- home
- Advanced Search
- Energy Research
- CN
- US
- KG
- Energies
- Energy Research
- CN
- US
- KG
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Yuan Qiao; Xucheng Duan; Kaisheng Huang; Yizhou Song; Jianan Qian;doi: 10.3390/en11102739
The two-stroke engine is a common power source for small and medium-sized unmanned aerial vehicles (UAV), which has wide civil and military applications. To improve the engine performance, we chose a prototype two-stroke small areoengine, and optimized the geometric parameters of the scavenging ports by performing one-dimensional (1D) and three-dimensional (3D) computational fluid dynamics (CFD) coupling simulations. The prototype engine is tested on a dynamometer to measure in-cylinder pressure curves, as a reference for subsequent simulations. A GT Power simulation model is established and validated against experimental data to provide initial conditions and boundary conditions for the subsequent AVL FIRE simulations. Four parameters are considered as optimal design factors in this research: Tilt angle of the central scavenging port, tilt angle of lateral scavenging ports, slip angle of lateral scavenging ports, and width ratio of the central scavenging port. An evaluation objective function based on the Benson/Bradham model is selected as the optimization goal. Two different operating conditions, including the take-off and cruise of the UAV are considered. The results include: (1) Orthogonal experiments are analyzed, and the significance of parameters are discussed; (2) the best factors combination is concluded, followed by simulation verification; (3) results before and after optimization are compared in details, including specific scavenging indexes (delivery ratio, trapping efficiency, scavenging efficiency, etc.), conventional performance indicators, and the sectional views of gas composition distribution inside the cylinder.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Xu Yang; Boyun Guo; Xiaohui Zhang;doi: 10.3390/en12101938
Fracture conductivity decline is a concern in the Tuscaloosa Marine Shale (TMS) wells due to the high content of clay in the shale. An analytical well productivity model was developed in this study considering the pressure-dependent conductivity of hydraulic fractures. The log-log diagnostic approach was used to identify the boundary-dominated flow regime rather than the linear flow regime. Case studies of seven TMS wells indicated that the proposed model allows approximation of the field data with good accuracy. Production data analyses with the model revealed that the pressure-dependent fracture conductivity in the TMS in the Mississippi section declines following a logarithmic mode, with dimensionless coefficient χ varying between 0.116 and 0.130. The pressure-dependent decline of fracture conductivity in the transient flow period is more significant than that in the boundary-dominated flow period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Lixin Miao; Jingjing Jiang; Ji Li; Bo Shen; Peng Yang; Bin Ye;doi: 10.3390/en81112368
In China, the power sector is currently the largest carbon emitter and the transportation sector is the fastest-growing carbon emitter. This paper proposes a model of solar-powered charging stations for electric vehicles to mitigate problems encountered in China’s renewable energy utilization processes and to cope with the increasing power demand by electric vehicles for the near future. This study applies the proposed model to Shenzhen City to verify its technical and economic feasibility. Modeling results showed that the total net present value of a photovoltaic power charging station that meets the daily electricity demand of 4500 kWh is $3,579,236 and that the cost of energy of the combined energy system is $0.098/kWh. In addition, the photovoltaic powered electric vehicle model has pollutant reduction potentials of 99.8%, 99.7% and 100% for carbon dioxide, sulfur dioxide, and nitrogen oxides, respectively, compared with a traditional gasoline-fueled car. Sensitivity analysis results indicated that interest rate has a relatively strong influence on COE (Cost of Energy). An increase in the interest rate from 0% to 6% increases COE from $0.027/kWh to $0.097/kWh. This analysis also suggests that carbon pricing promotes renewable energy only when the price of carbon is above $20/t.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81112368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 73 citations 73 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81112368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:MDPI AG Authors: Changbo Wang; Lixiao Zhang; Shuying Yang; Mingyue Pang;doi: 10.3390/en5082708
Small-scale bio-energy projects have been launched in rural areas of China and are considered as alternatives to fossil-fuel energy. However, energetic and environmental evaluation of these projects has rarely been carried out, though it is necessary for their long-term development. A village-level biomass gasification project provides an example. A hybrid life-cycle assessment (LCA) of its total nonrenewable energy (NE) cost and associated greenhouse gas (GHG) emissions is presented in this paper. The results show that the total energy cost for one joule of biomass gas output from the project is 2.93 J, of which 0.89 J is from nonrenewable energy, and the related GHG emission cost is 1.17 × 10−4 g CO2-eq over its designed life cycle of 20 years. To provide equivalent effective calorific value for cooking work, the utilization of one joule of biomass gas will lead to more life cycle NE cost by 0.07 J and more GHG emissions by 8.92 × 10−5 g CO2-eq compared to natural gas taking into consideration of the difference in combustion efficiency and calorific value. The small-scale bio-energy project has fallen into dilemma, i.e., struggling for survival, and for a more successful future development of village-level gasification projects, much effort is needed to tide over the plight of its development, such as high cost and low efficiency caused by decentralized construction, technical shortcomings and low utilization rate of by-products.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5082708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5082708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwedenPublisher:MDPI AG Funded by:EC | IVANHOE, EC | SUBLIMEEC| IVANHOE ,EC| SUBLIMEXiaojian Li; Yijia Zhao; Huadong Yao; Ming Zhao; Zhengxian Liu;doi: 10.3390/en13195049
Supercritical Carbon Dioxide (SCO2) is considered as a potential working fluid in next generation power and energy systems. The SCO2 Brayton cycle is advantaged with higher cycle efficiency, smaller compression work, and more compact layout, as compared with traditional cycles. When the inlet total condition of the compressor approaches the critical point of the working fluid, the cycle efficiency is further enhanced. However, the flow acceleration near the impeller inducer causes the fluid to enter two-phase region, which may lead to additional aerodynamic losses and flow instability. In this study, a new impeller inlet design method is proposed to achieve a better balance among the cycle efficiency, compressor compactness, and inducer condensation. This approach couples a concept of the maximum swallowing capacity of real gas and a new principle for condensation design. Firstly, the mass flow function of real gas centrifugal compressors is analytically expressed by non-dimensional parameters. An optimal inlet flow angle is derived to achieve the maximum swallowing capacity under a certain inlet relative Mach number, which leads to the minimum energy loss and a more compact geometry for the compressor. Secondly, a new condensation design principle is developed by proposing a novel concept of the two-zone inlet total condition for SCO2 compressors. In this new principle, the acceptable acceleration margin (AAM) is derived as a criterion to limit the impeller inlet condensation. The present inlet design method is validated in the design and simulation of a low-flow-coefficient compressor stage based on the real gas model. The mechanisms of flow accelerations in the impeller inducer, which form low-pressure regions and further produce condensation, are analyzed and clarified under different operating conditions. It is found that the proposed method is efficient to limit the condensation in the impeller inducer, keep the compactness of the compressor, and maintain a high cycle efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Naseem Ahmad; Yuting Jiang; Hamza Fawzy; Qun Zheng;doi: 10.3390/en13010210
In this article, a compound unit of swirl and impingement cooling techniques is designed to study the performance of flow and heat transfer using multi-conical nozzles in a leading-edge of a gas turbine blade. Reynolds Averaged Navier-Stokes equations and the Shear Stress Transport model are numerically solved under different nozzle Reynolds numbers and temperature ratios. Results indicated that the compound cooling unit could achieve a 99.7% increase in heat transfer enhancement by increasing the nozzle Reynolds number from 10,000 to 25,000 at a constant temperature ratio. Also, there is an 11% increase in the overall Nusselt number when the temperature ratio increases from 0.65 to 0.95 at identical nozzle Reynolds number. At 10,000 and 15,000 of nozzle Reynolds numbers, the compound cooling unit achieves 47.9% and 39.8% increases and 63.5% and 66.3% increases in the overall Nusselt number comparing with the available experimental swirl and impingement models, respectively. A correlation for the overall Nusselt number is derived as a function of nozzle Reynolds number and temperature ratio to optimize the results. The current study concluded that the extremely high zones and uniform distribution of heat transfer are perfectly achieved with regard to the characteristics of heat transfer of the compound cooling unit.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13010210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13010210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Fernando Roberto dos Santos; Giovana Katie Wiecheteck; Jorim Sousa das Virgens Filho; Gabriel Alfredo Carranza; +2 AuthorsFernando Roberto dos Santos; Giovana Katie Wiecheteck; Jorim Sousa das Virgens Filho; Gabriel Alfredo Carranza; Terrence Lynn Chambers; Afef Fekih;doi: 10.3390/en15176274
Freshwater scarcity is a significant concern due to climate change in some regions of Brazil; likewise, evaporation rates have increased over the years. Floating photovoltaic systems can reduce water evaporation from reservoirs by suppressing the evaporating area on the water surface. This work evaluated the effects of floating photovoltaic systems on water evaporation rates in the Passaúna Reservoir, southeastern Brazil. Meteorological data such as temperature, humidity, wind speed, and solar radiation were used to estimate the rate of water evaporation using FAO Penman–Monteith, Linacre, Hargreaves–Samani, Rohwer, and Valiantzas methods. The methods were tested with the Kruskal–Wallis test, including measured evaporation from the nearest meteorological station to determine whether there were significant differences between the medians of the methods considering a 95% confidence level for hypothesis testing. All methods differed from the standard method recommended by the FAO Penman–Monteith. Simulations with more extensive coverage areas of the floating photovoltaic system were carried out to verify the relationship between the surface water coverage area and the evaporation reduction efficiency provided by the system and to obtain the avoided water evaporation volume. For the floating photovoltaic system with a coverage area of 1265.14 m2, an efficiency of 60.20% was obtained in reducing water evaporation; future expansions of the FPS were simulated with coverage areas corresponding to energy production capacities of 1 MWp, 2.5 MWp, and 5 MWp. The results indicated that for a floating photovoltaic system coverage area corresponding to 5 MWp of energy production capacity, the saved water volume would be enough to supply over 196 people for a year. More significant areas, such as covering up the entire available surface area of the Passaúna reservoir with a floating photovoltaic system, could save up to 2.69 hm3 of water volume annually, representing a more significant value for the public management of water resources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Shaohua Guan; Xiaocun Guan; Baoqi Wu; Jingbin Shi;doi: 10.3390/en15207803
The influence of electromagnetic induction coil launcher (EICL) system parameters on the launch performance was analyzed, and a method for measuring the launch performance of an EICL system with a muzzle velocity and energy conversion efficiency was proposed. The EICL system mainly includes a pulse power supply and launcher. The parameters of the pulse power supply mainly include the discharge voltage and the capacitance value of the capacitor bank. The structural parameters of the launcher mainly include the bore size of the launcher, the air gap length between the armature and the drive coil, the length and width of the drive coil, and the trigger position of the armature. Change in single or multiple parameters in the launch system will influence the launch performance. The influence of single or multiple parameters on the launch performance was summarized, and the physical law as analyzed. The influence law of the EICL system parameters on the launch performance was obtained, which lays a theoretical foundation for the optimization design of EICL. Finally, experimental verification was carried out by a single-stage test platform.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Mohamad Abou Houran; Xu Yang; Wenjie Chen;doi: 10.3390/en11123488
Many studies have investigated resonator structures and winding methods. The aims of this paper are as follows. First, the paper proposes an optimized winding model for a bio-inspired joint for a wireless power transfer (WPT) system. The joint consists of a small spherical structure, which rotates inside a hemispherical structure. The transmitter coil (Tx) is wound on the hemisphere structure, and the receiver coil (Rx) is wound on the small sphere. The power is transferred while rotating Rx over a wide range of angular misalignment. In addition, the algorithm design of the proposed winding method is given to get an optimized model. Moreover, the circuit analysis of the WPT system is discussed. Second, the magnetic field density is investigated considering a safety issue, which is linked to human exposure to electromagnetic fields (EMFs). Moreover, EMF mitigation methods are proposed and discussed in detail. Finally, the simulation results are validated by experiments, which have confirmed that the proposed winding method allows the system to rotate up to 85 degrees and achieve an efficiency above 86%. The proposed winding method for the WPT system can be a good technique for some robotic applications or a future replacement of the human joint.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11123488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11123488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 SpainPublisher:MDPI AG Funded by:EC | JUST2CE, EC | ReTraCEEC| JUST2CE ,EC| ReTraCEPatrizia Ghisellini; Amos Ncube; Gianni D’Ambrosio; Renato Passaro; Sergio Ulgiati;doi: 10.3390/en14248561
In this study, our aim was to explore the potential energy savings obtainable from the recycling of 1 tonne of Construction and Demolition Waste (C&DW) generated in the Metropolitan City of Naples. The main fraction composing the functional unit are mixed C&DW, soil and stones, concrete, iron, steel and aluminium. The results evidence that the recycling option for the C&DW is better than landfilling as well as that the production of recycled aggregates is environmentally sustainable since the induced energy and environmental impacts are lower than the avoided energy and environmental impacts in the life cycle of recycled aggregates. This LCA study shows that the transition to the Circular Economy offers many opportunities for improving the energy and environmental performances of the construction sector in the life cycle of construction materials by means of internal recycling strategies (recycling C&DW into recycled aggregates, recycled steel, iron and aluminum) as well as external recycling by using input of other sectors (agri-food by-products) for the manufacturing of construction materials. In this way, the C&D sector also contributes to realizing the energy and bioeconomy transition by disentangling itself from fossil fuel dependence.
Energies arrow_drop_down Diposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down Diposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Yuan Qiao; Xucheng Duan; Kaisheng Huang; Yizhou Song; Jianan Qian;doi: 10.3390/en11102739
The two-stroke engine is a common power source for small and medium-sized unmanned aerial vehicles (UAV), which has wide civil and military applications. To improve the engine performance, we chose a prototype two-stroke small areoengine, and optimized the geometric parameters of the scavenging ports by performing one-dimensional (1D) and three-dimensional (3D) computational fluid dynamics (CFD) coupling simulations. The prototype engine is tested on a dynamometer to measure in-cylinder pressure curves, as a reference for subsequent simulations. A GT Power simulation model is established and validated against experimental data to provide initial conditions and boundary conditions for the subsequent AVL FIRE simulations. Four parameters are considered as optimal design factors in this research: Tilt angle of the central scavenging port, tilt angle of lateral scavenging ports, slip angle of lateral scavenging ports, and width ratio of the central scavenging port. An evaluation objective function based on the Benson/Bradham model is selected as the optimization goal. Two different operating conditions, including the take-off and cruise of the UAV are considered. The results include: (1) Orthogonal experiments are analyzed, and the significance of parameters are discussed; (2) the best factors combination is concluded, followed by simulation verification; (3) results before and after optimization are compared in details, including specific scavenging indexes (delivery ratio, trapping efficiency, scavenging efficiency, etc.), conventional performance indicators, and the sectional views of gas composition distribution inside the cylinder.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Xu Yang; Boyun Guo; Xiaohui Zhang;doi: 10.3390/en12101938
Fracture conductivity decline is a concern in the Tuscaloosa Marine Shale (TMS) wells due to the high content of clay in the shale. An analytical well productivity model was developed in this study considering the pressure-dependent conductivity of hydraulic fractures. The log-log diagnostic approach was used to identify the boundary-dominated flow regime rather than the linear flow regime. Case studies of seven TMS wells indicated that the proposed model allows approximation of the field data with good accuracy. Production data analyses with the model revealed that the pressure-dependent fracture conductivity in the TMS in the Mississippi section declines following a logarithmic mode, with dimensionless coefficient χ varying between 0.116 and 0.130. The pressure-dependent decline of fracture conductivity in the transient flow period is more significant than that in the boundary-dominated flow period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Lixin Miao; Jingjing Jiang; Ji Li; Bo Shen; Peng Yang; Bin Ye;doi: 10.3390/en81112368
In China, the power sector is currently the largest carbon emitter and the transportation sector is the fastest-growing carbon emitter. This paper proposes a model of solar-powered charging stations for electric vehicles to mitigate problems encountered in China’s renewable energy utilization processes and to cope with the increasing power demand by electric vehicles for the near future. This study applies the proposed model to Shenzhen City to verify its technical and economic feasibility. Modeling results showed that the total net present value of a photovoltaic power charging station that meets the daily electricity demand of 4500 kWh is $3,579,236 and that the cost of energy of the combined energy system is $0.098/kWh. In addition, the photovoltaic powered electric vehicle model has pollutant reduction potentials of 99.8%, 99.7% and 100% for carbon dioxide, sulfur dioxide, and nitrogen oxides, respectively, compared with a traditional gasoline-fueled car. Sensitivity analysis results indicated that interest rate has a relatively strong influence on COE (Cost of Energy). An increase in the interest rate from 0% to 6% increases COE from $0.027/kWh to $0.097/kWh. This analysis also suggests that carbon pricing promotes renewable energy only when the price of carbon is above $20/t.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81112368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 73 citations 73 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81112368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:MDPI AG Authors: Changbo Wang; Lixiao Zhang; Shuying Yang; Mingyue Pang;doi: 10.3390/en5082708
Small-scale bio-energy projects have been launched in rural areas of China and are considered as alternatives to fossil-fuel energy. However, energetic and environmental evaluation of these projects has rarely been carried out, though it is necessary for their long-term development. A village-level biomass gasification project provides an example. A hybrid life-cycle assessment (LCA) of its total nonrenewable energy (NE) cost and associated greenhouse gas (GHG) emissions is presented in this paper. The results show that the total energy cost for one joule of biomass gas output from the project is 2.93 J, of which 0.89 J is from nonrenewable energy, and the related GHG emission cost is 1.17 × 10−4 g CO2-eq over its designed life cycle of 20 years. To provide equivalent effective calorific value for cooking work, the utilization of one joule of biomass gas will lead to more life cycle NE cost by 0.07 J and more GHG emissions by 8.92 × 10−5 g CO2-eq compared to natural gas taking into consideration of the difference in combustion efficiency and calorific value. The small-scale bio-energy project has fallen into dilemma, i.e., struggling for survival, and for a more successful future development of village-level gasification projects, much effort is needed to tide over the plight of its development, such as high cost and low efficiency caused by decentralized construction, technical shortcomings and low utilization rate of by-products.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5082708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5082708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwedenPublisher:MDPI AG Funded by:EC | IVANHOE, EC | SUBLIMEEC| IVANHOE ,EC| SUBLIMEXiaojian Li; Yijia Zhao; Huadong Yao; Ming Zhao; Zhengxian Liu;doi: 10.3390/en13195049
Supercritical Carbon Dioxide (SCO2) is considered as a potential working fluid in next generation power and energy systems. The SCO2 Brayton cycle is advantaged with higher cycle efficiency, smaller compression work, and more compact layout, as compared with traditional cycles. When the inlet total condition of the compressor approaches the critical point of the working fluid, the cycle efficiency is further enhanced. However, the flow acceleration near the impeller inducer causes the fluid to enter two-phase region, which may lead to additional aerodynamic losses and flow instability. In this study, a new impeller inlet design method is proposed to achieve a better balance among the cycle efficiency, compressor compactness, and inducer condensation. This approach couples a concept of the maximum swallowing capacity of real gas and a new principle for condensation design. Firstly, the mass flow function of real gas centrifugal compressors is analytically expressed by non-dimensional parameters. An optimal inlet flow angle is derived to achieve the maximum swallowing capacity under a certain inlet relative Mach number, which leads to the minimum energy loss and a more compact geometry for the compressor. Secondly, a new condensation design principle is developed by proposing a novel concept of the two-zone inlet total condition for SCO2 compressors. In this new principle, the acceptable acceleration margin (AAM) is derived as a criterion to limit the impeller inlet condensation. The present inlet design method is validated in the design and simulation of a low-flow-coefficient compressor stage based on the real gas model. The mechanisms of flow accelerations in the impeller inducer, which form low-pressure regions and further produce condensation, are analyzed and clarified under different operating conditions. It is found that the proposed method is efficient to limit the condensation in the impeller inducer, keep the compactness of the compressor, and maintain a high cycle efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Naseem Ahmad; Yuting Jiang; Hamza Fawzy; Qun Zheng;doi: 10.3390/en13010210
In this article, a compound unit of swirl and impingement cooling techniques is designed to study the performance of flow and heat transfer using multi-conical nozzles in a leading-edge of a gas turbine blade. Reynolds Averaged Navier-Stokes equations and the Shear Stress Transport model are numerically solved under different nozzle Reynolds numbers and temperature ratios. Results indicated that the compound cooling unit could achieve a 99.7% increase in heat transfer enhancement by increasing the nozzle Reynolds number from 10,000 to 25,000 at a constant temperature ratio. Also, there is an 11% increase in the overall Nusselt number when the temperature ratio increases from 0.65 to 0.95 at identical nozzle Reynolds number. At 10,000 and 15,000 of nozzle Reynolds numbers, the compound cooling unit achieves 47.9% and 39.8% increases and 63.5% and 66.3% increases in the overall Nusselt number comparing with the available experimental swirl and impingement models, respectively. A correlation for the overall Nusselt number is derived as a function of nozzle Reynolds number and temperature ratio to optimize the results. The current study concluded that the extremely high zones and uniform distribution of heat transfer are perfectly achieved with regard to the characteristics of heat transfer of the compound cooling unit.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13010210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13010210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Fernando Roberto dos Santos; Giovana Katie Wiecheteck; Jorim Sousa das Virgens Filho; Gabriel Alfredo Carranza; +2 AuthorsFernando Roberto dos Santos; Giovana Katie Wiecheteck; Jorim Sousa das Virgens Filho; Gabriel Alfredo Carranza; Terrence Lynn Chambers; Afef Fekih;doi: 10.3390/en15176274
Freshwater scarcity is a significant concern due to climate change in some regions of Brazil; likewise, evaporation rates have increased over the years. Floating photovoltaic systems can reduce water evaporation from reservoirs by suppressing the evaporating area on the water surface. This work evaluated the effects of floating photovoltaic systems on water evaporation rates in the Passaúna Reservoir, southeastern Brazil. Meteorological data such as temperature, humidity, wind speed, and solar radiation were used to estimate the rate of water evaporation using FAO Penman–Monteith, Linacre, Hargreaves–Samani, Rohwer, and Valiantzas methods. The methods were tested with the Kruskal–Wallis test, including measured evaporation from the nearest meteorological station to determine whether there were significant differences between the medians of the methods considering a 95% confidence level for hypothesis testing. All methods differed from the standard method recommended by the FAO Penman–Monteith. Simulations with more extensive coverage areas of the floating photovoltaic system were carried out to verify the relationship between the surface water coverage area and the evaporation reduction efficiency provided by the system and to obtain the avoided water evaporation volume. For the floating photovoltaic system with a coverage area of 1265.14 m2, an efficiency of 60.20% was obtained in reducing water evaporation; future expansions of the FPS were simulated with coverage areas corresponding to energy production capacities of 1 MWp, 2.5 MWp, and 5 MWp. The results indicated that for a floating photovoltaic system coverage area corresponding to 5 MWp of energy production capacity, the saved water volume would be enough to supply over 196 people for a year. More significant areas, such as covering up the entire available surface area of the Passaúna reservoir with a floating photovoltaic system, could save up to 2.69 hm3 of water volume annually, representing a more significant value for the public management of water resources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Shaohua Guan; Xiaocun Guan; Baoqi Wu; Jingbin Shi;doi: 10.3390/en15207803
The influence of electromagnetic induction coil launcher (EICL) system parameters on the launch performance was analyzed, and a method for measuring the launch performance of an EICL system with a muzzle velocity and energy conversion efficiency was proposed. The EICL system mainly includes a pulse power supply and launcher. The parameters of the pulse power supply mainly include the discharge voltage and the capacitance value of the capacitor bank. The structural parameters of the launcher mainly include the bore size of the launcher, the air gap length between the armature and the drive coil, the length and width of the drive coil, and the trigger position of the armature. Change in single or multiple parameters in the launch system will influence the launch performance. The influence of single or multiple parameters on the launch performance was summarized, and the physical law as analyzed. The influence law of the EICL system parameters on the launch performance was obtained, which lays a theoretical foundation for the optimization design of EICL. Finally, experimental verification was carried out by a single-stage test platform.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Mohamad Abou Houran; Xu Yang; Wenjie Chen;doi: 10.3390/en11123488
Many studies have investigated resonator structures and winding methods. The aims of this paper are as follows. First, the paper proposes an optimized winding model for a bio-inspired joint for a wireless power transfer (WPT) system. The joint consists of a small spherical structure, which rotates inside a hemispherical structure. The transmitter coil (Tx) is wound on the hemisphere structure, and the receiver coil (Rx) is wound on the small sphere. The power is transferred while rotating Rx over a wide range of angular misalignment. In addition, the algorithm design of the proposed winding method is given to get an optimized model. Moreover, the circuit analysis of the WPT system is discussed. Second, the magnetic field density is investigated considering a safety issue, which is linked to human exposure to electromagnetic fields (EMFs). Moreover, EMF mitigation methods are proposed and discussed in detail. Finally, the simulation results are validated by experiments, which have confirmed that the proposed winding method allows the system to rotate up to 85 degrees and achieve an efficiency above 86%. The proposed winding method for the WPT system can be a good technique for some robotic applications or a future replacement of the human joint.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11123488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11123488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 SpainPublisher:MDPI AG Funded by:EC | JUST2CE, EC | ReTraCEEC| JUST2CE ,EC| ReTraCEPatrizia Ghisellini; Amos Ncube; Gianni D’Ambrosio; Renato Passaro; Sergio Ulgiati;doi: 10.3390/en14248561
In this study, our aim was to explore the potential energy savings obtainable from the recycling of 1 tonne of Construction and Demolition Waste (C&DW) generated in the Metropolitan City of Naples. The main fraction composing the functional unit are mixed C&DW, soil and stones, concrete, iron, steel and aluminium. The results evidence that the recycling option for the C&DW is better than landfilling as well as that the production of recycled aggregates is environmentally sustainable since the induced energy and environmental impacts are lower than the avoided energy and environmental impacts in the life cycle of recycled aggregates. This LCA study shows that the transition to the Circular Economy offers many opportunities for improving the energy and environmental performances of the construction sector in the life cycle of construction materials by means of internal recycling strategies (recycling C&DW into recycled aggregates, recycled steel, iron and aluminum) as well as external recycling by using input of other sectors (agri-food by-products) for the manufacturing of construction materials. In this way, the C&D sector also contributes to realizing the energy and bioeconomy transition by disentangling itself from fossil fuel dependence.
Energies arrow_drop_down Diposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down Diposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu