- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- 1. No poverty
- JP
- Energies
- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- 1. No poverty
- JP
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:MDPI AG Authors: Hiroshi Koseki;doi: 10.3390/en4040616
Various recently proposed biomass fuels are reviewed from the point of view of their safety. Many biomass materials are proposed for use as fuels, such as refuse derived fuel (RDF), wood chips, coal-wood mixtures, etc. However, these fuels have high energy potentials and can cause fires and explosions. We have experienced many such incidents. It is very difficult to extinguish fires in huge piles of biomass fuel or storage facilities. Here current studies on heat generation for these materials and proposed evaluation methods for these new developing materials in Japan are introduced, which are consistent with measurements using highly sensitive calorimeters such as C80, or TAM, and gas emission tests. The highly sensitive calorimeters can detect small heat generation between room temperature and 80 °C, due to fermentation or other causes. This heat generation sometimes initiates real fires, and also produces combustible gases which can explode if fuel is stored in silos or indoor storage facilities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4040616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4040616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NorwayPublisher:MDPI AG Authors:Akira Nishimura;
Nozomu Kono; Kyohei Toyoda; Daiki Mishima; +1 AuthorsAkira Nishimura
Akira Nishimura in OpenAIREAkira Nishimura;
Nozomu Kono; Kyohei Toyoda; Daiki Mishima;Akira Nishimura
Akira Nishimura in OpenAIREMohan Kolhe;
Mohan Kolhe
Mohan Kolhe in OpenAIREdoi: 10.3390/en15124203
handle: 11250/3011534
The New Energy and Industry Technology Development Organization (NEDO) road map (Japan, 2017) has proposed that a polymer electrolyte fuel cell (PEFC) system, which operates at a temperature of 90 °C and 100 °C, be applied for stationary and mobility usage, respectively. This study suggests using a thin polymer electrolyte membrane (PEM) and a thin gas diffusion layer (GDL), at the same time, to achieve better power-generation performance, at a higher temperature than usual. The focus of this paper is to clarify the effect of separator thickness on the distribution of temperature at the reaction surface (Treact), with the relative humidity (RH) of the supply gasses and initial operation temperature (Tini), quantitatively. In this study, separator thickness is investigated in a system using a thin PEM and a thin GDL. Moreover, this study investigates the difference between the maximum temperature and the minimum temperature obtained from the distribution of Treact as well as the relation between the standard deviation of Treact − Tini and total voltage, to clarify the effect of separator thickness. The impact of the flow rates of the supply gases on the distribution of Treact is not large, among the investigated conditions. It is noticed that the temperature distribution is wider when a separator thickness of 2.0 mm is selected. On the other hand, it is observed that the temperature increases along with the gas flow through the gas channel, by approximately 2 °C, when using a separator thickness between 1.5 mm and 1.0 mm. The impact of the RH on the distributions of Treact − Tini is larger at Tini = 100 °C, when a separator thickness of 1.0 mm is selected. It is revealed that the wider temperature distribution provides a reduction in power-generation performance. This study proposes that the thin separators, i.e., with a thickness of 1.5 mm and 1.0 mm, are not suitable for higher temperature operation than usual.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/12/4203/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/12/4203/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors:Huaping Sun;
Huaping Sun
Huaping Sun in OpenAIREBless Kofi Edziah;
Bless Kofi Edziah
Bless Kofi Edziah in OpenAIREXiaoqian Song;
Xiaoqian Song
Xiaoqian Song in OpenAIREAnthony Kwaku Kporsu;
+1 AuthorsAnthony Kwaku Kporsu
Anthony Kwaku Kporsu in OpenAIREHuaping Sun;
Huaping Sun
Huaping Sun in OpenAIREBless Kofi Edziah;
Bless Kofi Edziah
Bless Kofi Edziah in OpenAIREXiaoqian Song;
Xiaoqian Song
Xiaoqian Song in OpenAIREAnthony Kwaku Kporsu;
Anthony Kwaku Kporsu
Anthony Kwaku Kporsu in OpenAIREFarhad Taghizadeh-Hesary;
Farhad Taghizadeh-Hesary
Farhad Taghizadeh-Hesary in OpenAIREdoi: 10.3390/en13153837
In this paper, we examine the energy efficiency performance of the Belt and Road Initiative (BRI) countries using a newly developed panel data stochastic frontier model that allows for estimation of both persistent and transient efficiency while controlling for random country effects and noise. By this, we contribute to the energy economic literature by providing a complete picture of the level of persistent, transient, and total energy efficiency estimates from a cross country perspective for a panel of 48 BRI countries during the period 1990–2015. Adding that there is little evidence to support energy efficiency convergence in the energy economic literature, we went further to check whether energy efficiency converges in the BRI countries. The results show that (1) persistent efficiencies are much lower than transient efficiencies, suggesting that the energy problem in the BRI countries is more of a structural issue; (2) while energy efficiency varies widely across the countries, high-income countries perform better than the lower-income countries; (3) there is evidence of efficiency convergence and it accelerates when trade increases, but decreases when the industrial sector increases. Based on these findings, we propose some policy implications.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3837/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153837&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 38 citations 38 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3837/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153837&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors:Yuka Kikuchi;
Yuka Kikuchi
Yuka Kikuchi in OpenAIRETakeshi Ishihara;
Takeshi Ishihara
Takeshi Ishihara in OpenAIREdoi: 10.3390/en14123528
In this study, the availability and the levelized cost of energy (LCOE) are investigated considering failure rate and downtime for onshore wind turbines in Japan. The failure mode effect analysis is conducted using the wind turbine failure database collected by the New Energy and Industrial Technology Department Organization (NEDO). The normalized failure rate and downtime between Europe and Japan are comparable. The occurrence rate is similar between Europe and Japan, but the downtime in Japan is much longer than that of Europe. Three cost-reduction scenarios are then proposed to improve availability and to reduce LCOE using assumed failure rate and downtime in each mode based on the industry interview and best practices in Japan. The availability is improved from 87.4% for the baseline scenario to 92.7%, 95.5% and 96.4% for the three scenarios, and LCOE is also reduced from 13.7 Yen/kWh to 11.9, 11.0 and 10.7 Yen/kWh. Finally, the probability distributions of downtime and repair cost are obtained for each failure mode. It is found that the probability distributions of the failure modes with the shortest downtime show similar probability distributions regardless of the size of the assembly. The effects of downtime and repair-cost uncertainties on LCOE are also evaluated.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3528/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3528/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG doi: 10.3390/en14041180
This study aims to overview the U.S. sustainable development by measuring the environmental performance of 50 states over the period of 2009–2018. To attain the objective, we employ data envelopment analysis for environmental assessment where we prioritize the minimization of CO2 emissions first and the maximization of gross state product later under the concept of managerial disposability (i.e., an environment-based performance measure). Then, we examine how the state-level environmental performance measures are associated with their political and spatial contexts. For the purpose, we conduct the Kruskal-Wallis rank sum test across groups of states characterized by their political transitions in the presidential and gubernatorial elections and defined by the regions of the U.S. Economic Development Administration and Environmental Protection Agency. Based on our empirical results, we find that (a) overall environmental performance has gradually enhanced over time, (b) there are statistically significant differences in the environmental performance measures along with the political transitions, and (c) states on both coasts have outperformed those of the middle in the measurement.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1180/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1180/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:EC | CoACHEC| CoACHAuthors:Srinivasan, Bhuvanesh;
Srinivasan, Bhuvanesh
Srinivasan, Bhuvanesh in OpenAIREBerthebaud, David;
Berthebaud, David
Berthebaud, David in OpenAIREMori, Takao;
Mori, Takao
Mori, Takao in OpenAIREdoi: 10.3390/en13030643
As a workable substitute for toxic PbTe-based thermoelectrics, GeTe-based materials are emanating as reliable alternatives. To assess the suitability of LiI as a dopant in thermoelectric GeTe, a prelusive study of thermoelectric properties of GeTe1−xLiIx (x = 0–0.02) alloys processed by Spark Plasma Sintering (SPS) are presented in this short communication. A maximum thermoelectric figure of merit, zT ~ 1.2, was attained at 773 K for 2 mol% LiI-doped GeTe composition, thanks to the combined benefits of a noted reduction in the thermal conductivity and a marginally improved power factor. The scattering of heat carrying phonons due to the presumable formation of Li-induced “pseudo-vacancies” and nano-precipitates contributed to the conspicuous suppression of lattice thermal conductivity, and consequently boosted the zT of the Sb-free (GeTe)0.98(LiI)0.02 sample when compared to that of pristine GeTe and Sb-rich (GeTe)x(LiSbTe2)2 compounds that were reported earlier.
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 JapanPublisher:MDPI AG Authors: Andrew J. Curtis;Benjamin C. McLellan;
Benjamin C. McLellan
Benjamin C. McLellan in OpenAIREdoi: 10.3390/en16165881
handle: 2433/291579
Australia has clear aspirations to become a major global exporter of hydrogen as a replacement for fossil fuels and as part of the drive to reduce CO2 emissions, as set out in the National Hydrogen Strategy released in 2019 jointly by the federal and state governments. In 2021, the Australian Energy Market Operator specified a grid forecast scenario for the first time entitled “hydrogen superpower”. Not only does Australia hope to capitalise on the emerging demand for zero-carbon hydrogen in places like Japan and South Korea by establishing a new export industry, but it also needs to mitigate the built-in carbon risk of its export revenue from coal and LNG as major customers, such as Japan and South Korea, move to decarbonise their energy systems. This places hydrogen at the nexus of energy, climate change mitigation and economic growth, with implications for energy security. Much of the published literature on this topic concentrates on the details of what being a major hydrogen exporter will look like and what steps will need to be taken to achieve it. However, there appears to be a gap in the study of the implications for Australia’s domestic energy system in terms of energy security and export economic vulnerability. The objective of this paper is to develop a conceptual framework for the implications of becoming a major hydrogen exporter on Australia’s energy system. Various green hydrogen export scenarios for Australia were compared, and the most recent and comprehensive was selected as the basis for further examination for domestic energy system impacts. In this scenario, 248.5 GW of new renewable electricity generation capacity was estimated to be required by 2050 to produce the additional 867 TWh required for an electrolyser output of 2088 PJ of green hydrogen for export, which will comprise 55.9% of Australia’s total electricity demand at that time. The characteristics of comparative export-oriented resources and their interactions with the domestic economy and energy system are then examined through the lens of the resource curse hypothesis, and the LNG and aluminium industries. These existing resource export frameworks are reviewed for applicability of specific factors to export-oriented green hydrogen production, with applicable factors then compiled into a novel conceptual framework for exporter domestic implications from large-scale exports of green hydrogen. The green hydrogen export superpower (2050) scenario is then quantitatively assessed using the established indicators for energy exporter vulnerability and domestic energy security, comparing it to Australia’s 2019 energy exports profile. This assessment finds that in almost all factors, exporter vulnerability is reduced, and domestic energy security is enhanced by the transition from fossil fuel exports to green hydrogen, with the exception of an increase in exposure of the domestic energy system to international market forces.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5881/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5881/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Marzia Khanam;Skander Jribi;
Skander Jribi
Skander Jribi in OpenAIRETakahiko Miyazaki;
Takahiko Miyazaki
Takahiko Miyazaki in OpenAIREBidyut Baran Saha;
+1 AuthorsBidyut Baran Saha
Bidyut Baran Saha in OpenAIREMarzia Khanam;Skander Jribi;
Skander Jribi
Skander Jribi in OpenAIRETakahiko Miyazaki;
Takahiko Miyazaki
Takahiko Miyazaki in OpenAIREBidyut Baran Saha;
Shigeru Koyama;Bidyut Baran Saha
Bidyut Baran Saha in OpenAIREdoi: 10.3390/en11061499
Adsorber heat exchanger design has great importance in increasing the performance of the adsorption-based cooling system. In this study, a transient two-dimensional axisymmetric Computational Fluid Dynamics (CFD) model has been developed for the performance investigation of finned tube type adsorber using activated carbon and ethanol as the working pair. The operating conditions of the cooling system were 15, 20 and 80 for evaporation, cooling and heating temperatures, respectively. The simulated temperature profiles for different adsorbent thicknesses were validated with those from experimental data measured in our laboratory. Moreover, the error in mass and energy balance were 3% and 7.88%, respectively. Besides, the performance investigation has been performed for cycle time ranging from 600 s to 1400 s. The optimum cycle time was 800 s and the corresponding evaluated specific cooling power (SCP) and coefficient of performance (COP) were found to be 488 W/kg and 0.61, respectively. The developed CFD model will be used for fin height and fin pitch optimization and can be extended to other adsorbent-adsorbate based adsorption cooling system.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/6/1499/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/6/1499/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Volodimir Holovko; Volodimir Kohanevich; Mikola Shikhailov; Artem Donets; Mihailo Maksymeniuk; Olena Sukmaniuk;Savelii Kukharets;
Savelii Kukharets
Savelii Kukharets in OpenAIRERyszard Konieczny;
Ryszard Konieczny
Ryszard Konieczny in OpenAIREAdam Koniuszy;
Barbara Dybek;Adam Koniuszy
Adam Koniuszy in OpenAIREGrzegorz Wałowski;
Grzegorz Wałowski
Grzegorz Wałowski in OpenAIREdoi: 10.3390/en15238863
The widespread use of wind power plants can provide full or partial energy supply to the consumer, taking into account certain investments and the instability of energy production. Modern wind energy technology involves the conversion of mechanical energy of the wind flow into electrical energy with subsequent conversion, at the request of the consumer, into thermal energy. In addition, the unprocessed use of the low-potential part of the wind flow, characterized by non-uniformity and randomness of its reception for the purpose of supplying heat to the recipient, requires new approaches to solving this problem. Bench experimental studies of this heater confirmed the adequacy of the mathematical model: within an hour, the temperature increase of the heater core changed from 22 °C to 36 °C at a voltage of 66 V and the number of pulses entering the heater coil was (15–17) discharges, which corresponds to the values of the mathematical expectation of the wind speed of (4–5.2) m∙s−1 in the range of wind speed (4–8) m∙s−1. The scientific novelty of this work consists in the development of a mathematical model for the operation of an electric pulse heater, which made it possible to develop methodological provisions for determining its mode parameters and to estimate the temperature change of its elements at random wind speed.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/23/8863/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/23/8863/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Hayrettin Bora Karayaka;Yi-Hsiang Yu;
Yi-Hsiang Yu
Yi-Hsiang Yu in OpenAIREEduard Muljadi;
Eduard Muljadi
Eduard Muljadi in OpenAIREdoi: 10.3390/en14123489
The power harnessed by wave energy converters (WECs) in oceans is highly variable and, therefore, has a high peak-to-average power (PTAP) ratio. To minimize the cost of a WEC power take off (PTO) system, it is desirable to reduce the PTAP ratio while maximizing the mean power extracted by WECs. The important issue of how PTAP ratio reduction measures (such as adding an inertia element) can affect the mean power extracted in a reference model has not been thoroughly addressed in the literature. To investigate this correlation, this study focuses on the integration of the U.S. Department of Energy’s Reference Model 3, a two-body point absorber, with a slider-crank WEC for linear-to-rotational conversion. In the first phase of this study, a full-scale numerical model was developed that predicts how PTO system parameters, along with an advanced control algorithm, can potentially affect the proposed WEC’s PTAP ratio as well as the mean power extracted. In the second phase, an appropriate scaled-down model was developed, and extracted power results were successfully validated against the full-scale model. Finally, numerical and hardware-in-the-loop (HIL) simulations based on the scaled-down model were designed and conducted to optimize or make trade-offs between the operational performance and PTAP ratio. The initial results with numerical and HIL simulations reveal that gear ratio, crank radius, and generator parameters substantially impact the PTAP ratio and mean power extracted.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3489/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3489/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu