- home
- Advanced Search
- Energy Research
- Restricted
- CN
- KR
- Journal of Power Sources
- Energy Research
- Restricted
- CN
- KR
- Journal of Power Sources
description Publicationkeyboard_double_arrow_right Article , Journal 2011 Korea (Republic of), Italy, Korea (Republic of)Publisher:Elsevier BV Authors: CALISE, FRANCESCO; Restucccia G.; Sammes N.;handle: 11588/386739
Abstract This paper analyzes the thermodynamic and electrochemical dynamic performance of an anode supported micro-tubular solid oxide fuel cell (SOFC) fed by different types of fuel. The micro-tubular SOFC used is anode supported, consisting of a NiO and Gd 0.2 Ce 0.8 O 2− x (GDC) cermet anode, thin GDC electrolyte, and a La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3− y (LSCF) and GDC cermet cathode. The fabrication of the cells under investigation is briefly summarized, with emphasis on the innovations with respect to traditional techniques. Such micro-tubular cells were tested using a Test Stand consisting of: a vertical tubular furnace, an electrical load, a galvanostast, a bubbler, gas pipelines, temperature, pressure and flow meters. The tests on the micro-SOFC were performed using H 2 , CO, CH 4 and H 2 O in different combinations at 550 °C, to determine the cell polarization curves under several load cycles. Long-term experimental tests were also performed in order to assess degradation of the electrochemical performance of the cell. Results of the tests were analyzed aiming at determining the sources of the cell performance degradation. Authors concluded that the cell under investigation is particularly sensitive to the carbon deposition which significantly reduces cell performance, after few cycles, when fed by light hydrocarbons. A significant performance degradation is also detected when hydrogen is used as fuel. In this case, the authors ascribe the degradation to the micro-cracks, the change in materials crystalline structure and problems with electrical connections.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.06.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.06.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SerbiaPublisher:Elsevier BV Pengfei Zhu; Zhen Wu; Jing Yao; Leilei Guo; Hongli Yan; Serge Nyallang Nyamsi; Sandra Kurko; Fusheng Yang; Zaoxiao Zhang;Abstract In order to uncover the inner working mechanism and performance of solid oxide fuel cell (SOFC) with biomass gasification syngas as fuel, a two dimensional SOFC multi-physical field model is established. This study makes up for the deficiency that the previous studies of coupling biomass gasification unit and SOFC stack mostly stay at the system level. The results show that the SOFC fueled by the syngas produced from gasification of biomass with steam as the agent has the best performance. The peak power density could achieve approximately 10240 W m−2. With the improvement of operating temperature, the peak power density of SOFC will be increased. At the temperature of 1123 K, the peak power density could achieve about 15128 W m−2. The average reaction rate of water gas shift (WGS) reaction is −29.73 mol m−3 s−1 when the operating temperature is 1123 K. This indicates that the WGS reaction will proceed in reverse direction at high temperatures, thereby reducing the hydrogen concentration. In addition, increase in the anode flux and decrease in the cell length lead to the increase of SOFC current density. In general, this work could provide guidance for the optimization and practical application of SOFC using biomass syngas as fuel.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2021.230470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 23visibility views 23 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2021.230470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 SwedenPublisher:Elsevier BV Funded by:EC | TRISOFCEC| TRISOFCHuiqing Hu; Qizhao Lin; Zhigang Zhu; Bin Zhu; Xianrong Liu;Abstract Electrolyte-free fuel cell (EFFC) which holds the similar function with the traditional solid oxide fuel cell (SOFC) but possesses a completely different structure, has draw much attention during these years. Herein, we report a complex of MZSDC–LNCS (Mg 0.4 Zn 0.6 O/Ce 0.8 Sm 0.2 O 2− δ –Li 0.3 Ni 0.6 Cu 0.07 Sr 0.03 O 2− δ ) for EFFC that demonstrates a high electrochemical power output of about 600 mW cm −2 at 630 °C. The co-doped MZSDC is synthesized by a co-precipitation method. Semiconductor material of LNCS is synthesized by direct solid state reaction. The microstructure and morphology of the composite materials are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy-dispersive X-ray spectrometer (EDS). The performance of the cell with a large size (6 × 6 cm 2 ) is comparable or even better than that of the conventional solid oxide fuel cells with large sizes. The maximum power output of 9.28 W is obtained from the large-size cell at 600 °C. This paper develops a new functional nanocomposite for EFFC which is conducive to its commercial use.
Publikationer från K... arrow_drop_down http://dx.doi.org/10.1016/j.jp...Other literature typeData sources: European Union Open Data PortalAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2013.09.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publikationer från K... arrow_drop_down http://dx.doi.org/10.1016/j.jp...Other literature typeData sources: European Union Open Data PortalAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2013.09.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 SwedenPublisher:Elsevier BV Funded by:EC | TRISOFCEC| TRISOFCLiangdong Fan; Liangdong Fan; Chengyang Wang; Bin Zhu; Bin Zhu; Mingming Chen;In the last ten years, the research of solid oxide fuel cells (SOFCs) or ceramic fuel cells (CFC) had focused on reducing the working temperature through the development of novel materials, especially the high ionic conductive electrolyte materials. Many progresses on single-phase electrolyte materials with the enhanced ionic conductivity have been made, but they are still far from the criteria of commercialization. The studies of ceria oxide based composite electrolytes give an alternative solution to these problems because of their impressive ionic conductivities and tunable ionic conduction behaviors. Significant advances in the understanding the ceria based composite material and construction of efficient fuel cell systems have been achieved within a short period. This report reviews recent developments of ceria-based composite from different aspects: materials, fundamentals, technologies, fabrication/construction parameters, electrochemistry and theoretical studies. Particular attention is given to ceria-carbonate (nano)composite, including its fuel cell performance, multi-ionic transport properties, advanced applications, corresponding electrode material and stability concerning. Besides, several novel fuel cell (FC) concepts like nanowire FC, all-nanocomposite FC and single-component/electrolyte-free fuel cell (SC-EFFC) are presented. This mini-review emphasizes the promise of ceria-based composites for advanced FC application and highlights the breakthrough of SC-EFFC research for high efficient energy conversion.
Publikationer från K... arrow_drop_down http://dx.doi.org/10.1016/j.jp...Other literature typeData sources: European Union Open Data PortalAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2013.01.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu234 citations 234 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Publikationer från K... arrow_drop_down http://dx.doi.org/10.1016/j.jp...Other literature typeData sources: European Union Open Data PortalAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2013.01.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011 Korea (Republic of), Italy, Korea (Republic of)Publisher:Elsevier BV Authors: CALISE, FRANCESCO; Restucccia G.; Sammes N.;handle: 11588/386739
Abstract This paper analyzes the thermodynamic and electrochemical dynamic performance of an anode supported micro-tubular solid oxide fuel cell (SOFC) fed by different types of fuel. The micro-tubular SOFC used is anode supported, consisting of a NiO and Gd 0.2 Ce 0.8 O 2− x (GDC) cermet anode, thin GDC electrolyte, and a La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3− y (LSCF) and GDC cermet cathode. The fabrication of the cells under investigation is briefly summarized, with emphasis on the innovations with respect to traditional techniques. Such micro-tubular cells were tested using a Test Stand consisting of: a vertical tubular furnace, an electrical load, a galvanostast, a bubbler, gas pipelines, temperature, pressure and flow meters. The tests on the micro-SOFC were performed using H 2 , CO, CH 4 and H 2 O in different combinations at 550 °C, to determine the cell polarization curves under several load cycles. Long-term experimental tests were also performed in order to assess degradation of the electrochemical performance of the cell. Results of the tests were analyzed aiming at determining the sources of the cell performance degradation. Authors concluded that the cell under investigation is particularly sensitive to the carbon deposition which significantly reduces cell performance, after few cycles, when fed by light hydrocarbons. A significant performance degradation is also detected when hydrogen is used as fuel. In this case, the authors ascribe the degradation to the micro-cracks, the change in materials crystalline structure and problems with electrical connections.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.06.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.06.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SerbiaPublisher:Elsevier BV Pengfei Zhu; Zhen Wu; Jing Yao; Leilei Guo; Hongli Yan; Serge Nyallang Nyamsi; Sandra Kurko; Fusheng Yang; Zaoxiao Zhang;Abstract In order to uncover the inner working mechanism and performance of solid oxide fuel cell (SOFC) with biomass gasification syngas as fuel, a two dimensional SOFC multi-physical field model is established. This study makes up for the deficiency that the previous studies of coupling biomass gasification unit and SOFC stack mostly stay at the system level. The results show that the SOFC fueled by the syngas produced from gasification of biomass with steam as the agent has the best performance. The peak power density could achieve approximately 10240 W m−2. With the improvement of operating temperature, the peak power density of SOFC will be increased. At the temperature of 1123 K, the peak power density could achieve about 15128 W m−2. The average reaction rate of water gas shift (WGS) reaction is −29.73 mol m−3 s−1 when the operating temperature is 1123 K. This indicates that the WGS reaction will proceed in reverse direction at high temperatures, thereby reducing the hydrogen concentration. In addition, increase in the anode flux and decrease in the cell length lead to the increase of SOFC current density. In general, this work could provide guidance for the optimization and practical application of SOFC using biomass syngas as fuel.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2021.230470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 23visibility views 23 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2021.230470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 SwedenPublisher:Elsevier BV Funded by:EC | TRISOFCEC| TRISOFCHuiqing Hu; Qizhao Lin; Zhigang Zhu; Bin Zhu; Xianrong Liu;Abstract Electrolyte-free fuel cell (EFFC) which holds the similar function with the traditional solid oxide fuel cell (SOFC) but possesses a completely different structure, has draw much attention during these years. Herein, we report a complex of MZSDC–LNCS (Mg 0.4 Zn 0.6 O/Ce 0.8 Sm 0.2 O 2− δ –Li 0.3 Ni 0.6 Cu 0.07 Sr 0.03 O 2− δ ) for EFFC that demonstrates a high electrochemical power output of about 600 mW cm −2 at 630 °C. The co-doped MZSDC is synthesized by a co-precipitation method. Semiconductor material of LNCS is synthesized by direct solid state reaction. The microstructure and morphology of the composite materials are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy-dispersive X-ray spectrometer (EDS). The performance of the cell with a large size (6 × 6 cm 2 ) is comparable or even better than that of the conventional solid oxide fuel cells with large sizes. The maximum power output of 9.28 W is obtained from the large-size cell at 600 °C. This paper develops a new functional nanocomposite for EFFC which is conducive to its commercial use.
Publikationer från K... arrow_drop_down http://dx.doi.org/10.1016/j.jp...Other literature typeData sources: European Union Open Data PortalAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2013.09.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publikationer från K... arrow_drop_down http://dx.doi.org/10.1016/j.jp...Other literature typeData sources: European Union Open Data PortalAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2013.09.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 SwedenPublisher:Elsevier BV Funded by:EC | TRISOFCEC| TRISOFCLiangdong Fan; Liangdong Fan; Chengyang Wang; Bin Zhu; Bin Zhu; Mingming Chen;In the last ten years, the research of solid oxide fuel cells (SOFCs) or ceramic fuel cells (CFC) had focused on reducing the working temperature through the development of novel materials, especially the high ionic conductive electrolyte materials. Many progresses on single-phase electrolyte materials with the enhanced ionic conductivity have been made, but they are still far from the criteria of commercialization. The studies of ceria oxide based composite electrolytes give an alternative solution to these problems because of their impressive ionic conductivities and tunable ionic conduction behaviors. Significant advances in the understanding the ceria based composite material and construction of efficient fuel cell systems have been achieved within a short period. This report reviews recent developments of ceria-based composite from different aspects: materials, fundamentals, technologies, fabrication/construction parameters, electrochemistry and theoretical studies. Particular attention is given to ceria-carbonate (nano)composite, including its fuel cell performance, multi-ionic transport properties, advanced applications, corresponding electrode material and stability concerning. Besides, several novel fuel cell (FC) concepts like nanowire FC, all-nanocomposite FC and single-component/electrolyte-free fuel cell (SC-EFFC) are presented. This mini-review emphasizes the promise of ceria-based composites for advanced FC application and highlights the breakthrough of SC-EFFC research for high efficient energy conversion.
Publikationer från K... arrow_drop_down http://dx.doi.org/10.1016/j.jp...Other literature typeData sources: European Union Open Data PortalAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2013.01.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu234 citations 234 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Publikationer från K... arrow_drop_down http://dx.doi.org/10.1016/j.jp...Other literature typeData sources: European Union Open Data PortalAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2013.01.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu