- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- JP
- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- JP
description Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Wiley Bathuu Ganbat; Dorjsuren Ochirvaani; N. Enebish; Kenji Otani; Mishiglunden Battushig; Garmaa Batsukh; Amarbayar Adiyabat; Kosuke Kurokawa;doi: 10.1002/pip.692
AbstractHere, we present the results of evaluation of solar energy potential and photovoltaic (PV) module performance from actual data measured over a period of more than 2 years in the Gobi Desert of Mongolia. To allow estimation of solar energy potentials and durability of PV systems in the Gobi Desert area, a data acquisition system, including crystalline silicon (c‐Si), polycrystalline silicon (p‐Si) modules, and two sets of precision pyranometers, thermometers, and anemometer, was installed at Sainshand City in October 2002. This system measures 23 parameters, including solar irradiation and meteorological parameters, every 10 min. High output gain was observed due to operation at extremely low ambient temperatures and the module performance ratios (PRs) were high (>1·0) in winter. In summary, the present study showed that a PV module with a high temperature coefficient, such as crystalline silicon, is advantageous for use in the Gobi Desert area. Copyright © 2006 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Miyuki Sakakura; Yasuhiro Suzuki; Takayuki Yamamoto; Yuta Yamamoto; Munekazu Motoyama; Yasutoshi Iriyama;Interfacial resistance at electrode‐high Li+ conductive solid electrolytes must be reduced well to develop high‐power all‐solid‐state batteries using oxide‐based solid electrolytes (Ox‐SSBs). Herein, crystalline electrode films of LiCoO2 (LCO) are formed on a high Li+ conductive crystalline‐glass solid electrolyte sheet, Li1.3Al0.3Ti2(PO4)3 (LATP) (σ25 °C = 1 × 10−4 S cm−1), at room temperature by aerosol deposition (AD), and the effects of the annealing temperature on the interfacial resistivities (Rint) at the LCO/LATP are investigated. The Rint visibly increases by annealing over 500 °C with the growth of Co3O4 as a reactant. In contrast, Rint is reduced to ≈100 Ω cm2 by low‐temperature annealing at 250–350 °C due to superior contact through the structural rearrangement of an artificial metastable interface formed by the AD. These results are applied to bulk‐type Ox‐SSB, Li/Li7La3Zr2O12(LLZ)/LCO–LATP, and our best Ox‐SSB delivers a discharge capacity of 100 mA cm−2 at 100 °C.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202001059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202001059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Funded by:EC | METLAKE, EC | VERIFY, EC | IMBALANCE-P +4 projectsEC| METLAKE ,EC| VERIFY ,EC| IMBALANCE-P ,EC| CHE ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,EC| VISUALMEDIA ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPAAna Maria Roxana Petrescu; Chunjing Qiu; Philippe Ciais; Rona L. Thompson; Philippe Peylin; Matthew J. McGrath; Efisio Solazzo; Greet Janssens‐Maenhout; Francesco N. Tubiello; P. Bergamaschi; D. Brunner; Glen P. Peters; L. Höglund-Isaksson; Pierre Regnier; Ronny Lauerwald; David Bastviken; Aki Tsuruta; Wilfried Winiwarter; Prabir K. Patra; Matthias Kuhnert; Gabriel D. Orregioni; Monica Crippa; Marielle Saunois; Lucia Perugini; Tiina Markkanen; Tuula Aalto; Christine Groot Zwaaftink; Yuanzhi Yao; Chris Wilson; Giulia Conchedda; Dirk Günther; Adrian Leip; Pete Smith; Jean‐Matthieu Haussaire; Antti Leppänen; Alistair J. Manning; Joe McNorton; Patrick Brockmann; A.J. Dolman;Abstract. Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27+UK). We integrate recent emission inventory data, ecosystem process-based model results, and inverse modelling estimates over the period 1990–2018. BU and TD products are compared with European National GHG Inventories (NGHGI) reported to the UN climate convention secretariat UNFCCC in 2019. For uncertainties, we used for NGHGI the standard deviation obtained by varying parameters of inventory calculations, reported by the Member States following the IPCC guidelines recommendations. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model specific uncertainties when reported. In comparing NGHGI with other approaches, a key source of bias is the activities included, e.g. anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011–2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr−1 (EDGAR v5.0) and 19.0 Tg CH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr−1. TD total inversions estimates give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr−1. Coarser resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4yr−1) and surface network (24.4 Tg CH4 yr−1). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions and geological sources together account for the gap between NGHGI and inversions and account for 5.2 Tg CH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr−1 respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr−1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr−1 respectively, compared to 0.9 Tg N2O yr−1 from the BU data. The TU and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at EU+UK scale and at national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4288969 (Petrescu et al., 2020).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Toshiaki Kanemoto; Bin Huang;In order to exploit renewable energies from tidal stream, tandem propellers of a unique counter-rotating type horizontal-axis tidal turbine was firstly designed based on the blade element momentum (BEM) theory. And then a multi-objective numerical optimization method coupled the response surface method (RSM) with the genetic algorithm (GA) was employed to obtain desirable blade profiles. The front blade pitch angle distribution was taken as optimization variable in this paper, as it plays an important role in affecting the inlet conditions of the rear blade. The numerical results show that both optimization objectives of power coefficient and thrust coefficient can be significantly improved. It was verified that the performance of the power unit with the optimized blades increases obviously by optimizing the pitch angle.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.04.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.04.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Xingbo Yao; Bart J. Dewancker; Yuang Guo; Shuo Han; Juan Xu;doi: 10.3390/su12208687
China’s research on and specific implementation of energy saving for buildings are mainly concentrated in urban areas, but according to 2016 statistics, the rural population accounts for 42.65% of the total population, so rural housing has considerable energy-saving potential. However, the degree of attention to the energy consumption of rural houses needs to be improved. Regarding the research on and implementation of passive energy-saving strategies for residences, compared with centralized urban high-rise residences, rural residences mainly have independent courtyards, with a flexible layout and easier transformation. In this study, a system that uses the common cold lanes in traditional villages and buildings’ exterior walls was constructed, and the indoor spaces of courtyard buildings in southern Shaanxi were completely passively cooled in summer. This system can be completely separated from the supply of artificial energy by relying on the accumulation and buoyancy effects of air in patios and cold lanes and the hot-pressure ventilation in buildings to cool the buildings and greatly improve indoor ventilation efficiency. As the building is ventilated and cooled, the air wall formed in the system can effectively prevent direct contact between the outdoor and indoor temperatures and reduce the impact of thermal wall radiation on the interior. In previous studies on the passive design of courtyard houses, scholars considered the effect of thermal wall radiation on indoor temperature in simulations. Therefore, in this study, we also separately calculated whether to consider the difference between the situation with and without wall heat radiation (WHR) when simulating thermal conversion. The final results show that when the cooling system was adopted, the annual cooling load of the whole building was 4786.494 kW·h without WHR. However, with WHR, the cooling load reduction was 2989.128 kW·h, a difference of 1797.336 kW·h.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12208687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12208687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Widodo Wahyu Purwanto; Yoga Wienda Pratama; Yulianto Sulistyo Nugroho; null Warjito; +4 AuthorsWidodo Wahyu Purwanto; Yoga Wienda Pratama; Yulianto Sulistyo Nugroho; null Warjito; Gatot Fatwanto Hertono; Djoni Hartono; null Deendarlianto; Tetsuo Tezuka;This paper presents a multi-objective optimization model for a long-term generation mix in Indonesia. The objective of this work is to assess the economic, environment, and adequacy of local energy sources. The model includes two competing objective functions to seek the lowest cost of generation and the lowest CO2 emissions while considering technology diffusion. The scenarios include the use of fossil reserves with or without the constraints of the reserve to production ratio and exports. The results indicate that Indonesia should develop all renewable energy and requires imported coal and natural gas. If all fossil resources were upgraded to reserves, electricity demand in 2050 could be met by domestic energy sources. The maximum share of renewable energy that can be achieved in 2050 is 33% with and 80% without technology diffusion. The least cost optimization produces lower generation costs than the least CO2 emissions, as well as the combined scenario. Total CO2 emissions in 2050 are five to six times as large as current emissions. The least CO2 emissions scenario can reduce almost half of the CO2 emissions of the least cost scenario by 2050. The proposed multi-objective optimization model leads some optimal solutions for a more sustainable electricity system.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.03.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.03.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1984Publisher:ASME International Authors: S. Mandai; K. Aoyama;doi: 10.1115/1.3239641
Two stage premixed combustor with variable geometry has been developed to meet stringent NOx goals in Japan without the use of water or steam injection. This combustion system is planned to be applied for 120-MW gas turbine in 1090-MW LNG combined cycle plant. The full-pressure, full-scale combustion tests were conducted over a wide range of operating conditions for this gas turbine. The combustion tests proved that NOx levels as well as mechanical characteristics were well within the goals.
Journal of Engineeri... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 1984 . Peer-reviewedData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.3239641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Journal of Engineeri... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 1984 . Peer-reviewedData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.3239641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Ismail Adal Guiamel; Han Soo Lee;This study aims to identify potential hydropower sites and calculate the theoretical potential hydropower capacity based on watershed modelling of the Mindanao River Basin (MRB) in the Philippines for the sustainable development of a previously unstudied region. The Soil and Water Assessment Tool (SWAT) was applied to delineate the watershed of the MRB and simulate the river discharges with inputs from observed precipitation and global gridded precipitation datasets. Observed weather data, such as temperature, humidity, and solar radiation, from four meteorological stations in the Philippines were also used as inputs for SWAT modelling. Simulated discharges were calibrated at three river gauges on the Nituan, Libungan and Pulangi Rivers. However, due to limited river discharge records, model validations were conducted in proxy basins: the calibrated model parameters in river A were used in the watershed modelling of proxy river B. Of the delineated 107 sub-basins in the MRB watershed, only 33 were identified as having potential sites for hydropower development. These potential sub-basins hosted a total of 154 potential sites with an estimated monthly average power capacity of 5,551.35 MW for all 33 sub-basins. The estimated theoretical power capacity of 15,266.22 MW for all sites in the MRB is approximately equivalent to the Philippines’ total available power capacity in 2017 of 15,393 MW. These sites were classified into 16 mini-scale hydropower sites, 114 small-scale hydropower sites and 24 medium-scale hydropower sites based on the simulated river discharges and potential power capacities. Based on these results, hydropower development could be an alternative to strengthen the exploration of renewable energy resources and improve the energy situation in Mindanao; hydropower development could also have mitigation effects on frequent floods in flat, low-lying downstream areas.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.04.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.04.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Mining and Materials Processing Institute of Japan Fa-qiang Su; Mamoru Kaiho; Gota Deguchi; Koutarou Ohga; Ken-ichi Itakura;Cavity growth occurring with crack extension and coal consumption during UCG processes directly influences the gasification efficiency and the estimated subsidence and gas leakage to the surface. This report presents an evaluation of the gas energy recovery, coal consumption, and gasification cavity estimation using a proposed stoichiometric method to analyze the coal gasification reaction process. We defined the evaluation parameters of rate of energy recovery and investigated the effects of different parameters using UCG trials conducted with coal blocks and coal seams, adopting different Linking-hole methods and operational parameters. Analyses of results obtained from laboratory experiments and small-scale field trials using V-shaped and L-shaped linking holes, and Coaxial-hole UCG models show that the gasification of Linking-hole models yielded average calorific values of product gas as high as 10.26, 11.11 MJ/m3 (lab.), and 14.39 MJ/m3 (field.). In contrast, the Coaxial-hole models under experimental conditions yielded average calorific values of product gas as: 7.38, 4.70 MJ/m3 (lab.) and 6.66 MJ/m3 (field.). The cavity volume obtained with Coaxial models was about half of the volume obtained from Linking-hole models. Results obtained for these UCG systems show that the feed gas and linking-hole types can influence coal consumption and product gas energy. Fissure ratios were also investigated. Results confirmed major factors underpinning gasification efficiency. Linking-hole types strongly influenced the development of the oxidization surface and fracture cracks for subsequent combustion in the gasification zone. Estimated gas energy recovery results support experimental observations within an acceptable error range of about 10%. Moreover, this stoichiometric approach is simple and useful for evaluating the underground cavity during UCG. Based on these results, we proposed a definition of the energy recovery rate, combined with the obtained volumes of gasification cavities that provide a definition of energy recovery and UCG effects. UCGにおいては,炭層内のき裂進展に伴う燃焼空洞の拡大と石炭の消費が重要であり,これがガス化効率や安全性 (地盤沈下,ガス漏洩等) に大きく影響する。本研究では,ガス化効率,回収エネルギーとガス化空洞の評価方法として,化学量論および化学平衡に基づく評価手法を検討した。生成ガス組成と求めたガス化反応式から,石炭の消費量,ガス生産量等を推定する方法である。また,エネルギー回収率を定義し,UCG室内モデル実験及び露天炭鉱の炭層で行った小規模現場実験の結果を評価し,リンキングの方式や注入ガス等のパラメータがガス化効率やガス化空洞の成長に与える影響を検討した。リンキングの方式として,L字,V字,同軸型のUCG実験を行い,ガス化効率の違いと,その原因を明らかにした。すなわち,リンキング型と同軸型モデルを比較すると,リンキング型UCGモデルの方が発熱量が高く,平均発熱量では,前者が10.26/11.11 MJ/m3 (室内) ,14.39 MJ/m3 (現場) であった。一方,同軸型モデル試験では,7.38/4.70 MJ/m3 (室内) と6.66 MJ/m3 (現場) と低い値であった。実験後の空洞体積の直接評価結果でも,リンキング型の方がガス化領域が拡大していることを確認した。リンキング方式の方が,炭層内にき裂を連続的に進展させやすいためと考えられる。また,エネルギー回収率の評価では,実験前後の供試体質量差から求めたエネルギー回収率と比較検討を行った。その結果,両者の誤差は約10%で,検討した手法によりエネルギー回収率や燃焼ガス化領域の石炭消費量を推定できることがわかった。以上の結果より,検討した化学量論法よる回収エネルギー評価手法は簡便で,実用的であることが明らかになった。 Special Edition for Coal Energy Technology; Development and Utilization of Coal Energy
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2473/journalofmmij.131.203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2473/journalofmmij.131.203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Sungpyo Kim; Eilhan Kwon;This paper presents experimental results of the impact of CO(2) co-feed on a gasification/pyrolysis process for various feedstocks (biomass, coal, and municipal solid waste (MSW)). Various feedstocks were thermo-gravimetrically characterized under various atmospheric conditions and heating rates. A substantial amount of char burn out was identified in the presence of CO(2) via a series of thermo-gravimetric analysis tests, which enabled high conversion of final mass (approximately 99%) to be achieved. The impact of CO(2) co-feed on the volatilization regime during the pyrolysis/gasification process was not apparent at a heating rate of 10-40 degrees C min(-1). However, the impact of CO(2) on the volatilization regime at a fast heating rate (950 degrees C min(-1)) was substantial. For example, significant enhancement in the generation of CO, by a factor of approximately 2, was observed in the presence of CO(2). The generation of major chemical species, such as CH(4) and C(2)H(4), were enhanced, but this was not as apparent as in the case with CO. In addition, introducing CO(2) to the pyrolysis/gasification process enabled the amount of condensable liquid hydrocarbons, such as tar (approximately 30-40%) to be significantly reduced in the presence of CO(2), in that injecting CO(2) into the pyrolysis/gasification process expedites cracking the volatilized chemical species. Experimental work confirmed that biomass and MSW could be feasible and desirable feedstocks for the pyrolysis/gasification process as these feedstocks can be easily treated compared to coal. To extend this understanding to a more practical level, various feedstocks were tested in a tubular reactor and drop tube reactor under various experimental conditions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2010.04.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2010.04.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Wiley Bathuu Ganbat; Dorjsuren Ochirvaani; N. Enebish; Kenji Otani; Mishiglunden Battushig; Garmaa Batsukh; Amarbayar Adiyabat; Kosuke Kurokawa;doi: 10.1002/pip.692
AbstractHere, we present the results of evaluation of solar energy potential and photovoltaic (PV) module performance from actual data measured over a period of more than 2 years in the Gobi Desert of Mongolia. To allow estimation of solar energy potentials and durability of PV systems in the Gobi Desert area, a data acquisition system, including crystalline silicon (c‐Si), polycrystalline silicon (p‐Si) modules, and two sets of precision pyranometers, thermometers, and anemometer, was installed at Sainshand City in October 2002. This system measures 23 parameters, including solar irradiation and meteorological parameters, every 10 min. High output gain was observed due to operation at extremely low ambient temperatures and the module performance ratios (PRs) were high (>1·0) in winter. In summary, the present study showed that a PV module with a high temperature coefficient, such as crystalline silicon, is advantageous for use in the Gobi Desert area. Copyright © 2006 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Miyuki Sakakura; Yasuhiro Suzuki; Takayuki Yamamoto; Yuta Yamamoto; Munekazu Motoyama; Yasutoshi Iriyama;Interfacial resistance at electrode‐high Li+ conductive solid electrolytes must be reduced well to develop high‐power all‐solid‐state batteries using oxide‐based solid electrolytes (Ox‐SSBs). Herein, crystalline electrode films of LiCoO2 (LCO) are formed on a high Li+ conductive crystalline‐glass solid electrolyte sheet, Li1.3Al0.3Ti2(PO4)3 (LATP) (σ25 °C = 1 × 10−4 S cm−1), at room temperature by aerosol deposition (AD), and the effects of the annealing temperature on the interfacial resistivities (Rint) at the LCO/LATP are investigated. The Rint visibly increases by annealing over 500 °C with the growth of Co3O4 as a reactant. In contrast, Rint is reduced to ≈100 Ω cm2 by low‐temperature annealing at 250–350 °C due to superior contact through the structural rearrangement of an artificial metastable interface formed by the AD. These results are applied to bulk‐type Ox‐SSB, Li/Li7La3Zr2O12(LLZ)/LCO–LATP, and our best Ox‐SSB delivers a discharge capacity of 100 mA cm−2 at 100 °C.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202001059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202001059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Funded by:EC | METLAKE, EC | VERIFY, EC | IMBALANCE-P +4 projectsEC| METLAKE ,EC| VERIFY ,EC| IMBALANCE-P ,EC| CHE ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,EC| VISUALMEDIA ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPAAna Maria Roxana Petrescu; Chunjing Qiu; Philippe Ciais; Rona L. Thompson; Philippe Peylin; Matthew J. McGrath; Efisio Solazzo; Greet Janssens‐Maenhout; Francesco N. Tubiello; P. Bergamaschi; D. Brunner; Glen P. Peters; L. Höglund-Isaksson; Pierre Regnier; Ronny Lauerwald; David Bastviken; Aki Tsuruta; Wilfried Winiwarter; Prabir K. Patra; Matthias Kuhnert; Gabriel D. Orregioni; Monica Crippa; Marielle Saunois; Lucia Perugini; Tiina Markkanen; Tuula Aalto; Christine Groot Zwaaftink; Yuanzhi Yao; Chris Wilson; Giulia Conchedda; Dirk Günther; Adrian Leip; Pete Smith; Jean‐Matthieu Haussaire; Antti Leppänen; Alistair J. Manning; Joe McNorton; Patrick Brockmann; A.J. Dolman;Abstract. Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27+UK). We integrate recent emission inventory data, ecosystem process-based model results, and inverse modelling estimates over the period 1990–2018. BU and TD products are compared with European National GHG Inventories (NGHGI) reported to the UN climate convention secretariat UNFCCC in 2019. For uncertainties, we used for NGHGI the standard deviation obtained by varying parameters of inventory calculations, reported by the Member States following the IPCC guidelines recommendations. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model specific uncertainties when reported. In comparing NGHGI with other approaches, a key source of bias is the activities included, e.g. anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011–2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr−1 (EDGAR v5.0) and 19.0 Tg CH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr−1. TD total inversions estimates give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr−1. Coarser resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4yr−1) and surface network (24.4 Tg CH4 yr−1). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions and geological sources together account for the gap between NGHGI and inversions and account for 5.2 Tg CH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr−1 respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr−1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr−1 respectively, compared to 0.9 Tg N2O yr−1 from the BU data. The TU and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at EU+UK scale and at national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4288969 (Petrescu et al., 2020).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Toshiaki Kanemoto; Bin Huang;In order to exploit renewable energies from tidal stream, tandem propellers of a unique counter-rotating type horizontal-axis tidal turbine was firstly designed based on the blade element momentum (BEM) theory. And then a multi-objective numerical optimization method coupled the response surface method (RSM) with the genetic algorithm (GA) was employed to obtain desirable blade profiles. The front blade pitch angle distribution was taken as optimization variable in this paper, as it plays an important role in affecting the inlet conditions of the rear blade. The numerical results show that both optimization objectives of power coefficient and thrust coefficient can be significantly improved. It was verified that the performance of the power unit with the optimized blades increases obviously by optimizing the pitch angle.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.04.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.04.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Xingbo Yao; Bart J. Dewancker; Yuang Guo; Shuo Han; Juan Xu;doi: 10.3390/su12208687
China’s research on and specific implementation of energy saving for buildings are mainly concentrated in urban areas, but according to 2016 statistics, the rural population accounts for 42.65% of the total population, so rural housing has considerable energy-saving potential. However, the degree of attention to the energy consumption of rural houses needs to be improved. Regarding the research on and implementation of passive energy-saving strategies for residences, compared with centralized urban high-rise residences, rural residences mainly have independent courtyards, with a flexible layout and easier transformation. In this study, a system that uses the common cold lanes in traditional villages and buildings’ exterior walls was constructed, and the indoor spaces of courtyard buildings in southern Shaanxi were completely passively cooled in summer. This system can be completely separated from the supply of artificial energy by relying on the accumulation and buoyancy effects of air in patios and cold lanes and the hot-pressure ventilation in buildings to cool the buildings and greatly improve indoor ventilation efficiency. As the building is ventilated and cooled, the air wall formed in the system can effectively prevent direct contact between the outdoor and indoor temperatures and reduce the impact of thermal wall radiation on the interior. In previous studies on the passive design of courtyard houses, scholars considered the effect of thermal wall radiation on indoor temperature in simulations. Therefore, in this study, we also separately calculated whether to consider the difference between the situation with and without wall heat radiation (WHR) when simulating thermal conversion. The final results show that when the cooling system was adopted, the annual cooling load of the whole building was 4786.494 kW·h without WHR. However, with WHR, the cooling load reduction was 2989.128 kW·h, a difference of 1797.336 kW·h.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12208687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12208687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Widodo Wahyu Purwanto; Yoga Wienda Pratama; Yulianto Sulistyo Nugroho; null Warjito; +4 AuthorsWidodo Wahyu Purwanto; Yoga Wienda Pratama; Yulianto Sulistyo Nugroho; null Warjito; Gatot Fatwanto Hertono; Djoni Hartono; null Deendarlianto; Tetsuo Tezuka;This paper presents a multi-objective optimization model for a long-term generation mix in Indonesia. The objective of this work is to assess the economic, environment, and adequacy of local energy sources. The model includes two competing objective functions to seek the lowest cost of generation and the lowest CO2 emissions while considering technology diffusion. The scenarios include the use of fossil reserves with or without the constraints of the reserve to production ratio and exports. The results indicate that Indonesia should develop all renewable energy and requires imported coal and natural gas. If all fossil resources were upgraded to reserves, electricity demand in 2050 could be met by domestic energy sources. The maximum share of renewable energy that can be achieved in 2050 is 33% with and 80% without technology diffusion. The least cost optimization produces lower generation costs than the least CO2 emissions, as well as the combined scenario. Total CO2 emissions in 2050 are five to six times as large as current emissions. The least CO2 emissions scenario can reduce almost half of the CO2 emissions of the least cost scenario by 2050. The proposed multi-objective optimization model leads some optimal solutions for a more sustainable electricity system.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.03.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.03.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1984Publisher:ASME International Authors: S. Mandai; K. Aoyama;doi: 10.1115/1.3239641
Two stage premixed combustor with variable geometry has been developed to meet stringent NOx goals in Japan without the use of water or steam injection. This combustion system is planned to be applied for 120-MW gas turbine in 1090-MW LNG combined cycle plant. The full-pressure, full-scale combustion tests were conducted over a wide range of operating conditions for this gas turbine. The combustion tests proved that NOx levels as well as mechanical characteristics were well within the goals.
Journal of Engineeri... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 1984 . Peer-reviewedData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.3239641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Journal of Engineeri... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 1984 . Peer-reviewedData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.3239641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Ismail Adal Guiamel; Han Soo Lee;This study aims to identify potential hydropower sites and calculate the theoretical potential hydropower capacity based on watershed modelling of the Mindanao River Basin (MRB) in the Philippines for the sustainable development of a previously unstudied region. The Soil and Water Assessment Tool (SWAT) was applied to delineate the watershed of the MRB and simulate the river discharges with inputs from observed precipitation and global gridded precipitation datasets. Observed weather data, such as temperature, humidity, and solar radiation, from four meteorological stations in the Philippines were also used as inputs for SWAT modelling. Simulated discharges were calibrated at three river gauges on the Nituan, Libungan and Pulangi Rivers. However, due to limited river discharge records, model validations were conducted in proxy basins: the calibrated model parameters in river A were used in the watershed modelling of proxy river B. Of the delineated 107 sub-basins in the MRB watershed, only 33 were identified as having potential sites for hydropower development. These potential sub-basins hosted a total of 154 potential sites with an estimated monthly average power capacity of 5,551.35 MW for all 33 sub-basins. The estimated theoretical power capacity of 15,266.22 MW for all sites in the MRB is approximately equivalent to the Philippines’ total available power capacity in 2017 of 15,393 MW. These sites were classified into 16 mini-scale hydropower sites, 114 small-scale hydropower sites and 24 medium-scale hydropower sites based on the simulated river discharges and potential power capacities. Based on these results, hydropower development could be an alternative to strengthen the exploration of renewable energy resources and improve the energy situation in Mindanao; hydropower development could also have mitigation effects on frequent floods in flat, low-lying downstream areas.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.04.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.04.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Mining and Materials Processing Institute of Japan Fa-qiang Su; Mamoru Kaiho; Gota Deguchi; Koutarou Ohga; Ken-ichi Itakura;Cavity growth occurring with crack extension and coal consumption during UCG processes directly influences the gasification efficiency and the estimated subsidence and gas leakage to the surface. This report presents an evaluation of the gas energy recovery, coal consumption, and gasification cavity estimation using a proposed stoichiometric method to analyze the coal gasification reaction process. We defined the evaluation parameters of rate of energy recovery and investigated the effects of different parameters using UCG trials conducted with coal blocks and coal seams, adopting different Linking-hole methods and operational parameters. Analyses of results obtained from laboratory experiments and small-scale field trials using V-shaped and L-shaped linking holes, and Coaxial-hole UCG models show that the gasification of Linking-hole models yielded average calorific values of product gas as high as 10.26, 11.11 MJ/m3 (lab.), and 14.39 MJ/m3 (field.). In contrast, the Coaxial-hole models under experimental conditions yielded average calorific values of product gas as: 7.38, 4.70 MJ/m3 (lab.) and 6.66 MJ/m3 (field.). The cavity volume obtained with Coaxial models was about half of the volume obtained from Linking-hole models. Results obtained for these UCG systems show that the feed gas and linking-hole types can influence coal consumption and product gas energy. Fissure ratios were also investigated. Results confirmed major factors underpinning gasification efficiency. Linking-hole types strongly influenced the development of the oxidization surface and fracture cracks for subsequent combustion in the gasification zone. Estimated gas energy recovery results support experimental observations within an acceptable error range of about 10%. Moreover, this stoichiometric approach is simple and useful for evaluating the underground cavity during UCG. Based on these results, we proposed a definition of the energy recovery rate, combined with the obtained volumes of gasification cavities that provide a definition of energy recovery and UCG effects. UCGにおいては,炭層内のき裂進展に伴う燃焼空洞の拡大と石炭の消費が重要であり,これがガス化効率や安全性 (地盤沈下,ガス漏洩等) に大きく影響する。本研究では,ガス化効率,回収エネルギーとガス化空洞の評価方法として,化学量論および化学平衡に基づく評価手法を検討した。生成ガス組成と求めたガス化反応式から,石炭の消費量,ガス生産量等を推定する方法である。また,エネルギー回収率を定義し,UCG室内モデル実験及び露天炭鉱の炭層で行った小規模現場実験の結果を評価し,リンキングの方式や注入ガス等のパラメータがガス化効率やガス化空洞の成長に与える影響を検討した。リンキングの方式として,L字,V字,同軸型のUCG実験を行い,ガス化効率の違いと,その原因を明らかにした。すなわち,リンキング型と同軸型モデルを比較すると,リンキング型UCGモデルの方が発熱量が高く,平均発熱量では,前者が10.26/11.11 MJ/m3 (室内) ,14.39 MJ/m3 (現場) であった。一方,同軸型モデル試験では,7.38/4.70 MJ/m3 (室内) と6.66 MJ/m3 (現場) と低い値であった。実験後の空洞体積の直接評価結果でも,リンキング型の方がガス化領域が拡大していることを確認した。リンキング方式の方が,炭層内にき裂を連続的に進展させやすいためと考えられる。また,エネルギー回収率の評価では,実験前後の供試体質量差から求めたエネルギー回収率と比較検討を行った。その結果,両者の誤差は約10%で,検討した手法によりエネルギー回収率や燃焼ガス化領域の石炭消費量を推定できることがわかった。以上の結果より,検討した化学量論法よる回収エネルギー評価手法は簡便で,実用的であることが明らかになった。 Special Edition for Coal Energy Technology; Development and Utilization of Coal Energy
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2473/journalofmmij.131.203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2473/journalofmmij.131.203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Sungpyo Kim; Eilhan Kwon;This paper presents experimental results of the impact of CO(2) co-feed on a gasification/pyrolysis process for various feedstocks (biomass, coal, and municipal solid waste (MSW)). Various feedstocks were thermo-gravimetrically characterized under various atmospheric conditions and heating rates. A substantial amount of char burn out was identified in the presence of CO(2) via a series of thermo-gravimetric analysis tests, which enabled high conversion of final mass (approximately 99%) to be achieved. The impact of CO(2) co-feed on the volatilization regime during the pyrolysis/gasification process was not apparent at a heating rate of 10-40 degrees C min(-1). However, the impact of CO(2) on the volatilization regime at a fast heating rate (950 degrees C min(-1)) was substantial. For example, significant enhancement in the generation of CO, by a factor of approximately 2, was observed in the presence of CO(2). The generation of major chemical species, such as CH(4) and C(2)H(4), were enhanced, but this was not as apparent as in the case with CO. In addition, introducing CO(2) to the pyrolysis/gasification process enabled the amount of condensable liquid hydrocarbons, such as tar (approximately 30-40%) to be significantly reduced in the presence of CO(2), in that injecting CO(2) into the pyrolysis/gasification process expedites cracking the volatilized chemical species. Experimental work confirmed that biomass and MSW could be feasible and desirable feedstocks for the pyrolysis/gasification process as these feedstocks can be easily treated compared to coal. To extend this understanding to a more practical level, various feedstocks were tested in a tubular reactor and drop tube reactor under various experimental conditions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2010.04.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2010.04.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu