- home
- Advanced Search
- Energy Research
- 2021-2025
- PK
- KG
- Energies
- Energy Research
- 2021-2025
- PK
- KG
- Energies
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Masilu Marupi; Munira Batool; Morteza Alizadeh;Noor Zanib;
Noor Zanib
Noor Zanib in OpenAIREdoi: 10.3390/en16020689
The global climate protection policy aimed at achieving a zero greenhouse gas emissions target has led to the fast incorporation of large-scale photovoltaics into the power network. The conventional AC grid was not modeled to be incorporated with large-scale non-synchronous inverter-based energy resources (IBR). Incorporating inertia-free IBR into the grid leads to technical issues such as the degradation of system strength and inertia, therefore affecting the safety and reliability of the electrical power system. This research introduced a new solution to incorporate a flywheel in the rotor of a synchronous machine to improve the dynamic inertia control during a system disruption and to maintain the constancy of the system. The objective of this work is to enhance large-scale photovoltaic systems in such a way that they can avoid failures during a fault. A model of transient constancy with two synchronous generators and a LSPV is established in PowerWorld modeling software. A line-to-ground and three-phase fault are simulated in a system with up to 50% IBR penetration. The outcomes showed that the power network was able to ride through faults (RTFs) and that the stability of frequency and voltage are enhanced because of a flywheel that improved grid inertia and strength.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Stanisław Duer;
Stanisław Duer
Stanisław Duer in OpenAIREKrzysztof Rokosz;
Dariusz Bernatowicz;Krzysztof Rokosz
Krzysztof Rokosz in OpenAIREArkadiusz Ostrowski;
+3 AuthorsArkadiusz Ostrowski
Arkadiusz Ostrowski in OpenAIREStanisław Duer;
Stanisław Duer
Stanisław Duer in OpenAIREKrzysztof Rokosz;
Dariusz Bernatowicz;Krzysztof Rokosz
Krzysztof Rokosz in OpenAIREArkadiusz Ostrowski;
Arkadiusz Ostrowski
Arkadiusz Ostrowski in OpenAIREMarek Woźniak;
Marek Woźniak
Marek Woźniak in OpenAIREKonrad Zajkowski;
Konrad Zajkowski
Konrad Zajkowski in OpenAIREAtif Iqbal;
Atif Iqbal
Atif Iqbal in OpenAIREdoi: 10.3390/en15176255
This article deals with the importance of simulation studies for the reliability of wind farm (WF) equipment during the operation process. Improvements, upgrades, and the introduction of new solutions that change the reliability, quality, and conditions of use and operation of wind farm equipment present a research problem during study. Based on this research, it is possible to continuously evaluate the reliability of WF equipment. The topic of reliability testing of complex technical facilities is constantly being developed in the literature. The article assumes that the operation of wind farm equipment is described and modeled based on Markov processes. This assumption justified the use of Kolmogorov–Chapman equations to describe the developed research model. Based on these equations, an analytical model of the wind farm operation process was created and described. As a result of the simulation analysis, the reliability of the wind farm was determined in the form of a probability function (R0(t)) for the WPPs system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Siddique Akbar;
Faisal Khan; Wasiq Ullah;Siddique Akbar
Siddique Akbar in OpenAIREBasharat Ullah;
+2 AuthorsBasharat Ullah
Basharat Ullah in OpenAIRESiddique Akbar;
Faisal Khan; Wasiq Ullah;Siddique Akbar
Siddique Akbar in OpenAIREBasharat Ullah;
Basharat Ullah
Basharat Ullah in OpenAIREAhmad H. Milyani;
Abdullah Ahmed Azhari;Ahmad H. Milyani
Ahmad H. Milyani in OpenAIREdoi: 10.3390/en15207531
Slotting effect in electric machines reduces flux per pole that effect magnetic flux density distribution in the air gap which induces harmonics in magnetic flux density causing flux pulsation, that in turn generates dominant torque pulsation in the form of cogging torque and torque ripples. To overcome the abovesaid demerits, a novel outer rotor field-excited flux-switching machine (OR-FSFSM) with a combined semi-closed and open slots stator is proposed in this study. The developed OR-FEFSM offers a high-power factor, due to the utilization of the semi-closed slot for armature coils. The open slot stator structure was chosen for the field excitation coil, which effectively suppresses leakage reluctance that causes flux pulsation. Thus, the influence of torque ripples is reduced, and the average torque is improved. In order to investigate the effectiveness of the proposed OR-FEFSM, a detailed study of stator slot and rotor pole combinations are performed. Based on simplified mathematical formulation, 12S/7P (stator slot/rotor poles), 12S/11P, 12S/13P, and 12S/17P are the most feasible combinations. Finite Element Analysis (FEA) based on comprehensive electromagnetic performance is performed on each combination, and found that 12S/13P offers the highest average torque of 4.62 Nm, whereas 3.72 Nm, 2.72Nm, and 1.68 Nm average torque is offered by 12S/17P, 12S/7P, and 12S/11P, respectively. Based on the initial analysis, 12S/13P was considered for further analysis and optimized using JMAG built-in Genetic Algorithm (GA). Moreover, thermal analysis was performed, and the proposed design was compared with the conventional design.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Fazal Muhammad;
Haroon Rasheed;Fazal Muhammad
Fazal Muhammad in OpenAIREIhsan Ali;
Ihsan Ali
Ihsan Ali in OpenAIRERoobaea Alroobaea;
+1 AuthorsRoobaea Alroobaea
Roobaea Alroobaea in OpenAIREFazal Muhammad;
Haroon Rasheed;Fazal Muhammad
Fazal Muhammad in OpenAIREIhsan Ali;
Ihsan Ali
Ihsan Ali in OpenAIRERoobaea Alroobaea;
Ahmed Binmahfoudh;Roobaea Alroobaea
Roobaea Alroobaea in OpenAIREdoi: 10.3390/en15051681
Voltage sag in a power system is an unavoidable power quality issue, and it is also an urgent concern of sensitive industrial users. To ensure the power quality demand and economical operation of the power system, voltage sag management has always drawn great attention from researchers around the world. The latest research that realizes the power quality conditioning has used dynamic voltage restorers (DVRs), static VAR compensator (SVCs), adaptive neuro-fuzzy inference systems (ANFISs), and fuzzy logic controllers based on DVR to mitigate voltage sag. These devices, methods, and control strategies that have been recently used for voltage sag mitigation have some limitations, including high cost, increased complexity, and lower performance. This article proposes a novel, efficient, reliable, and cost-effective voltage sag mitigation scheme based on a modular multilevel converter (MMC) that ensures effective power delivery at nominal power under transient voltage conditions. The proposed method, the MMC, compensates for the energy loss caused by voltage sags using its internal energy storage of the submodules, and ensures reliable power delivery to the load distribution system. Furthermore, control strategies are developed for the MMC to control DC voltage, AC voltage, active power, and circulating current. Detailed system mathematical models of controllers are developed in the dual synchronous reference frame (DSRF). Validation of the results of back-to-back MMC for dynamic load distribution system is analyzed which proves the effectiveness of the proposed scheme for voltage sag mitigation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051681&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051681&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Ali Faisal Murtaza;Hadeed Ahmed Sher;
Hadeed Ahmed Sher
Hadeed Ahmed Sher in OpenAIREFilippo Spertino;
Filippo Spertino
Filippo Spertino in OpenAIREAlessandro Ciocia;
+3 AuthorsAlessandro Ciocia
Alessandro Ciocia in OpenAIREAli Faisal Murtaza;Hadeed Ahmed Sher;
Hadeed Ahmed Sher
Hadeed Ahmed Sher in OpenAIREFilippo Spertino;
Filippo Spertino
Filippo Spertino in OpenAIREAlessandro Ciocia;
Alessandro Ciocia
Alessandro Ciocia in OpenAIREAbdullah M. Noman;
Abdullah M. Noman
Abdullah M. Noman in OpenAIREAbdullrahman A. Al-Shamma’a;
Abdullrahman A. Al-Shamma’a
Abdullrahman A. Al-Shamma’a in OpenAIREAbdulaziz Alkuhayli;
Abdulaziz Alkuhayli
Abdulaziz Alkuhayli in OpenAIREdoi: 10.3390/en14216996
A novel maximum power point tracking (MPPT) technique based on mutual coordination of two photovoltaic (PV) modules/arrays has been proposed for distributed PV (DPV) systems. The proposed technique works in two stages. Under non-mismatch conditions between PV modules/arrays, superior performance stage 1 is active, which rectifies the issues inherited by the perturb and observe (P&O) MPPT. In this stage, the technique revolves around the perturb and observe (P&O) algorithm containing an intelligent mechanism of leader and follower between two arrays. In shading conditions, stage 2 is on, and it works like conventional P&O. Graphical analysis of the proposed technique has been presented under different weather conditions. Simulations of different algorithms have been performed in Matlab/Simulink. Simulation results of the proposed technique compliment the graphical analysis and show a superior performance and a fast response as compared to others, thus increasing the efficiency of distributed PV systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14216996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14216996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:MDPI AG Authors:Umar Waleed;
Umar Waleed
Umar Waleed in OpenAIREAbdul Haseeb;
Abdul Haseeb
Abdul Haseeb in OpenAIREMuhammad Mansoor Ashraf;
Muhammad Mansoor Ashraf
Muhammad Mansoor Ashraf in OpenAIREFaisal Siddiq;
+2 AuthorsFaisal Siddiq
Faisal Siddiq in OpenAIREUmar Waleed;
Umar Waleed
Umar Waleed in OpenAIREAbdul Haseeb;
Abdul Haseeb
Abdul Haseeb in OpenAIREMuhammad Mansoor Ashraf;
Muhammad Mansoor Ashraf
Muhammad Mansoor Ashraf in OpenAIREFaisal Siddiq;
Muhammad Rafiq;Faisal Siddiq
Faisal Siddiq in OpenAIREMuhammad Shafique;
Muhammad Shafique
Muhammad Shafique in OpenAIREdoi: 10.3390/en15239250
This paper proposes a new artificial hummingbird algorithm (AHA)-based framework to investigate the optimal reactive power dispatch (ORPD) problem which is a critical problem in the capacity of power systems. This paper aims to improve the performance of power systems by minimizing two distinct objective functions namely active power loss in the transmission network and total voltage deviation at the load buses subjected to various constraints within multiobjective framework. The proposed AHA-based framework maps the inherent flight and foraging capabilities exhibited by hummingbirds in nature to determine the best settings for the control variables (i.e., voltages at generation buses, the tap positions of on-load tap-changing transformers (OLTCs) and the size of switchable shunt VAR compensators) to minimize the overall objective functions. A multiobjective optimal reactive power dispatch framework (MO-ORPD) considering renewable energy sources (RES) and load uncertainties is also proposed to minimize the individual objectives simultaneously. The competency and robustness of the proposed AHA-based framework is validated and tested on IEEE 14 bus and IEEE 39 bus test systems to solve the ORPD problem. Eventually, the results are compared with other well-known optimization techniques in the literature. Box plots and statistical tests using SPSS are performed and validated to justify the effectiveness of the proposed framework.
Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2022License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/26244Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15239250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2022License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/26244Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15239250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Mudassir Khan;
Mudassir Khan
Mudassir Khan in OpenAIREA. Ilavendhan;
A. Ilavendhan
A. Ilavendhan in OpenAIREC. Nelson Kennedy Babu;
C. Nelson Kennedy Babu
C. Nelson Kennedy Babu in OpenAIREVishal Jain;
+4 AuthorsVishal Jain
Vishal Jain in OpenAIREMudassir Khan;
Mudassir Khan
Mudassir Khan in OpenAIREA. Ilavendhan;
A. Ilavendhan
A. Ilavendhan in OpenAIREC. Nelson Kennedy Babu;
C. Nelson Kennedy Babu
C. Nelson Kennedy Babu in OpenAIREVishal Jain;
Vishal Jain
Vishal Jain in OpenAIRES. B. Goyal;
S. B. Goyal
S. B. Goyal in OpenAIREChaman Verma;
Chaman Verma
Chaman Verma in OpenAIRECalin Ovidiu Safirescu;
Traian Candin Mihaltan;Calin Ovidiu Safirescu
Calin Ovidiu Safirescu in OpenAIREdoi: 10.3390/en15134528
The goal of today’s technological era is to make every item smart. Internet of Things (IoT) is a model shift that gives a whole new dimension to the common items and things. Wireless sensor networks, particularly Low-Power and Lossy Networks (LLNs), are essential components of IoT that has a significant influence on daily living. Routing Protocol for Low Power and Lossy Networks (RPL) has become the standard protocol for IoT and LLNs. It is not only used widely but also researched by various groups of people. The extensive use of RPL and its customization has led to demanding research and improvements. There are certain issues in the current RPL mechanism, such as an energy hole, which is a huge issue in the context of IoT. By the initiation of Grid formation across the sensor nodes, which can simplify the cluster formation, the Cluster Head (CH) selection is accomplished using fish swarm optimization (FSO). The performance of the Graph-Grid-based Convolution clustered neural network with fish swarm optimization (GG-Conv_Clus-FSO) in energy optimization of the network is compared with existing state-of-the-art protocols, and GG-Conv_Clus-FSO outperforms the existing approaches, whereby the packet delivery ratio (PDR) is enhanced by 95.14%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15134528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15134528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors:Ghazi Aman Nowsherwan;
Ghazi Aman Nowsherwan
Ghazi Aman Nowsherwan in OpenAIREAurang Zaib;
Aurang Zaib
Aurang Zaib in OpenAIREAqeel Ahmed Shah;
Aqeel Ahmed Shah
Aqeel Ahmed Shah in OpenAIREMohsin Khan;
+6 AuthorsMohsin Khan
Mohsin Khan in OpenAIREGhazi Aman Nowsherwan;
Ghazi Aman Nowsherwan
Ghazi Aman Nowsherwan in OpenAIREAurang Zaib;
Aurang Zaib
Aurang Zaib in OpenAIREAqeel Ahmed Shah;
Aqeel Ahmed Shah
Aqeel Ahmed Shah in OpenAIREMohsin Khan;
Mohsin Khan
Mohsin Khan in OpenAIREAbdul Shakoor;
Syed Nizamuddin Shah Bukhari; Muhammad Riaz;Abdul Shakoor
Abdul Shakoor in OpenAIRESyed Sajjad Hussain;
Syed Sajjad Hussain
Syed Sajjad Hussain in OpenAIREMuhammad Ali Shar;
Muhammad Ali Shar
Muhammad Ali Shar in OpenAIREAbdulaziz Alhazaa;
Abdulaziz Alhazaa
Abdulaziz Alhazaa in OpenAIREdoi: 10.3390/en16020900
This work focuses on preparing TiO2, CdS, and composite TiO2:CdS thin films for photovoltaic applications by thermal evaporation. The suggested materials exhibit very good optical and electrical properties and can play a significant role in enhancing the efficiency of the device. Various microscopy and spectroscopy techniques were considered to investigate the optical, morphological, photoluminescence, and electrical properties. FTIR confirms the material identification by displaying some peaks in the fingerprint region. UV Vis spectroscopy yields high transmission (80–90%) and low absorbance (5–10%) within the spectral region from 500 nm to 800 nm for the composite thin films. The optical band gap values for CdS, TiO2, and TiO2:CdS thin films are 2.42 eV, 3.72 eV, and 3.6 eV. XRD was utilized to analyze the amorphous nature of the thin films, while optical and SEM microscopy were employed to examine the morphological changes caused by the addition of CdS to TiO2. The decrease in the bandgap of the composite thin films was determined by the Tauc plot, which is endorsed due to the band tailing effects. Photoluminescence spectroscopy depicts several emission peaks in the visible region when they are excited at different wavelengths, and the electrical measurement enhances the material conductivity. Furthermore, the proposed electron transport materials (TiO2, CdS, TiO2:CdS) were simulated with different perovskite materials to validate their design by employing the SCAPS-1D program and assess their performance in commercial implementation. The observed results suggest that TiO2:CdS is a promising candidate to be used as an ETM in PSC with enhanced productivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020900&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020900&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors:Dongri Shan;
Di Wang; Dongmei He;Dongri Shan
Dongri Shan in OpenAIREPeng Zhang;
Peng Zhang
Peng Zhang in OpenAIREdoi: 10.3390/en17051230
In this paper, we describe a position sensorless vector control system for a permanent magnet synchronous motor (PMSM) for a lawnmower in order to solve the problems of inferior dynamic performance and insufficient load resistance in the control process of lawnmower motors. A speed–current double-closed-loop vector control strategy was adopted to control the motor speed; an extended Kalman filter (EKF) was constructed to track the motor rotor position. STM32F407 was selected as the main control chip to establish the hardware experimental platform, and the performance of the control system was evaluated. The experimental results demonstrate that the control system accurately regulates motor speed, has good dynamic response characteristics, and can maintain stability under various loads; therefore, it meets the performance requirements of lawnmower motors in practical operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17051230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17051230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Zehba Raizah;
Udaya Kodipalya Nanjappa;Zehba Raizah
Zehba Raizah in OpenAIREHarshitha Ajjipura Shankar;
Harshitha Ajjipura Shankar
Harshitha Ajjipura Shankar in OpenAIREUmair Khan;
+3 AuthorsUmair Khan
Umair Khan in OpenAIREZehba Raizah;
Udaya Kodipalya Nanjappa;Zehba Raizah
Zehba Raizah in OpenAIREHarshitha Ajjipura Shankar;
Harshitha Ajjipura Shankar
Harshitha Ajjipura Shankar in OpenAIREUmair Khan;
Umair Khan
Umair Khan in OpenAIRESayed Eldin;
Rajesh Kumar;Sayed Eldin
Sayed Eldin in OpenAIREAhmed Galal;
Ahmed Galal
Ahmed Galal in OpenAIREdoi: 10.3390/en15218000
The government of Karnataka has resolved to promote and employ an increasing number of alternative fuels, particularly, wind energy. Selecting a windmill supplier is a key decision when developing a wind energy project, and investors must evaluate various qualitative and quantitative variables that interact symmetrically to discover the best source. As a result, a multi-criteria decision-making procedure is applied to choose a wind turbine provider for wind power projects. A variety of approaches have been used to address this judgment process, some of which were predicated on the use of multi-criteria judgment techniques alone or in conjunction with some different multiple-criteria decision approaches. In this study, the researchers advocated selecting windmill producers for geothermal power generation using a judgment method based on a spherical fuzzy system. After the analyses of the last stage of this research, turbine manufacturers for installations could be suggested. The purpose of this research was to develop a fuzzy multi-criteria foundation for choosing appropriate rotor makers for electricity production. Specialists can utilize the conclusions of this study to choose an appropriate windmill operator in other states, including for green initiatives of a similar nature.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15218000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15218000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu