
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Investigations into Balancing Peak-to-Average Power Ratio and Mean Power Extraction for a Two-Body Point-Absorber Wave Energy Converter

doi: 10.3390/en14123489
The power harnessed by wave energy converters (WECs) in oceans is highly variable and, therefore, has a high peak-to-average power (PTAP) ratio. To minimize the cost of a WEC power take off (PTO) system, it is desirable to reduce the PTAP ratio while maximizing the mean power extracted by WECs. The important issue of how PTAP ratio reduction measures (such as adding an inertia element) can affect the mean power extracted in a reference model has not been thoroughly addressed in the literature. To investigate this correlation, this study focuses on the integration of the U.S. Department of Energy’s Reference Model 3, a two-body point absorber, with a slider-crank WEC for linear-to-rotational conversion. In the first phase of this study, a full-scale numerical model was developed that predicts how PTO system parameters, along with an advanced control algorithm, can potentially affect the proposed WEC’s PTAP ratio as well as the mean power extracted. In the second phase, an appropriate scaled-down model was developed, and extracted power results were successfully validated against the full-scale model. Finally, numerical and hardware-in-the-loop (HIL) simulations based on the scaled-down model were designed and conducted to optimize or make trade-offs between the operational performance and PTAP ratio. The initial results with numerical and HIL simulations reveal that gear ratio, crank radius, and generator parameters substantially impact the PTAP ratio and mean power extracted.
- School of Engineering Japan
- Auburn University System United States
- Auburn University United States
- National Renewable Energy Laboratory United States
- Department of Electrical Engineering and Computer Science University of Michigan United States
Technology, wave energy converter (WEC), T, wave energy converter (WEC); peak-to-average ratio; unidirectional rotation; high speed; efficiency, unidirectional rotation, peak-to-average ratio, efficiency, high speed
Technology, wave energy converter (WEC), T, wave energy converter (WEC); peak-to-average ratio; unidirectional rotation; high speed; efficiency, unidirectional rotation, peak-to-average ratio, efficiency, high speed
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
