni; Massimo Tavoni; David E.H.J. Gernaat; Johannes Emmerling; Kiyoshi Takahashi; Steve Smith; Mathijs Harmsen; Valentina Bosetti; Valentina Bosetti; Jessica Strefler; Andrzej Tabeau; Joeri Rogelj; Jiyong Eom; Jiyong Eom; Samir Kc; Samir Kc; Leiwen Jiang; Katherine Calvin; Kristie L. Ebi; Mikiko Kainuma; Jesus Crespo Cuaresma; Rob Dellink; Lavinia Baumstark; Wolfgang Lutz; Toshihiko Masui; Marian Leimbach; Lara Aleluia Da Silva; Laurent Drouet; Oliver Fricko; Nico Bauer; Jae Edmonds; Michael Obersteiner; Volker Krey; Zbigniew Klimont; Shilpa Rao; Elke Stehfest; Keywan Riahi; Elmar Kriegler; Jonathan C. Doelman;handle: 10044/1/78069
This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/78069Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4K citations 3,592 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 12visibility views 12 download downloads 623 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/78069Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Royal Society of Chemistry (RSC) Hujun Cao; Claudio Pistidda; Maria Victoria Castro Riglos; Anna-Lisa Chaudhary; Giovanni Capurso; Jo-Chi Tseng; Julián Puszkiel; Michael T. Wharmby; Thomas Gemming; Ping Chen; Thomas Klassen; Martin Dornheim;doi: 10.1039/c9se01284b
A new route to synthesize the Mg(NH2)2–2LiH composite is proposed starting from magnesium waste alloy and LiH, after a multi-step treatment. This is an effective way to convert magnesium waste into light weight hydrogen storage materials.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se01284b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se01284b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020Publisher:MDPI AG P. Muthukumar; B. Kiran Naik; B. Kiran Naik; Redmond R. Shamshiri; Mullapudi Joshi; Muhammad Sultan; Takahiko Miyazaki; Hadeed Ashraf;doi: 10.3390/su122410582
This study reports on the investigation of the performance of single and two-stage liquid and solid desiccant dehumidification systems and two-stage combined liquid and solid desiccant dehumidification systems with reference to humid climates. The research focus is on a dehumidification system capacity of 25 kW designed for room air conditioning application using the thermal models reported in the literature. RD-type silica gel and LiCl are used as solid and liquid desiccant materials, respectively. In this study, the application of proposed system for deep drying application is also explored. Condensation rate and moisture removal efficiency are chosen as performance parameters for room air conditioning application, whereas air outlet temperature is chosen as performance parameter for deep drying application. Further, for a given range of operating parameters, influences of air inlet humidity ratio, flow rate, and inlet temperature on performance parameters of the systems are investigated. In humid climatic conditions, it has been observed that a two-stage liquid desiccant dehumidification system is more effective for room air conditioning application, and two-stage solid desiccant dehumidification system is more suitable for deep drying application in the temperature range of 50 to 70 °C, while single-stage solid desiccant and two-stage combined liquid and solid desiccant dehumidification systems are more effective for low temperature, i.e., 30 to 50 °C deep drying application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su122410582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su122410582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu