- home
- Advanced Search
- Energy Research
- biological sciences
- GB
- JP
- KR
- Energy Research
- biological sciences
- GB
- JP
- KR
description Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Pil Joo Kim; Gil Won Kim; Ho Gyeong Chae; Song Rae Cho; Jeong Gu Lee;pmid: 34666093
Plastic film mulching (FM) became a general practice to enhance crop productivity and its net primary production (NPP), but it can increase greenhouse gas (GHG) emissions. The proper addition of organic amendments might effectively decrease the impact of FM on global warming. To evaluate the feasibility of biomass addition on decreasing this negative influence, cover crop biomass as a green manure was incorporated with different recycling levels (0-100% of aboveground biomass) under FM and no-mulching. The net global warming potential (GWP) which integrated with soil C stock change and GHG (N2O and CH4) fluxes with CO2-equivalent was evaluated during maize cultivation. Under the same biomass incorporation, FM significantly enhanced the grain productivity and NPP of maize by 22-61 and 18-58% over no-mulching, respectively. In contrast, FM also highly increased the respired C loss, which was 11-95% higher than NPP increase, over no-mulching. Irrespective with biomass recycling ratio and mulching system, negative NECB which indicates the decrease of soil C stock was observed, mainly due to big harvest removal. FM decreased more soil C stock by 57-158% over no-mulching, but its C stock was clearly increased with increasing biomass addition. FM significantly increased total N2O and CH4 fluxes by 4-61 and 140-600% over no-mulching, respectively. Soil C stock changes mainly decided net GWP scale, but N2O and CH4 fluxes negligibly influenced. As a result, FM highly increased net GWP over no-mulching, while this net GWP was clearly decreased with increasing biomass application. However, cover cropping, and its biomass recycling was not enough to compensate the negative impact of FM on global warming. Therefore, more biomass incorporation might be essential to compensate this negative effect of FM.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Public Library of Science (PLoS) Authors: Leonardo S. Miranda; Vera L. Imperatriz-Fonseca; Tereza C. Giannini;Although the impacts of climate change on biodiversity are increasing worldwide, few studies have attempted to forecast these impacts on Amazon Tropical Forest. In this study, we estimated the impact of climate change on Amazonian avian assemblages considering range shifts, species loss, vulnerability of ecosystem functioning, future effectiveness of current protected areas and potential climatically stable areas for conservation actions. Species distribution modelling based on two algorithms and three different scenarios of climate change was used to forecast 501 avian species, organized on main ecosystem functions (frugivores, insectivores and nectarivores) for years 2050 and 2070. Considering the entire study area, we estimated that between 4 and 19% of the species will find no suitable habitat. Inside the currently established protected areas, species loss could be over 70%. Our results suggest that frugivores are the most sensitive guild, which could bring consequences on seed dispersal functions and on natural regeneration. Moreover, we identified the western and northern parts of the study area as climatically stable. Climate change will potentially affect avian assemblages in southeastern Amazonia with detrimental consequences to their ecosystem functions. Information provided here is essential to conservation practitioners and decision makers to help on planning their actions.
PLoS ONE arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0215229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0215229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United KingdomPublisher:Wiley Frank Rosell; Ruairidh D. Campbell; Ruairidh D. Campbell; Ruairidh D. Campbell; David W. Macdonald; Pierre Nouvellet; Chris Newman;pmid: 24501052
AbstractEcologists are increasingly aware of the importance of environmental variability in natural systems. Climate change is affecting both the mean and the variability in weather and, in particular, the effect of changes in variability is poorly understood. Organisms are subject to selection imposed by both the mean and the range of environmental variation experienced by their ancestors. Changes in the variability in a critical environmental factor may therefore have consequences for vital rates and population dynamics. Here, we examine ≥90‐year trends in different components of climate (precipitation mean and coefficient of variation (CV); temperature mean, seasonal amplitude and residual variance) and consider the effects of these components on survival and recruitment in a population of Eurasian beavers (n = 242) over 13 recent years. Within climatic data, no trends in precipitation were detected, but trends in all components of temperature were observed, with mean and residual variance increasing and seasonal amplitude decreasing over time. A higher survival rate was linked (in order of influence based on Akaike weights) to lower precipitation CV (kits, juveniles and dominant adults), lower residual variance of temperature (dominant adults) and lower mean precipitation (kits and juveniles). No significant effects were found on the survival of nondominant adults, although the sample size for this category was low. Greater recruitment was linked (in order of influence) to higher seasonal amplitude of temperature, lower mean precipitation, lower residual variance in temperature and higher precipitation CV. Both climate means and variance, thus proved significant to population dynamics; although, overall, components describing variance were more influential than those describing mean values. That environmental variation proves significant to a generalist, wide‐ranging species, at the slow end of the slow‐fast continuum of life histories, has broad implications for population regulation and the evolution of life histories.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2012.02739.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2012.02739.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Antonio Lupini; Maria Polsia Princi; Fabrizio Araniti; Anthony J. Miller; Francesco Sunseri; Maria Rosa Abenavoli;Urea is the most common nitrogen (N) fertilizer in agriculture, due to its cheaper price and high N content. Although the reciprocal influence between NO3- and NH4+ nutrition are well known, urea (U) interactions with these N-inorganic forms are poorly studied. Here, the responses of two tomato genotypes to ammonium nitrate (AN), U alone or in combination were investigated. Significant differences in root and shoot biomass between genotypes were observed. Under AN+U supply, Linosa showed higher biomass compared to UC82, exhibiting also higher values for many root architectural traits. Linosa showed higher Nitrogen Uptake (NUpE) and Utilization Efficiency (NUtE) compared to UC82, under AN+U nutrition. Interestingly, Linosa exhibited also a significantly higher DUR3 transcript abundance. These results underline the beneficial effect of AN+U nutrition, highlighting new molecular and physiological strategies for selecting crops that can be used for more sustainable agriculture. The data suggest that translocation and utilization (NUtE) might be a more important component of NUE than uptake (NUpE) in tomato. Genetic variation could be a source for useful NUE traits in tomato; further experiments are needed to dissect the NUtE components that confer a higher ability to utilize N in Linosa.
Journal of Plant Phy... arrow_drop_down Journal of Plant PhysiologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jplph.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Plant Phy... arrow_drop_down Journal of Plant PhysiologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jplph.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 JapanPublisher:Elsevier BV Wataru Hotta; Satoshi N. Suzuki; Takahiro Inoue; Futoshi Nakamura; Hideaki Shibata; Toshihiko Hara; Satoshi Ishibashi; Toshiaki Owari; Junko Morimoto; Toshihiro Umebayashi; Toshihiro Umebayashi;handle: 2115/86283
Abstract To mitigate the negative effects of climate change, it is necessary to conserve carbon stocks in forests. Typhoons fell many standing trees and generate a substantial amount of coarse woody debris (CWD). In boreal forests, CWD contributes to maintaining carbon stocks for a long time after a disturbance because the decomposition rate of CWD is relatively low. We know that salvage logging after a disturbance tremendously decreases the forest carbon stock over the short term after logging but know little about its long-term effects. We targeted a catastrophic windthrow caused by a super typhoon in 1954 in boreal forests in northern Japan and estimated the long-term effects of salvage logging after the windthrow on the above- and belowground carbon stocks by comparing old-growth forests with low damage from the super typhoon in 1954 or any subsequent typhoons (OG), forests damaged by the typhoon with remaining CWD (i.e., windthrow, WT), and forests damaged by the typhoon followed by salvage logging (WT + SL). The CWD carbon stock of decay class 5 (i.e., the most decayed CWD) in WT was significantly larger than that in OG and WT + SL, suggesting that the CWD in decay class 5 in WT had been generated by the typhoon 64 years ago, and the negative effect of salvage logging on the carbon stock still remains apparent in the CWD carbon stock of decay class 5. The carbon stock of the organic (O) layer in WT was larger than that in WT + SL, probably because of three factors: (1) the slower decomposition rate of fallen leaves and twigs of conifers than broadleaves, as conifer litter is abundant in WT; (2) greater carbon transition from the CWD to the O layer in WT; and (3) the occurrence of a lower decomposition rate in the O layer in WT. However, the total carbon stock in WT + SL has almost recovered to the level of that in WT within the last 64 years. The carbon stocks of broadleaves that grew rapidly after the disturbance and the newly accumulated dead trees generated throughout the stand developmental process might contribute to the recovery of carbon stock in WT + SL. These results indicate that salvage logging affects the allocation of carbon in the forest even after 64 years after a catastrophic windthrow, although there was no large difference in total carbon stock.
Hokkaido University ... arrow_drop_down Hokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BY NC NDFull-Text: http://hdl.handle.net/2115/86283Data sources: Bielefeld Academic Search Engine (BASE)Forest Ecology and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2020.118169&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hokkaido University ... arrow_drop_down Hokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BY NC NDFull-Text: http://hdl.handle.net/2115/86283Data sources: Bielefeld Academic Search Engine (BASE)Forest Ecology and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2020.118169&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Jun-Kyu Park; Woong-Bae Park; Yuno Do;doi: 10.3390/su141610258
Public interest in and preferences for certain species can sometimes provide an opportunity for conservation and management. Here, we attempted to identify ‘popular’ anurans from YouTube data. In addition, the attractiveness of anuran advertisement-calling sounds were analyzed using acoustic data. By searching YouTube with the search term ‘frog calling’, 250 videos were selected. Of these, 174 videos could be classified according to species; these videos aided in extracting clean calling sounds, free from the overlapping calls of other male frogs, as well as other sounds. To assess the interests and preferences of viewers for different species, the numbers of videos, view counts, ‘likes,’ and ‘dislikes’ were recorded. From the videos, the calls of 78 species belonging to 17 families were identified. Viewer interest was highest for the Hylidae and Ranidae species, which are often discoverable in the field. In addition, invasive frogs had large numbers of videos and large numbers of ‘likes.’ People tended to prefer frogs calling with lower dominant frequencies. However, there were few videos on endangered species, and these garnered relatively less interest than other species. To manage and conserve invasive or endangered frog species, there is a need to increase ecological understanding by adjusting species awareness and charisma.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 New Zealand, Australia, AustraliaPublisher:Wiley Rigosi, A.; Hanson, P.; Hamilton, D.; Hipsey, M.; Rusak, J.; Bois, J.; Sparber, K.; Chorus, I.; Watkinson, A.; Qin, B.; Kim, B.; Brookes, J.;A Bayesian network model was developed to assess the combined influence of nutrient conditions and climate on the occurrence of cyanobacterial blooms within lakes of diverse hydrology and nutrient supply. Physicochemical, biological, and meteorological observations were collated from 20 lakes located at different latitudes and characterized by a range of sizes and trophic states. Using these data, we built a Bayesian network to (1) analyze the sensitivity of cyanobacterial bloom development to different environmental factors and (2) determine the probability that cyanobacterial blooms would occur. Blooms were classified in three categories of hazard (low, moderate, and high) based on cell abundances. The most important factors determining cyanobacterial bloom occurrence were water temperature, nutrient availability, and the ratio of mixing depth to euphotic depth. The probability of cyanobacterial blooms was evaluated under different combinations of total phosphorus and water temperature. The Bayesian network was then applied to quantify the probability of blooms under a future climate warming scenario. The probability of the “high hazardous” category of cyanobacterial blooms increased 5% in response to either an increase in water temperature of 0.8°C (initial water temperature above 24°C) or an increase in total phosphorus from 0.01 mg/L to 0.02 mg/L. Mesotrophic lakes were particularly vulnerable to warming. Reducing nutrient concentrations counteracts the increased cyanobacterial risk associated with higher temperatures.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Waikato: Research CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-1677.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Waikato: Research CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-1677.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Authors: Thomas R. Newman; Neal Wright; Barbara Wright; Sofie Sjögersten;handle: 2381/42978 , 2381/43001
Peatlands are a critical carbon store comprising 30% of the Earth’s terrestrial soil carbon. Sphagnum mosses comprise up to 90% of peat in the northern hemisphere but impacts of climate change on Sphagnum mosses are poorly understood, limiting development of sustainable peatland management and restoration. This study investigates the effects of elevated atmospheric CO2 (eCO2) (800 ppm) and hydrology on the growth of Sphagnum fallax, Sphagnum capillifolium and Sphagnum papillosum and greenhouse gas fluxes from moss–peat mesocosms. Elevated CO2 levels increased Sphagnum height and dry weight but the magnitude of the response differed among species. The most responsive species, S. fallax, yielded the most biomass compared to S. papillosum and S. capillifolium. Water levels and the CO2 treatment were found to interact, with the highest water level (1 cm below the surface) seeing the largest increase in dry weight under eCO2 compared to ambient (400 ppm) concentrations. Initially, CO2 flux rates were similar between CO2 treatments. After week 9 there was a consistent three-fold increase of the CO2 sink strength under eCO2. At the end of the experiment, S. papillosum and S. fallax were greater sinks of CO2 than S. capillifolium and the − 7 cm water level treatment showed the strongest CO2 sink strength. The mesocosms were net sources of CH4 but the source strength varied with species, specifically S. fallax produced more CH4 than S. papillosum and S. capillifolium. Our findings demonstrate the importance of species selection on the outcomes of peatland restoration with regards to Sphagnum’s growth and GHG exchange.
Leicester Research A... arrow_drop_down Leicester Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Leicester Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11273-018-9607-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Leicester Research A... arrow_drop_down Leicester Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Leicester Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11273-018-9607-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Hoon Kim; Dayanand Kalyani; Jung-Kul Lee; Dong Wook Kim; Saurabh Sudha Dhiman; Marimuthu Jeya; Seongmin Woo;pmid: 22617039
Enzymatic saccharification of woody biomasses was performed using glycoside hydrolases from Stereum hirsutum, a newly isolated fungal strain found to secrete efficient glycoside hydrolases. The strain showed the highest β-glucosidase, cellobiohydrolase, endoglucanase, endoxylanase, laccase, and filter paper activity of 10.3, 1.7, 10.3, 29.9, 0.12, and 0.58 U/ml, respectively. Among the various biomasses tested for saccharification, pine biomass produced maximum reducing sugar. Response surface methodology was used to optimize the hydrolysis of pine biomass to achieve the highest level of sugars. The parameters including enzyme, substrate concentration, temperature and pH were found to be critical for the conversion of pine biomass into sugars. Maximum saccharification of 49.7% (435 mg/g-substrate) was obtained after 96 h of hydrolysis. A close agreement between the experimental results and the model predictions was achieved. S. hirsutum could be a good choice for the production of reducing sugars from cellulosic biomasses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.03.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.03.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Wiley Authors: Alexej P. K. Sirén; Chris S. Sutherland; Ambarish V. Karmalkar; Matthew J. Duveneck; +1 AuthorsAlexej P. K. Sirén; Chris S. Sutherland; Ambarish V. Karmalkar; Matthew J. Duveneck; Toni Lyn Morelli;doi: 10.1111/ddi.13480
handle: 10023/24773
AbstractAimIdentifying the mechanisms influencing species' distributions is critical for accurate climate change forecasts. However, current approaches are limited by correlative models that cannot distinguish between direct and indirect effects.LocationNew Hampshire and Vermont, USA.MethodsUsing causal and correlational models and new theory on range limits, we compared current (2014–2019) and future (2080s) distributions of ecologically important mammalian carnivores and competitors along range limits in the northeastern US under two global climate models (GCMs) and a high‐emission scenario (RCP8.5) of projected snow and forest biomass change.ResultsOur hypothesis that causal models of climate‐mediated competition would result in different distribution predictions than correlational models, both in the current and future periods, was well‐supported by our results; however, these patterns were prominent only for species pairs that exhibited strong interactions. The causal model predicted the current distribution of Canada lynx (Lynx canadensis) more accurately, likely because it incorporated the influence of competitive interactions mediated by snow with the closely related bobcat (Lynx rufus). Both modeling frameworks predicted an overall decline in lynx occurrence in the central high‐elevation regions and increased occurrence in the northeastern region in the 2080s due to changes in land use that provided optimal habitat. However, these losses and gains were less substantial in the causal model due to the inclusion of an indirect buffering effect of snow on lynx.Main conclusionsOur comparative analysis indicates that a causal framework, steeped in ecological theory, can be used to generate spatially explicit predictions of species distributions. This approach can be used to disentangle correlated predictors that have previously hampered understanding of range limits and species' response to climate change.
University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2022Full-Text: http://hdl.handle.net/10023/24773Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 8visibility views 8 download downloads 51 Powered bymore_vert University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2022Full-Text: http://hdl.handle.net/10023/24773Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Pil Joo Kim; Gil Won Kim; Ho Gyeong Chae; Song Rae Cho; Jeong Gu Lee;pmid: 34666093
Plastic film mulching (FM) became a general practice to enhance crop productivity and its net primary production (NPP), but it can increase greenhouse gas (GHG) emissions. The proper addition of organic amendments might effectively decrease the impact of FM on global warming. To evaluate the feasibility of biomass addition on decreasing this negative influence, cover crop biomass as a green manure was incorporated with different recycling levels (0-100% of aboveground biomass) under FM and no-mulching. The net global warming potential (GWP) which integrated with soil C stock change and GHG (N2O and CH4) fluxes with CO2-equivalent was evaluated during maize cultivation. Under the same biomass incorporation, FM significantly enhanced the grain productivity and NPP of maize by 22-61 and 18-58% over no-mulching, respectively. In contrast, FM also highly increased the respired C loss, which was 11-95% higher than NPP increase, over no-mulching. Irrespective with biomass recycling ratio and mulching system, negative NECB which indicates the decrease of soil C stock was observed, mainly due to big harvest removal. FM decreased more soil C stock by 57-158% over no-mulching, but its C stock was clearly increased with increasing biomass addition. FM significantly increased total N2O and CH4 fluxes by 4-61 and 140-600% over no-mulching, respectively. Soil C stock changes mainly decided net GWP scale, but N2O and CH4 fluxes negligibly influenced. As a result, FM highly increased net GWP over no-mulching, while this net GWP was clearly decreased with increasing biomass application. However, cover cropping, and its biomass recycling was not enough to compensate the negative impact of FM on global warming. Therefore, more biomass incorporation might be essential to compensate this negative effect of FM.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Public Library of Science (PLoS) Authors: Leonardo S. Miranda; Vera L. Imperatriz-Fonseca; Tereza C. Giannini;Although the impacts of climate change on biodiversity are increasing worldwide, few studies have attempted to forecast these impacts on Amazon Tropical Forest. In this study, we estimated the impact of climate change on Amazonian avian assemblages considering range shifts, species loss, vulnerability of ecosystem functioning, future effectiveness of current protected areas and potential climatically stable areas for conservation actions. Species distribution modelling based on two algorithms and three different scenarios of climate change was used to forecast 501 avian species, organized on main ecosystem functions (frugivores, insectivores and nectarivores) for years 2050 and 2070. Considering the entire study area, we estimated that between 4 and 19% of the species will find no suitable habitat. Inside the currently established protected areas, species loss could be over 70%. Our results suggest that frugivores are the most sensitive guild, which could bring consequences on seed dispersal functions and on natural regeneration. Moreover, we identified the western and northern parts of the study area as climatically stable. Climate change will potentially affect avian assemblages in southeastern Amazonia with detrimental consequences to their ecosystem functions. Information provided here is essential to conservation practitioners and decision makers to help on planning their actions.
PLoS ONE arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0215229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0215229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United KingdomPublisher:Wiley Frank Rosell; Ruairidh D. Campbell; Ruairidh D. Campbell; Ruairidh D. Campbell; David W. Macdonald; Pierre Nouvellet; Chris Newman;pmid: 24501052
AbstractEcologists are increasingly aware of the importance of environmental variability in natural systems. Climate change is affecting both the mean and the variability in weather and, in particular, the effect of changes in variability is poorly understood. Organisms are subject to selection imposed by both the mean and the range of environmental variation experienced by their ancestors. Changes in the variability in a critical environmental factor may therefore have consequences for vital rates and population dynamics. Here, we examine ≥90‐year trends in different components of climate (precipitation mean and coefficient of variation (CV); temperature mean, seasonal amplitude and residual variance) and consider the effects of these components on survival and recruitment in a population of Eurasian beavers (n = 242) over 13 recent years. Within climatic data, no trends in precipitation were detected, but trends in all components of temperature were observed, with mean and residual variance increasing and seasonal amplitude decreasing over time. A higher survival rate was linked (in order of influence based on Akaike weights) to lower precipitation CV (kits, juveniles and dominant adults), lower residual variance of temperature (dominant adults) and lower mean precipitation (kits and juveniles). No significant effects were found on the survival of nondominant adults, although the sample size for this category was low. Greater recruitment was linked (in order of influence) to higher seasonal amplitude of temperature, lower mean precipitation, lower residual variance in temperature and higher precipitation CV. Both climate means and variance, thus proved significant to population dynamics; although, overall, components describing variance were more influential than those describing mean values. That environmental variation proves significant to a generalist, wide‐ranging species, at the slow end of the slow‐fast continuum of life histories, has broad implications for population regulation and the evolution of life histories.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2012.02739.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2012.02739.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Antonio Lupini; Maria Polsia Princi; Fabrizio Araniti; Anthony J. Miller; Francesco Sunseri; Maria Rosa Abenavoli;Urea is the most common nitrogen (N) fertilizer in agriculture, due to its cheaper price and high N content. Although the reciprocal influence between NO3- and NH4+ nutrition are well known, urea (U) interactions with these N-inorganic forms are poorly studied. Here, the responses of two tomato genotypes to ammonium nitrate (AN), U alone or in combination were investigated. Significant differences in root and shoot biomass between genotypes were observed. Under AN+U supply, Linosa showed higher biomass compared to UC82, exhibiting also higher values for many root architectural traits. Linosa showed higher Nitrogen Uptake (NUpE) and Utilization Efficiency (NUtE) compared to UC82, under AN+U nutrition. Interestingly, Linosa exhibited also a significantly higher DUR3 transcript abundance. These results underline the beneficial effect of AN+U nutrition, highlighting new molecular and physiological strategies for selecting crops that can be used for more sustainable agriculture. The data suggest that translocation and utilization (NUtE) might be a more important component of NUE than uptake (NUpE) in tomato. Genetic variation could be a source for useful NUE traits in tomato; further experiments are needed to dissect the NUtE components that confer a higher ability to utilize N in Linosa.
Journal of Plant Phy... arrow_drop_down Journal of Plant PhysiologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jplph.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Plant Phy... arrow_drop_down Journal of Plant PhysiologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jplph.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 JapanPublisher:Elsevier BV Wataru Hotta; Satoshi N. Suzuki; Takahiro Inoue; Futoshi Nakamura; Hideaki Shibata; Toshihiko Hara; Satoshi Ishibashi; Toshiaki Owari; Junko Morimoto; Toshihiro Umebayashi; Toshihiro Umebayashi;handle: 2115/86283
Abstract To mitigate the negative effects of climate change, it is necessary to conserve carbon stocks in forests. Typhoons fell many standing trees and generate a substantial amount of coarse woody debris (CWD). In boreal forests, CWD contributes to maintaining carbon stocks for a long time after a disturbance because the decomposition rate of CWD is relatively low. We know that salvage logging after a disturbance tremendously decreases the forest carbon stock over the short term after logging but know little about its long-term effects. We targeted a catastrophic windthrow caused by a super typhoon in 1954 in boreal forests in northern Japan and estimated the long-term effects of salvage logging after the windthrow on the above- and belowground carbon stocks by comparing old-growth forests with low damage from the super typhoon in 1954 or any subsequent typhoons (OG), forests damaged by the typhoon with remaining CWD (i.e., windthrow, WT), and forests damaged by the typhoon followed by salvage logging (WT + SL). The CWD carbon stock of decay class 5 (i.e., the most decayed CWD) in WT was significantly larger than that in OG and WT + SL, suggesting that the CWD in decay class 5 in WT had been generated by the typhoon 64 years ago, and the negative effect of salvage logging on the carbon stock still remains apparent in the CWD carbon stock of decay class 5. The carbon stock of the organic (O) layer in WT was larger than that in WT + SL, probably because of three factors: (1) the slower decomposition rate of fallen leaves and twigs of conifers than broadleaves, as conifer litter is abundant in WT; (2) greater carbon transition from the CWD to the O layer in WT; and (3) the occurrence of a lower decomposition rate in the O layer in WT. However, the total carbon stock in WT + SL has almost recovered to the level of that in WT within the last 64 years. The carbon stocks of broadleaves that grew rapidly after the disturbance and the newly accumulated dead trees generated throughout the stand developmental process might contribute to the recovery of carbon stock in WT + SL. These results indicate that salvage logging affects the allocation of carbon in the forest even after 64 years after a catastrophic windthrow, although there was no large difference in total carbon stock.
Hokkaido University ... arrow_drop_down Hokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BY NC NDFull-Text: http://hdl.handle.net/2115/86283Data sources: Bielefeld Academic Search Engine (BASE)Forest Ecology and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2020.118169&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hokkaido University ... arrow_drop_down Hokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BY NC NDFull-Text: http://hdl.handle.net/2115/86283Data sources: Bielefeld Academic Search Engine (BASE)Forest Ecology and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2020.118169&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Jun-Kyu Park; Woong-Bae Park; Yuno Do;doi: 10.3390/su141610258
Public interest in and preferences for certain species can sometimes provide an opportunity for conservation and management. Here, we attempted to identify ‘popular’ anurans from YouTube data. In addition, the attractiveness of anuran advertisement-calling sounds were analyzed using acoustic data. By searching YouTube with the search term ‘frog calling’, 250 videos were selected. Of these, 174 videos could be classified according to species; these videos aided in extracting clean calling sounds, free from the overlapping calls of other male frogs, as well as other sounds. To assess the interests and preferences of viewers for different species, the numbers of videos, view counts, ‘likes,’ and ‘dislikes’ were recorded. From the videos, the calls of 78 species belonging to 17 families were identified. Viewer interest was highest for the Hylidae and Ranidae species, which are often discoverable in the field. In addition, invasive frogs had large numbers of videos and large numbers of ‘likes.’ People tended to prefer frogs calling with lower dominant frequencies. However, there were few videos on endangered species, and these garnered relatively less interest than other species. To manage and conserve invasive or endangered frog species, there is a need to increase ecological understanding by adjusting species awareness and charisma.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 New Zealand, Australia, AustraliaPublisher:Wiley Rigosi, A.; Hanson, P.; Hamilton, D.; Hipsey, M.; Rusak, J.; Bois, J.; Sparber, K.; Chorus, I.; Watkinson, A.; Qin, B.; Kim, B.; Brookes, J.;A Bayesian network model was developed to assess the combined influence of nutrient conditions and climate on the occurrence of cyanobacterial blooms within lakes of diverse hydrology and nutrient supply. Physicochemical, biological, and meteorological observations were collated from 20 lakes located at different latitudes and characterized by a range of sizes and trophic states. Using these data, we built a Bayesian network to (1) analyze the sensitivity of cyanobacterial bloom development to different environmental factors and (2) determine the probability that cyanobacterial blooms would occur. Blooms were classified in three categories of hazard (low, moderate, and high) based on cell abundances. The most important factors determining cyanobacterial bloom occurrence were water temperature, nutrient availability, and the ratio of mixing depth to euphotic depth. The probability of cyanobacterial blooms was evaluated under different combinations of total phosphorus and water temperature. The Bayesian network was then applied to quantify the probability of blooms under a future climate warming scenario. The probability of the “high hazardous” category of cyanobacterial blooms increased 5% in response to either an increase in water temperature of 0.8°C (initial water temperature above 24°C) or an increase in total phosphorus from 0.01 mg/L to 0.02 mg/L. Mesotrophic lakes were particularly vulnerable to warming. Reducing nutrient concentrations counteracts the increased cyanobacterial risk associated with higher temperatures.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Waikato: Research CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-1677.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Waikato: Research CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-1677.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Authors: Thomas R. Newman; Neal Wright; Barbara Wright; Sofie Sjögersten;handle: 2381/42978 , 2381/43001
Peatlands are a critical carbon store comprising 30% of the Earth’s terrestrial soil carbon. Sphagnum mosses comprise up to 90% of peat in the northern hemisphere but impacts of climate change on Sphagnum mosses are poorly understood, limiting development of sustainable peatland management and restoration. This study investigates the effects of elevated atmospheric CO2 (eCO2) (800 ppm) and hydrology on the growth of Sphagnum fallax, Sphagnum capillifolium and Sphagnum papillosum and greenhouse gas fluxes from moss–peat mesocosms. Elevated CO2 levels increased Sphagnum height and dry weight but the magnitude of the response differed among species. The most responsive species, S. fallax, yielded the most biomass compared to S. papillosum and S. capillifolium. Water levels and the CO2 treatment were found to interact, with the highest water level (1 cm below the surface) seeing the largest increase in dry weight under eCO2 compared to ambient (400 ppm) concentrations. Initially, CO2 flux rates were similar between CO2 treatments. After week 9 there was a consistent three-fold increase of the CO2 sink strength under eCO2. At the end of the experiment, S. papillosum and S. fallax were greater sinks of CO2 than S. capillifolium and the − 7 cm water level treatment showed the strongest CO2 sink strength. The mesocosms were net sources of CH4 but the source strength varied with species, specifically S. fallax produced more CH4 than S. papillosum and S. capillifolium. Our findings demonstrate the importance of species selection on the outcomes of peatland restoration with regards to Sphagnum’s growth and GHG exchange.
Leicester Research A... arrow_drop_down Leicester Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Leicester Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11273-018-9607-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Leicester Research A... arrow_drop_down Leicester Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Leicester Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11273-018-9607-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Hoon Kim; Dayanand Kalyani; Jung-Kul Lee; Dong Wook Kim; Saurabh Sudha Dhiman; Marimuthu Jeya; Seongmin Woo;pmid: 22617039
Enzymatic saccharification of woody biomasses was performed using glycoside hydrolases from Stereum hirsutum, a newly isolated fungal strain found to secrete efficient glycoside hydrolases. The strain showed the highest β-glucosidase, cellobiohydrolase, endoglucanase, endoxylanase, laccase, and filter paper activity of 10.3, 1.7, 10.3, 29.9, 0.12, and 0.58 U/ml, respectively. Among the various biomasses tested for saccharification, pine biomass produced maximum reducing sugar. Response surface methodology was used to optimize the hydrolysis of pine biomass to achieve the highest level of sugars. The parameters including enzyme, substrate concentration, temperature and pH were found to be critical for the conversion of pine biomass into sugars. Maximum saccharification of 49.7% (435 mg/g-substrate) was obtained after 96 h of hydrolysis. A close agreement between the experimental results and the model predictions was achieved. S. hirsutum could be a good choice for the production of reducing sugars from cellulosic biomasses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.03.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.03.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Wiley Authors: Alexej P. K. Sirén; Chris S. Sutherland; Ambarish V. Karmalkar; Matthew J. Duveneck; +1 AuthorsAlexej P. K. Sirén; Chris S. Sutherland; Ambarish V. Karmalkar; Matthew J. Duveneck; Toni Lyn Morelli;doi: 10.1111/ddi.13480
handle: 10023/24773
AbstractAimIdentifying the mechanisms influencing species' distributions is critical for accurate climate change forecasts. However, current approaches are limited by correlative models that cannot distinguish between direct and indirect effects.LocationNew Hampshire and Vermont, USA.MethodsUsing causal and correlational models and new theory on range limits, we compared current (2014–2019) and future (2080s) distributions of ecologically important mammalian carnivores and competitors along range limits in the northeastern US under two global climate models (GCMs) and a high‐emission scenario (RCP8.5) of projected snow and forest biomass change.ResultsOur hypothesis that causal models of climate‐mediated competition would result in different distribution predictions than correlational models, both in the current and future periods, was well‐supported by our results; however, these patterns were prominent only for species pairs that exhibited strong interactions. The causal model predicted the current distribution of Canada lynx (Lynx canadensis) more accurately, likely because it incorporated the influence of competitive interactions mediated by snow with the closely related bobcat (Lynx rufus). Both modeling frameworks predicted an overall decline in lynx occurrence in the central high‐elevation regions and increased occurrence in the northeastern region in the 2080s due to changes in land use that provided optimal habitat. However, these losses and gains were less substantial in the causal model due to the inclusion of an indirect buffering effect of snow on lynx.Main conclusionsOur comparative analysis indicates that a causal framework, steeped in ecological theory, can be used to generate spatially explicit predictions of species distributions. This approach can be used to disentangle correlated predictors that have previously hampered understanding of range limits and species' response to climate change.
University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2022Full-Text: http://hdl.handle.net/10023/24773Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 8visibility views 8 download downloads 51 Powered bymore_vert University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2022Full-Text: http://hdl.handle.net/10023/24773Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu